Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-34608769

RESUMO

This study aimed to determine whether published pharmacokinetic (PK) models can adequately predict the PK profile of imatinib in a new indication, such as coronavirus disease 2019 (COVID-19). Total (bound + unbound) and unbound imatinib plasma concentrations obtained from 134 patients with COVID-19 participating in the CounterCovid study and from an historical dataset of 20 patients with gastrointestinal stromal tumor (GIST) and 85 patients with chronic myeloid leukemia (CML) were compared. Total imatinib area under the concentration time curve (AUC), maximum concentration (Cmax ) and trough concentration (Ctrough ) were 2.32-fold (95% confidence interval [CI] 1.34-3.29), 2.31-fold (95% CI 1.33-3.29), and 2.32-fold (95% CI 1.11-3.53) lower, respectivelwy, for patients with CML/GIST compared with patients with COVID-19, whereas unbound concentrations were comparable among groups. Inclusion of alpha1-acid glycoprotein (AAG) concentrations measured in patients with COVID-19 into a previously published model developed to predict free imatinib concentrations in patients with GIST using total imatinib and plasma AAG concentration measurements (AAG-PK-Model) gave an estimated mean (SD) prediction error (PE) of -20% (31%) for total and -7.0% (56%) for unbound concentrations. Further covariate modeling with this combined dataset showed that in addition to AAG; age, bodyweight, albumin, CRP, and intensive care unit admission were predictive of total imatinib oral clearance. In conclusion, high total and unaltered unbound concentrations of imatinib in COVID-19 compared to CML/GIST were a result of variability in acute phase proteins. This is a textbook example of how failure to take into account differences in plasma protein binding and the unbound fraction when interpreting PK of highly protein bound drugs, such as imatinib, could lead to selection of a dose with suboptimal efficacy in patients with COVID-19.

4.
Pulm Circ ; 11(3): 20458940211028017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276963

RESUMO

Pulmonary arterial hypertension is a heterogeneous group of diseases characterized by vascular cell proliferation leading to pulmonary vascular remodelling and ultimately right heart failure. Previous data indicated that 3'-deoxy-3'-[18F]-fluorothymidine (18FLT) positron emission tomography (PET) scanning was increased in pulmonary arterial hypertension patients, hence providing a possible biomarker for pulmonary arterial hypertension as it reflects vascular cell hyperproliferation in the lung. This study sought to validate 18FLT-PET in an expanded cohort of pulmonary arterial hypertension patients in comparison to matched healthy controls and unaffected bone morphogenetic protein receptor type 2 mutation carriers. 18FLT-PET scanning was performed in 21 pulmonary arterial hypertension patients (15 hereditary pulmonary arterial hypertension and 6 idiopathic pulmonary arterial hypertension), 11 unaffected mutation carriers and 9 healthy control subjects. In-depth kinetic analysis indicated that there were no differences in lung 18FLT k3 phosphorylation among pulmonary arterial hypertension patients, unaffected bone morphogenetic protein receptor type 2 mutation carriers and healthy controls. Lung 18FLT uptake did not correlate with haemodynamic or clinical parameters in pulmonary arterial hypertension patients. Sequential 18FLT-PET scanning in three patients demonstrated uneven regional distribution in 18FLT uptake by 3D parametric mapping of the lung, although this did not follow the clinical course of the patient. We did not detect significantly increased lung 18FLT uptake in pulmonary arterial hypertension patients, nor in the unaffected bone morphogenetic protein receptor type 2 mutation carriers, as compared to healthy subjects. The conflicting results with our preliminary human 18FLT report may be explained by a small sample size previously and we observed large variation of lung 18FLT signals between patients, challenging the application of 18FLT-PET as a biomarker in the pulmonary arterial hypertension clinic.

