Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; : 3422-3429, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32283032

RESUMO

Multiphase reactions of halide ions in aqueous solutions exposed to the atmosphere initiate the formation of molecular halogen compounds in the gas phase. Their photolysis leads to halogen atoms, which are catalytic sinks for ozone, making these processes relevant for the regional and global tropospheric ozone budget. The affinity of halide ions in aqueous solution for the liquid-gas interface, which may influence their reactivity with gaseous species, has been debated. Our study focuses on the surface properties of the bromide ion and its oxidation products. In situ X-ray photoelectron spectroscopy carried out on a liquid jet combined with classical and first-principles molecular dynamics calculations was used to investigate the interfacial depth profile of bromide, hypobromite, hypobromous acid, and bromate. The simulated core electron binding energies support the experimentally observed values, which follow a correlation with bromine oxidation state for the anion series. Bromide ions are homogeneously distributed in the solution. Hypobromous acid, a key species in the multiphase cycling of bromine, is the only species showing surface propensity, which suggests a more important role of the interface in multiphase bromine chemistry than thought so far.

2.
Environ Sci Process Impacts ; 22(4): 895-907, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32188960

RESUMO

Fresh soot particles are generally hydrophobic, however, particle hydrophilicity can be increased through atmospheric aging processes. At present little is known on how particle chemical composition and hydrophilicity change upon atmospheric aging and associated uncertainties governing the ice cloud formation potential of soot. Here we sampled two propane flame soots referred to as brown and black soot, characterized as organic carbon rich and poor, respectively. We investigated how the ice nucleation activity of these particles changed through aging in water and aqueous acidic solutions, using a continuous flow diffusion chamber operated at cirrus cloud temperatures (T ≤ 233 K). Single aggregates of both unaged and aged soot were chemically characterized by scanning transmission X-ray microscopy and near edge X-ray absorption fine structure (STXM/NEXAFS) measurements. Particle wettability was determined through water sorption measurements. Unaged black and brown soot particles exhibited significantly different ice nucleation activities. Our experiments revealed significantly enhanced ice nucleation activity of the aged soot particles compared to the fresh samples, lowering the required relative humidities at which ice formation can take place at T = 218 K by up to 15% with respect to water (ΔRHi ≈ 25%). We observed an enhanced water uptake capacity for the aged compared to the unaged samples, which was more pronounced for the black soot. From these measurements we concluded that there is a change in ice nucleation mechanism when aging brown soot. Comparison of the NEXAFS spectra of unaged soot samples revealed a unique spectral feature around 287.5 eV in the case of black soot that was absent for the brown soot, indicative of carbon with hydroxyl functionalities. Comparison of the NEXAFS spectra of unaged and aged soot particles indicates changes in organic functional groups, and the aged spectra were found to be largely similar across soot types, with the exception of the water aged brown soot. Overall, we conclude that atmospheric aging is important to representatively assess the ice cloud formation activity of soot particles.


Assuntos
Aerossóis , Gelo , Tamanho da Partícula , Análise Espectral , Raios X
3.
J Phys Chem Lett ; 10(23): 7433-7438, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31725306

RESUMO

The interaction of water with TiO2 is of substantial scientific and technological interest as it determines the activity of TiO2 in photocatalytic and environmental applications in nanoparticle suspensions in water, in complex appliances, or in pure form interacting with water vapor. The influence of TiO2 nanoparticles on the hydrogen bonding structure of water molecules is an important factor that controls hydration of other species, reactions, or nucleation processes. We use a combination of ambient-pressure X-ray photoelectron spectroscopy and electron yield near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at the oxygen K-edge to investigate the hydrogen bonding structure of adsorbed water on titania nanoparticles in equilibrium with nearly saturated water vapor at 235 K. The results clearly show that the net NEXAFS spectrum of adsorbed water resembles that of liquid, disordered water at 235 K, a temperature at which both homogeneous and heterogeneous freezing of bulk water is anticipated.

