Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 10(9): e2001461, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33694309

RESUMO

Conventional flexible pressure sensors are not suitable for high-pressure applications due to their low saturation pressure. In this study, an ultra-wide range pressure sensor is designed based on the optimized microstructure of the polyimide/carbon nanotubes (PI/CNT) nanocomposite film. The sensing range of the pressure sensor is expanded by adopting polyimide (PI) with a high elastic modulus as a matrix material and its sensitivity is improved through functional sensing film with tip-flattened microdome arrays. As a result, the pressure sensor can measure a wide pressure range (≈ 0-3000 kPa) and possesses the sensitivity of ≈ 5.66 × 10-3 -0.23 × 10-3 kPa-1 with high reliability and durability up to 1000 cycles. The proposed sensor is integrated into the hand and foot pressure monitoring systems for workout monitoring. The representative values of the pressure distribution in the hands and feet during the powerlifting are acquired and analyzed through Pearson's correlation coefficient (PCC). The analyzed results suggest that the pressure sensor can provide useful real-time information for healthcare and sports performance monitoring.


Assuntos
Nanocompostos , Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Pressão , Reprodutibilidade dos Testes
2.
ACS Appl Mater Interfaces ; 11(26): 23639-23648, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180635

RESUMO

Flexible and wearable pressure sensors have attracted a tremendous amount of attention due to their wider applications in human interfaces and healthcare monitoring. However, achieving accurate pressure detection and stability against external stimuli (in particular, bending deformation) over a wide range of pressures from tactile to body weight levels is a great challenge. Here, we introduce an ultrawide-range, bending-insensitive, and flexible pressure sensor based on a carbon nanotube (CNT) network-coated thin porous elastomer sponge for use in human interface devices. The integration of the CNT networks into three-dimensional microporous elastomers provides high deformability and a large change in contact between the conductive CNT networks due to the presence of micropores, thereby improving the sensitivity compared with that obtained using CNT-embedded solid elastomers. As electrical pathways are continuously generated up to high compressive strain (∼80%), the pressure sensor shows an ultrawide pressure sensing range (10 Pa to 1.2 MPa) while maintaining favorable sensitivity (0.01-0.02 kPa-1) and linearity ( R2 ∼ 0.98). Also, the pressure sensor exhibits excellent electromechanical stability and insensitivity to bending-induced deformations. Finally, we demonstrate that the pressure sensor can be applied in a flexible piano pad as an entertainment human interface device and a flexible foot insole as a wearable healthcare and gait monitoring device.


Assuntos
Técnicas Biossensoriais , Elastômeros/química , Nanotubos de Carbono/química , Dispositivos Eletrônicos Vestíveis , Elastômeros/uso terapêutico , Condutividade Elétrica , Humanos , Porosidade , Pressão
3.
Adv Sci (Weinh) ; 5(7): 1800239, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30027053

RESUMO

Soft actuators have demonstrated potential in a range of applications, including soft robotics, artificial muscles, and biomimetic devices. However, the majority of current soft actuators suffer from the lack of real-time sensory feedback, prohibiting their effective sensing and multitask function. Here, a promising strategy is reported to design bilayer electrothermal actuators capable of simultaneous actuation and sensation (i.e., self-sensing actuators), merely through two input electric terminals. Decoupled electrothermal stimulation and strain sensation is achieved by the optimal combination of graphite microparticles and carbon nanotubes (CNTs) in the form of hybrid films. By finely tuning the charge transport properties of hybrid films, the signal-to-noise ratio (SNR) of self-sensing actuators is remarkably enhanced to over 66. As a result, self-sensing actuators can actively track their displacement and distinguish the touch of soft and hard objects.