5.
PLoS One ; 16(7): e0250442, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34214082

RESUMO

BACKGROUND: Vascular endothelial dysfunction is an essential part of the pathophysiology of type 2 diabetes and its complications. In type 2 diabetes, endothelial dysfunction is characterized by reduced insulin signaling and increased transendothelial transport of fatty acids (FA). As the Abl kinase inhibitor imatinib was previously shown to reverse type 2 diabetes and to inhibit VEGF signaling via Abl kinases, we studied the effect of imatinib on vascular insulin sensitivity and fatty acid transport in vivo and in vitro. METHODS: C57/BL6J mice were fed a chow diet or Western diet (WD), and received daily imatinib injections for two weeks. Insulin-mediated vasoreactivity of resistance arteries was studied using intravital microscopy, and metabolic insulin sensitivity using the hyperinsulinemic-euglycemic clamp. The effect of imatinib on triglyceride content in skeletal muscle and heart in vivo was also determined. In vitro, the effect of imatinib on fatty acid transport was studied in human umbilical vein endothelial cells (HUVECs) by evaluating the effect of imatinib on fluorescently labeled FA uptake both under basal and VEGF-B-stimulated conditions. RESULTS: Imatinib prevented the WD-induced weight gain in mice, independently from food intake. In line with this, imatinib enhanced insulin-mediated vasoreactivity of resistance arteries in the WD-fed mice. However, imatinib did not affect triglyceride content in muscle. In cultured endothelial cells, VEGF-B stimulation resulted in a time-dependent uptake of fatty acids in parallel with increased phosphorylation of the Abl kinase substrate Crk-like protein (CrkL) at Tyr207. Although imatinib effectively prevented VEGF-B-mediated Abl kinase activation, it had no effect on VEGF-B mediated endothelial FA uptake. CONCLUSION: Imatinib prevents weight gain and preserves insulin-mediated vasodilation in WD-fed mice, but does not affect endothelial FA transport despite inhibiting VEGF-B signaling. The beneficial effect of imatinib on insulin-mediated vasodilation may contribute to the anti-diabetic effects of imatinib.


Assuntos
Peso Corporal/efeitos dos fármacos , Ácidos Graxos não Esterificados/metabolismo , Mesilato de Imatinib/farmacologia , Resistência à Insulina , Animais , Camundongos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
Lancet Respir Med ; 9(9): 957-968, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34147142

RESUMO

BACKGROUND: The major complication of COVID-19 is hypoxaemic respiratory failure from capillary leak and alveolar oedema. Experimental and early clinical data suggest that the tyrosine-kinase inhibitor imatinib reverses pulmonary capillary leak. METHODS: This randomised, double-blind, placebo-controlled, clinical trial was done at 13 academic and non-academic teaching hospitals in the Netherlands. Hospitalised patients (aged ≥18 years) with COVID-19, as confirmed by an RT-PCR test for SARS-CoV-2, requiring supplemental oxygen to maintain a peripheral oxygen saturation of greater than 94% were eligible. Patients were excluded if they had severe pre-existing pulmonary disease, had pre-existing heart failure, had undergone active treatment of a haematological or non-haematological malignancy in the previous 12 months, had cytopenia, or were receiving concomitant treatment with medication known to strongly interact with imatinib. Patients were randomly assigned (1:1) to receive either oral imatinib, given as a loading dose of 800 mg on day 0 followed by 400 mg daily on days 1-9, or placebo. Randomisation was done with a computer-based clinical data management platform with variable block sizes (containing two, four, or six patients), stratified by study site. The primary outcome was time to discontinuation of mechanical ventilation and supplemental oxygen for more than 48 consecutive hours, while being alive during a 28-day period. Secondary outcomes included safety, mortality at 28 days, and the need for invasive mechanical ventilation. All efficacy and safety analyses were done in all randomised patients who had received at least one dose of study medication (modified intention-to-treat population). This study is registered with the EU Clinical Trials Register (EudraCT 2020-001236-10). FINDINGS: Between March 31, 2020, and Jan 4, 2021, 805 patients were screened, of whom 400 were eligible and randomly assigned to the imatinib group (n=204) or the placebo group (n=196). A total of 385 (96%) patients (median age 64 years [IQR 56-73]) received at least one dose of study medication and were included in the modified intention-to-treat population. Time to discontinuation of ventilation and supplemental oxygen for more than 48 h was not significantly different between the two groups (unadjusted hazard ratio [HR] 0·95 [95% CI 0·76-1·20]). At day 28, 15 (8%) of 197 patients had died in the imatinib group compared with 27 (14%) of 188 patients in the placebo group (unadjusted HR 0·51 [0·27-0·95]). After adjusting for baseline imbalances between the two groups (sex, obesity, diabetes, and cardiovascular disease) the HR for mortality was 0·52 (95% CI 0·26-1·05). The HR for mechanical ventilation in the imatinib group compared with the placebo group was 1·07 (0·63-1·80; p=0·81). The median duration of invasive mechanical ventilation was 7 days (IQR 3-13) in the imatinib group compared with 12 days (6-20) in the placebo group (p=0·0080). 91 (46%) of 197 patients in the imatinib group and 82 (44%) of 188 patients in the placebo group had at least one grade 3 or higher adverse event. The safety evaluation revealed no imatinib-associated adverse events. INTERPRETATION: The study failed to meet its primary outcome, as imatinib did not reduce the time to discontinuation of ventilation and supplemental oxygen for more than 48 consecutive hours in patients with COVID-19 requiring supplemental oxygen. The observed effects on survival (although attenuated after adjustment for baseline imbalances) and duration of mechanical ventilation suggest that imatinib might confer clinical benefit in hospitalised patients with COVID-19, but further studies are required to validate these findings. FUNDING: Amsterdam Medical Center Foundation, Nederlandse Organisatie voor Wetenschappelijk Onderzoek/ZonMW, and the European Union Innovative Medicines Initiative 2.