4.
Phys Chem Chem Phys ; 21(37): 20613-20627, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31528972

RESUMO

Atmospheric aerosol particles with a high viscosity may become inhomogeneously mixed during chemical processing. Models have predicted gradients in condensed phase reactant concentration throughout particles as the result of diffusion and chemical reaction limitations, termed chemical gradients. However, these have never been directly observed for atmospherically relevant particle diameters. We investigated the reaction between ozone and aerosol particles composed of xanthan gum and FeCl2 and observed the in situ chemical reaction that oxidized Fe2+ to Fe3+ using X-ray spectromicroscopy. Iron oxidation state of particles as small as 0.2 µm in diameter were imaged over time with a spatial resolution of tens of nanometers. We found that the loss off Fe2+ accelerated with increasing ozone concentration and relative humidity, RH. Concentric 2-D column integrated profiles of the Fe2+ fraction, α, out of the total iron were derived and demonstrated that particle surfaces became oxidized while particle cores remained unreacted at RH = 0-20%. At higher RH, chemical gradients evolved over time, extended deeper from the particle surface, and Fe2+ became more homogeneously distributed. We used the kinetic multi-layer model for aerosol surface and bulk chemistry (KM-SUB) to simulate ozone reaction constrained with our observations and inferred key parameters as a function of RH including Henry's Law constant for ozone, HO3, and diffusion coefficients for ozone and iron, DO3 and DFe, respectively. We found that HO3 is higher in our xanthan gum/FeCl2 particles than for water and increases when RH decreased from about 80% to dry conditions. This coincided with a decrease in both DO3 and DFe. In order to reproduce observed chemical gradients, our model predicted that ozone could not be present further than a few nanometers from a particle surface indicating near surface reactions were driving changes in iron oxidation state. However, the observed chemical gradients in α observed over hundreds of nanometers must have been the result of iron transport from the particle interior to the surface where ozone oxidation occurred. In the context of our results, we examine the applicability of the reacto-diffusive framework and discuss diffusion limitations for other reactive gas-aerosol systems of atmospheric importance.

5.
J Phys Chem Lett ; 10(15): 4484-4489, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31295402

RESUMO

The diffusivity of molecules relevant to condensed-phase chemistry within viscous secondary organic aerosol (SOA) remains highly uncertain. Whereas there has been an effort to characterize water diffusivity as well as the diffusivity of larger compounds, data are lacking almost entirely for small molecules, such as carbon dioxide (CO2). Here we use photochemically generated CO2 in single particles of aqueous citric acid as a SOA proxy, levitated in an electrodynamic balance, to deduce CO2 diffusivity in the particle with unprecedented accuracy. For medium viscosities at intermediate relative humidities (∼25-40% RH), we find CO2 diffusivities DCO2 ≈ 10-14 m2 s-1, agreeing with the Stokes-Einstein relationship based on current viscosity data but 10 times lower than that for water. Conversely, under dry high-viscosity conditions, we find that DCO2 ≈ 10-16 m2 s-1, which is 10 times higher than for water. We infer that the chemical degradation of atmospheric SOA particles will likely not be limited by CO2 diffusivity.

6.
Hepatobiliary Surg Nutr ; 8(2): 111-124, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31098358

RESUMO

Background: To date, definitions of liver dysfunction (LD) after hepatic resection rely on late postoperative time points. Further, the used parameters are markedly influenced by perioperative management. Thus, we aimed to establish a very early postoperative score to predict postoperative mortality. Methods: Liver related parameters were evaluated after liver resection in a retrospective evaluation cohort of 228 colorectal cancer patients with liver metastasis (mCRC) and subsequent validation in a prospective set of 482 consecutive patients from 4 independent institutions undergoing hepatic resection was performed. Results: C-reactive protein (CRP, AUC =0.739, P<0.001) and antithrombinIII-activity (ATIII, AUC =0.844, P<0.001) on the first postoperative day (POD) were found to be elevated in patients with LD. Cut-off values for CRP at 3 mg/dL and for ATIII at 60% significantly identified high-risk patients for postoperative LD and mortality (P<0.001) and thus defined the 3-60 criteria on POD1. The 3-60 criteria showed superior sensitivity and specificity compared to established criteria for LD [3-60 criteria: total positive patients: 26 patients (70% mortality detected), odds ratio (OR): 48.8; International Study Group for Liver Surgery: total positive patients: 43 (70% mortality detected), OR: 23.3; Peak7: total positive patients: 9 (30% mortality detected), OR: 27.8; 50-50: total positive patients: 9 (30% mortality detected), OR: 27.8]. These results could be validated in a multi-center analysis and ultimately the 3-60 criteria remained an independent predictor of postoperative mortality upon multivariable analysis. Conclusions: The 3-60 criteria on POD1 predict postoperative LD and mortality early after liver resection with a comparable or better accuracy than established criteria, allowing for immediate identification of high-risk patients.