4.
Adv Mater ; 30(7)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29315905

RESUMO

Wearable transdermal delivery systems have recently received tremendous attention due to their noninvasive, convenient, and prolonged administration of pharmacological agents. Here, the material prospects, fabrication processes, and drug-release mechanisms of these types of therapeutic delivery systems are critically reviewed. The latest progress in the development of multifunctional wearable devices capable of closed-loop sensation and drug delivery is also discussed. This survey reveals that wearable transdermal delivery has already made an impact in diverse healthcare applications, while several grand challenges remain.


Assuntos
Dispositivos Eletrônicos Vestíveis , Administração Cutânea , Sistemas de Liberação de Medicamentos
5.
Curr Gene Ther ; 17(2): 139-146, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28494734

RESUMO

There is a growing interest in transdermal delivery systems because of their noninvasive, targeted, and on-demand delivery of gene and drugs. However, efficient penetration of therapeutic compounds into the skin is still challenging largely due to the impermeability of the outermost layer of the skin, known as stratum corneum. Recently, there have been major research activities to enhance the skin penetration depth of pharmacological agents. This article reviews recent advances in the development of various strategies for skin penetration enhancement. We show that approaches such as ultrasound waves, laser, and microneedle patches have successfully been employed to physically disrupt the stratum corneum structure for enhanced transdermal delivery. Rather than physical approaches, several non-physical route have also been utilized for efficient transdermal delivery across the skin barrier. Finally, we discuss some clinical applications of transdermal delivery systems for gene and drug delivery. This paper shows that transdermal delivery devices can potentially function for diverse healthcare and medical applications while further investigations are still necessary for more efficient skin penetration of gene and drugs.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Absorção Cutânea , Pele/metabolismo , Administração Cutânea , Preparações de Ação Retardada/administração & dosagem , Humanos , Modelos Biológicos , Reprodutibilidade dos Testes , Vacinas/administração & dosagem
6.
Adv Mater ; 29(28)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28523760

RESUMO

A facile approach is proposed for superior conformation and adhesion of wearable sensors to dry and wet skin. Bioinspired skin-adhesive films are composed of elastomeric microfibers decorated with conformal and mushroom-shaped vinylsiloxane tips. Strong skin adhesion is achieved by crosslinking the viscous vinylsiloxane tips directly on the skin surface. Furthermore, composite microfibrillar adhesive films possess a high adhesion strength of 18 kPa due to the excellent shape adaptation of the vinylsiloxane tips to the multiscale roughness of the skin. As a utility of the skin-adhesive films in wearable-device applications, they are integrated with wearable strain sensors for respiratory and heart-rate monitoring. The signal-to-noise ratio of the strain sensor is significantly improved to 59.7 because of the considerable signal amplification of microfibrillar skin-adhesive films.


Assuntos
Materiais Biomiméticos , Dispositivos Eletrônicos Vestíveis , Elastômeros , Desenho de Equipamento , Antebraço , Frequência Cardíaca , Humanos , Teste de Materiais , Monitorização Ambulatorial/instrumentação , Polímeros , Respiração , Pele , Tronco , Punho
7.
ACS Nano ; 10(11): 10202-10210, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27744680

RESUMO

There is an increasing demand for soft actuators because of their importance in soft robotics, artificial muscles, biomimetic devices, and beyond. However, the development of soft actuators capable of low-voltage operation, powerful actuation, and programmable shape-changing is still challenging. In this work, we propose programmable bilayer actuators that operate based on the large hygroscopic contraction of the copy paper and simultaneously large thermal expansion of the polypropylene film upon increasing the temperature. The electrothermally activated bending actuators can function with low voltages (≤ 8 V), low input electric power per area (P ≤ 0.14 W cm-2), and low temperature changes (≤ 35 °C). They exhibit reversible shape-changing behavior with curvature radii up to 1.07 cm-1 and bending angle of 360°, accompanied by powerful actuation. Besides the electrical activation, they can be powered by humidity or light irradiation. We finally demonstrate the use of our paper actuators as a soft gripper robot and a lightweight paper wing for aerial robotics.