Assuntos
COVID-19/terapia , Mesilato de Imatinib/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Respiração Artificial/estatística & dados numéricos , Insuficiência Respiratória/terapia , Idoso , COVID-19/complicações , COVID-19/diagnóstico , COVID-19/virologia , Permeabilidade Capilar/efeitos dos fármacos , Terapia Combinada/efeitos adversos , Terapia Combinada/métodos , Método Duplo-Cego , Feminino , Humanos , Mesilato de Imatinib/efeitos adversos , Masculino , Pessoa de Meia-Idade , Países Baixos , Oxigênio/administração & dosagem , Placebos/administração & dosagem , Placebos/efeitos adversos , Inibidores de Proteínas Quinases/efeitos adversos , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/virologia , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Fatores de Tempo , Resultado do Tratamento
7.
Sci Transl Med ; 13(596)2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33979301

RESUMO

Patients diagnosed with coronavirus disease 2019 (COVID-19) become critically ill primarily around the time of activation of the adaptive immune response. Here, we provide evidence that antibodies play a role in the worsening of disease at the time of seroconversion. We show that early-phase severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific immunoglobulin G (IgG) in serum of critically ill COVID-19 patients induces excessive inflammatory responses by human alveolar macrophages. We identified that this excessive inflammatory response is dependent on two antibody features that are specific for patients with severe COVID-19. First, inflammation is driven by high titers of anti-spike IgG, a hallmark of severe disease. Second, we found that anti-spike IgG from patients with severe COVID-19 is intrinsically more proinflammatory because of different glycosylation, particularly low fucosylation, of the antibody Fc tail. Low fucosylation of anti-spike IgG was normalized in a few weeks after initial infection with SARS-CoV-2, indicating that the increased antibody-dependent inflammation mainly occurs at the time of seroconversion. We identified Fcγ receptor (FcγR) IIa and FcγRIII as the two primary IgG receptors that are responsible for the induction of key COVID-19-associated cytokines such as interleukin-6 and tumor necrosis factor. In addition, we show that anti-spike IgG-activated human macrophages can subsequently break pulmonary endothelial barrier integrity and induce microvascular thrombosis in vitro. Last, we demonstrate that the inflammatory response induced by anti-spike IgG can be specifically counteracted by fostamatinib, an FDA- and EMA-approved therapeutic small-molecule inhibitor of Syk kinase.


Assuntos
Anticorpos Antivirais/química , COVID-19/imunologia , Imunoglobulina G/química , Macrófagos Alveolares/imunologia , Glicosilação , Humanos , Inflamação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia
8.
Angiogenesis ; 24(3): 677-693, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33770321

RESUMO

Endothelial barrier disruption and vascular leak importantly contribute to organ dysfunction and mortality during inflammatory conditions like sepsis and acute respiratory distress syndrome. We identified the kinase Arg/Abl2 as a mediator of endothelial barrier disruption, but the role of Arg in endothelial monolayer regulation and its relevance in vivo remain poorly understood. Here we show that depletion of Arg in endothelial cells results in the activation of both RhoA and Rac1, increased cell spreading and elongation, redistribution of integrin-dependent cell-matrix adhesions to the cell periphery, and improved adhesion to the extracellular matrix. We further show that Arg is activated in the endothelium during inflammation, both in murine lungs exposed to barrier-disruptive agents, and in pulmonary microvessels of septic patients. Importantly, Arg-depleted endothelial cells were less sensitive to barrier-disruptive agents. Despite the formation of F-actin stress fibers and myosin light chain phosphorylation, Arg depletion diminished adherens junction disruption and intercellular gap formation, by reducing the disassembly of cell-matrix adhesions and cell retraction. In vivo, genetic deletion of Arg diminished vascular leak in the skin and lungs, in the presence of a normal immune response. Together, our data indicate that Arg is a central and non-redundant regulator of endothelial barrier integrity, which contributes to cell retraction and gap formation by increasing the dynamics of adherens junctions and cell-matrix adhesions in a Rho GTPase-dependent fashion. Therapeutic inhibition of Arg may provide a suitable strategy for the treatment of a variety of clinical conditions characterized by vascular leak.

9.
Br J Anaesth ; 126(5): 958-966, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33685634

RESUMO

BACKGROUND: Trauma-induced shock is associated with endothelial dysfunction. We examined whether the tyrosine kinase inhibitor bosutinib as an adjunct therapy to a balanced blood component resuscitation strategy reduces trauma-induced endothelial permeability, thereby improving shock reversal and limiting transfusion requirements and organ failure in a rat polytrauma transfusion model. METHODS: Male Sprague-Dawley rats (n=13 per group) were traumatised and exsanguinated until a MAP of 40 mm Hg was reached, then randomised to two groups: red blood cells, plasma and platelets in a 1:1:1 ratio with either bosutinib or vehicle. Controls were randomised to sham (median laparotomy, no trauma) with bosutinib or vehicle. Organs were harvested for histology and wet/dry (W/D) weight ratio. RESULTS: Traumatic injury resulted in shock, with higher lactate levels compared with controls. In trauma-induced shock, the resuscitation volume needed to obtain a MAP of 60 mm Hg was lower in bosutinib-treated animals (2.8 [2.7-3.2] ml kg-1) compared with vehicle (6.1 [5.1-7.2] ml kg-1, P<0.001). Lactate levels in the bosutinib group were 2.9 [1.7-4.8] mM compared with 6.2 [3.1-14.1] mM in the vehicle group (P=0.06). Bosutinib compared with vehicle reduced lung vascular leakage (W/D ratio of 5.1 [4.6-5.3] vs 5.7 [5.4-6.0] (P=0.046) and lung injury scores (P=0.027). CONCLUSIONS: Bosutinib as an adjunct therapy to a balanced transfusion strategy reduced resuscitation volume, improved shock reversal, and reduced vascular leak and organ injury in a rat polytrauma model.


Assuntos
Compostos de Anilina/farmacologia , Transfusão de Sangue/métodos , Traumatismo Múltiplo/tratamento farmacológico , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Choque/tratamento farmacológico , Animais , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Ácido Láctico/metabolismo , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Masculino , Traumatismo Múltiplo/complicações , Traumatismo Múltiplo/fisiopatologia , Permeabilidade/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Ressuscitação/métodos , Choque/etiologia
10.
Eur J Immunol ; 51(6): 1535-1538, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33768543

RESUMO

Despite high levels of CXCR3 ligands in mechanically ventilated COVID-19 patients, BALF CD8 T cells were not enriched in CXCR3+ cells but rather CCR6+ , likely due to high CCL20 levels in BALF, and had very high PD-1 expression. In mechanically ventilated, but not ward, patients Th-1 immunity is impaired. ​.


Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Quimiocina CCL20/imunologia , Pulmão/imunologia , Receptores CCR6/imunologia , Respiração Artificial , SARS-CoV-2/imunologia , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/patologia , COVID-19/patologia , COVID-19/terapia , Feminino , Humanos , Pulmão/patologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade
11.
Eur Respir J ; 58(3)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33632800

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease predominantly targeting pre-capillary blood vessels. Adverse structural remodelling and increased pulmonary vascular resistance result in cardiac hypertrophy and ultimately failure of the right ventricle. Recent whole-genome and whole-exome sequencing studies have identified SOX17 as a novel risk gene in PAH, with a dominant mode of inheritance and incomplete penetrance. Rare deleterious variants in the gene and more common variants in upstream enhancer sites have both been associated with the disease, and a deficiency of SOX17 expression may predispose to PAH. This review aims to consolidate the evidence linking genetic variants in SOX17 to PAH, and explores the numerous targets and effects of the transcription factor, focusing on the pulmonary vasculature and the pathobiology of PAH.