8.
ACS Appl Mater Interfaces ; 8(8): 5618-26, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26842553

RESUMO

There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε ≥ 50%), whereas sensors with long microcracks show ultrahigh sensitivity (maximum value of 11,344) with limited stretchability (ε ≤ 50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and soft robotics.


Assuntos
Técnicas Biossensoriais , Movimento (Física) , Nanotecnologia , Elastômeros/química , Desenho de Equipamento , Humanos
9.
Nanotechnology ; 26(37): 375501, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26303117

RESUMO

Super-stretchable, skin-mountable, and ultra-soft strain sensors are presented by using carbon nanotube percolation network-silicone rubber nanocomposite thin films. The applicability of the strain sensors as epidermal electronic systems, in which mechanical compliance like human skin and high stretchability (ϵ > 100%) are required, has been explored. The sensitivity of the strain sensors can be tuned by the number density of the carbon nanotube percolation network. The strain sensors show excellent hysteresis performance at different strain levels and rates with high linearity and small drift. We found that the carbon nanotube-silicone rubber based strain sensors possess super-stretchability and high reliability for strains as large as 500%. The nanocomposite thin films exhibit high robustness and excellent resistance-strain dependency for over ~1380% mechanical strain. Finally, we performed skin motion detection by mounting the strain sensors on different parts of the body. The maximum induced strain by the bending of the finger, wrist, and elbow was measured to be ~ 42%, 45% and 63%, respectively.


Assuntos
Monitorização Fisiológica/instrumentação , Nanocompostos/química , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Poliésteres/química , Vestuário , Desenho de Equipamento , Humanos , Fenômenos Fisiológicos da Pele
10.
Small ; 10(20): 4171-81, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24961495

RESUMO

Silver nanowire (Ag NW) based transparent electrodes are inherently unstable to moist and chemically reactive environment. A remarkable stability improvement of the Ag NW network film against oxidizing and sulfurizing environment by local electrodeposition of Ni along Ag NWs is reported. The optical transmittance and electrical resistance of the Ni deposited Ag NW network film can be easily controlled by adjusting the morphology and thickness of the Ni shell layer. The electrical conductivity of the Ag NW network film is increased by the Ni coating via welding between Ag NWs as well as additional conductive area for the electron transport by electrodeposited Ni layer. Moreover, the chemical resistance of Ag NWs against oxidation and sulfurization can be dramatically enhanced by the Ni shell layer electrodeposited along the Ag NWs, which provides the physical barrier against chemical reaction and diffusion as well as the cathodic protection from galvanic corrosion.

11.
ACS Nano ; 8(5): 5154-63, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24749972

RESUMO

The demand for flexible and wearable electronic devices is increasing due to their facile interaction with human body. Flexible, stretchable and wearable sensors can be easily mounted on clothing or directly attached onto the body. Especially, highly stretchable and sensitive strain sensors are needed for the human motion detection. Here, we report highly flexible, stretchable and sensitive strain sensors based on the nanocomposite of silver nanowire (AgNW) network and PDMS elastomer in the form of the sandwich structure (i.e., AgNW thin film embedded between two layers of PDMS). The AgNW network-elastomer nanocomposite based strain sensors show strong piezoresistivity with tunable gauge factors in the ranges of 2 to 14 and a high stretchability up to 70%. We demonstrate the applicability of our high performance strain sensors by fabricating a glove integrated with five strain sensors for the motion detection of fingers and control of an avatar in the virtual environment.


Assuntos
Mãos/fisiologia , Nanopartículas Metálicas/química , Nanocompostos/química , Nanotecnologia/métodos , Nanofios/química , Prata/química , Vestuário , Dimetilpolisiloxanos/química , Elasticidade , Elastômeros , Eletroquímica , Eletrônica , Desenho de Equipamento , Dedos/fisiologia , Humanos , Teste de Materiais , Monitorização Ambulatorial/métodos , Movimento (Física) , Processamento de Sinais Assistido por Computador , Compostos de Prata/química , Software , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...