Assuntos
Hipertensão Arterial Pulmonar , Hipertensão Pulmonar Primária Familiar , Predisposição Genética para Doença , Ventrículos do Coração , Humanos , Fatores de Transcrição SOXF/genética , Sequenciamento Completo do Exoma
12.
J Vis Exp ; (159)2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32510519

RESUMO

The formation of blood clots involves complex interactions between endothelial cells, their underlying matrix, various blood cells, and proteins. The endothelium is the primary source of many of the major hemostatic molecules that control platelet aggregation, coagulation, and fibrinolysis. Although the mechanism of thrombosis has been investigated for decades, in vitro studies mainly focus on situations of vascular damage where the subendothelial matrix gets exposed, or on interactions between cells with single blood components. Our method allows studying interactions between whole blood and an intact, confluent vascular cell network. By utilizing primary human endothelial cells, this protocol provides the unique opportunity to study the influence of endothelial cells on thrombus dynamics and gives valuable insights into the pathophysiology of thrombotic disease. The use of custom-made microfluidic flow channels allows application of disease-specific vascular geometries and model specific morphological vascular changes. The development of a thrombus is recorded in real-time and quantitatively characterized by platelet adhesion and fibrin deposition. The effect of endothelial function in altered thrombus dynamics is determined by postanalysis through immunofluorescence staining of specific molecules. The representative results describe the experimental setup, data collection, and data analysis. Depending on the research question, parameters for every section can be adjusted including cell type, shear rates, channel geometry, drug therapy, and postanalysis procedures. The protocol is validated by quantifying thrombus formation on the pulmonary artery endothelium of patients with chronic thromboembolic disease.


Assuntos
Coagulação Sanguínea , Plaquetas/metabolismo , Células Endoteliais/metabolismo , Microfluídica/métodos , Adesividade Plaquetária , Agregação Plaquetária , Trombose/fisiopatologia , Células Endoteliais/citologia , Fibrinólise , Hemostasia , Humanos , Microfluídica/instrumentação
15.
J Cell Sci ; 133(9)2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32198280

RESUMO

Endothelial barrier dysfunction leads to edema and vascular leak, causing high morbidity and mortality. Previously, Abl kinase inhibition has been shown to protect against vascular leak. Using the distinct inhibitory profiles of clinically available Abl kinase inhibitors, we aimed to provide a mechanistic basis for novel treatment strategies against vascular leakage syndromes. We found that the inhibitor bosutinib most potently protected against inflammation-induced endothelial barrier disruption. In vivo, bosutinib prevented lipopolysaccharide (LPS)-induced alveolar protein extravasation in an acute lung injury mice model. Mechanistically, mitogen-activated protein 4 kinase 4 (MAP4K4) was identified as important novel mediator of endothelial permeability, which signaled via ezrin, radixin and moesin proteins to increase turnover of integrin-based focal adhesions. The combined inhibition of MAP4K4 and Abl-related gene (Arg, also known as ABL2) by bosutinib preserved adherens junction integrity and reduced turnover of focal adhesions, which synergistically act to stabilize the endothelial barrier during inflammation. We conclude that MAP4K4 is an important regulator of endothelial barrier integrity, increasing focal adhesion turnover and disruption of cell-cell junctions during inflammation. Because it inhibits both Arg and MAP4K4, use of the clinically available drug bosutinib might form a viable strategy against vascular leakage syndromes.


Assuntos
Adesões Focais , Preparações Farmacêuticas , Junções Aderentes , Compostos de Anilina , Animais , Permeabilidade Capilar , Camundongos , Nitrilas , Quinolinas
17.
Lancet Respir Med ; 7(3): 227-238, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30527956

RESUMO

BACKGROUND: Rare genetic variants cause pulmonary arterial hypertension, but the contribution of common genetic variation to disease risk and natural history is poorly characterised. We tested for genome-wide association for pulmonary arterial hypertension in large international cohorts and assessed the contribution of associated regions to outcomes. METHODS: We did two separate genome-wide association studies (GWAS) and a meta-analysis of pulmonary arterial hypertension. These GWAS used data from four international case-control studies across 11 744 individuals with European ancestry (including 2085 patients). One GWAS used genotypes from 5895 whole-genome sequences and the other GWAS used genotyping array data from an additional 5849 individuals. Cross-validation of loci reaching genome-wide significance was sought by meta-analysis. Conditional analysis corrected for the most significant variants at each locus was used to resolve signals for multiple associations. We functionally annotated associated variants and tested associations with duration of survival. All-cause mortality was the primary endpoint in survival analyses. FINDINGS: A locus near SOX17 (rs10103692, odds ratio 1·80 [95% CI 1·55-2·08], p=5·13 × 10-15) and a second locus in HLA-DPA1 and HLA-DPB1 (collectively referred to as HLA-DPA1/DPB1 here; rs2856830, 1·56 [1·42-1·71], p=7·65 × 10-20) within the class II MHC region were associated with pulmonary arterial hypertension. The SOX17 locus had two independent signals associated with pulmonary arterial hypertension (rs13266183, 1·36 [1·25-1·48], p=1·69 × 10-12; and rs10103692). Functional and epigenomic data indicate that the risk variants near SOX17 alter gene regulation via an enhancer active in endothelial cells. Pulmonary arterial hypertension risk variants determined haplotype-specific enhancer activity, and CRISPR-mediated inhibition of the enhancer reduced SOX17 expression. The HLA-DPA1/DPB1 rs2856830 genotype was strongly associated with survival. Median survival from diagnosis in patients with pulmonary arterial hypertension with the C/C homozygous genotype was double (13·50 years [95% CI 12·07 to >13·50]) that of those with the T/T genotype (6·97 years [6·02-8·05]), despite similar baseline disease severity. INTERPRETATION: This is the first study to report that common genetic variation at loci in an enhancer near SOX17 and in HLA-DPA1/DPB1 is associated with pulmonary arterial hypertension. Impairment of SOX17 function might be more common in pulmonary arterial hypertension than suggested by rare mutations in SOX17. Further studies are needed to confirm the association between HLA typing or rs2856830 genotyping and survival, and to determine whether HLA typing or rs2856830 genotyping improves risk stratification in clinical practice or trials. FUNDING: UK NIHR, BHF, UK MRC, Dinosaur Trust, NIH/NHLBI, ERS, EMBO, Wellcome Trust, EU, AHA, ACClinPharm, Netherlands CVRI, Dutch Heart Foundation, Dutch Federation of UMC, Netherlands OHRD and RNAS, German DFG, German BMBF, APH Paris, INSERM, Université Paris-Sud, and French ANR.


Assuntos
Cadeias alfa de HLA-DP/genética , Cadeias beta de HLA-DP/genética , Hipertensão Arterial Pulmonar , Fatores de Transcrição SOXF/genética , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/mortalidade , Medição de Risco , Transdução de Sinais/genética , Análise de Sobrevida
18.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-30079232

RESUMO

Pulmonary arterial hypertension (PAH) is a rare disorder with a high mortality rate. Treatment options have improved in the last 20 years, but patients still die prematurely of right heart failure. Though rare, it is heterogeneous at the genetic and molecular level, and understanding and exploiting this is key to the development of more effective treatments. BMPR2, encoding bone morphogenetic receptor type 2, is the most commonly affected gene in both familial and non-familial PAH, but rare mutations have been identified in other genes. Transcriptomic, proteomic, and metabolomic studies looking for endophenotypes are under way. There is no shortage of candidate new drug targets for PAH, but the selection and prioritisation of these are challenges for the research community.

19.
Front Cardiovasc Med ; 5: 55, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946549

RESUMO

Treatment with the second and third generation BCR-ABL1 tyrosine kinase inhibitors (TKIs) increases cardiovascular risk in chronic myeloid leukemia (CML) patients. We investigated the vascular adverse effects of three generations of TKIs in a translational model for atherosclerosis, the APOE*3Leiden.CETP mouse. Mice were treated for sixteen weeks with imatinib (150 mg/kg BID), nilotinib (10 and 30 mg/kg QD) or ponatinib (3 and 10 mg/kg QD), giving similar drug exposures as in CML-patients. Cardiovascular risk factors were analyzed longitudinally, and histopathological analysis of atherosclerosis and transcriptome analysis of the liver was performed. Imatinib and ponatinib decreased plasma cholesterol (imatinib, -69%, p < 0.001; ponatinib 3 mg/kg, -37%, p < 0.001; ponatinib 10 mg/kg-44%, p < 0.001) and atherosclerotic lesion area (imatinib, -78%, p < 0.001; ponatinib 3 mg/kg, -52%, p = 0.002; ponatinib 10 mg/kg, -48%, p = 0.006), which were not affected by nilotinib. In addition, imatinib increased plaque stability. Gene expression and pathway analysis demonstrated that ponatinib enhanced the mRNA expression of coagulation factors of both the contact activation (intrinsic) and tissue factor (extrinsic) pathways. In line with this, ponatinib enhanced plasma levels of FVII, whereas nilotinib increased plasma FVIIa activity. While imatinib showed a beneficial cardiovascular risk profile, nilotinib and ponatinib increased the cardiovascular risk through induction of a pro-thrombotic state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...