7.
Phys Chem Chem Phys ; 21(16): 8418-8427, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30945704

RESUMO

The efficient oxidation of iodide and bromide at the aqueous solution-air interface of the ocean or of sea spray aerosol particles had been suggested to be related to their surface propensity. The ubiquitous presence of organic material at the ocean surface calls for an assessment of the impact of often surface-active organic compounds on the interfacial density of halide ions. We used in situ X-ray photoelectron spectroscopy with a liquid micro-jet to obtain chemical composition information at aqueous solution-vapor interfaces from mixed aqueous solutions containing bromide or iodide and 1-butanol or butyric acid as organic surfactants. Core level spectra of Br 3d, Na 2s, C 1s and O 1s at ca. 160 eV kinetic energy and core level spectra of I 4d and O 1s at ca. 400 eV kinetic energy are compared for solutions with 1-butanol and butyric acid as a function of organic concentration. A simple model was developed to account for the attenuation of photoelectrons by the aliphatic carbon layer of the surfactants and for changing local density of bromide and iodide in response to the presence of the surfactants. We observed that 1-butanol increases the interfacial density of bromide by 25%, while butyric acid reduces it by 40%, both in comparison to the pure aqueous halide solution. Qualitatively similar behavior was observed for the case of iodide. Classical molecular dynamics simulations failed to reproduce the details of the response of the halide ions to the presence of the two organics. This is attributed to the lack of correct monovalent ion parameters at low concentration possibly leading to an overestimation of the halide ion concentration at the interface in absence of organics. The results clearly demonstrate that organic surfactants change the electrostatic interactions near the interface with headgroup specific effects. This has implications for halogen activation processes specifically when oxidants interact with halide ions at the aqueous solution-air interfaces of the ocean surface or sea spray aerosol particles.

8.
Environ Sci Process Impacts ; 21(1): 63-73, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30534711

RESUMO

The reaction of ozone with bromide is an initiation process in bromine activation resulting in the formation of reactive bromine species with impacts on the fate of compounds in the lower atmosphere. Environmental halide sources often contain organics, which are known to influence aqueous bulk reactivity. Here, we present a study investigating the temperature dependence of bromide oxidation by ozone using a coated wall flow tube reactor coated with an aqueous mixture of citric acid, as a proxy for oxidized secondary organic matter, and sodium bromide. Using the resistor model formulation, we quantify changes in the properties of the aqueous bulk relevant for the observed reactivity. The reactive uptake coefficient decreased from 2 × 10-6 at 289 K to 0.5 × 10-6 at 245 K. Our analysis indicates that the humidity-driven increase in concentration with a corresponding increase in the pseudo-first order reaction rate was countered by the colligative change in ozone solubility and the effect of the organic fraction via increased viscosity and decreased diffusivity of ozone as the temperature decreased. From our parameterization, we provide an extension of the temperature dependence of the reaction rate coefficients driving the oxidation of bromide, and assess the temperature-dependent salting effects of citric acid on ozone solubility. This study shows the effects of the organic species at relatively mild temperatures, between the freezing point and eutectic temperature of sea as is typical for the Earth's cryosphere. Thus, this study may be relevant for atmospheric models at different scales describing halogen activation in the marine boundary layer or free troposphere including matrices such as sea-spray aerosol and brine in sea ice, snow, and around mid-latitude salt lakes.


Assuntos
Atmosfera/química , Brometos/química , Bromo/química , Ozônio/química , Ácido Cítrico/química , Compostos Orgânicos , Oxirredução , Ozônio/análise , Sais , Compostos de Sódio/química , Solubilidade , Temperatura , Viscosidade
9.
Phys Chem Chem Phys ; 20(47): 30021-30031, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30480278

RESUMO

The absorption of solar actinic radiation by atmospheric secondary organic aerosol (SOA) particles drives condensed-phase photochemical processes, which lead to particle mass loss by the production of CO, CO2, hydrocarbons, and various oxygenated volatile organic compounds (OVOCs). We examined the influence of relative humidity (RH) and Fe(iii) content on the OVOC release and subsequent mass loss from secondary organic aerosol material (SOM) during UV irradiation. The samples were generated in a flow tube reactor from the oxidation of d-limonene by ozone. The SOM was collected with a Micro Orifice Uniform Deposit Impactor (MOUDI) on CaF2 windows. To selected samples, a variable amount of FeCl3 was added before irradiation. The resulting SOM samples, with or without added FeCl3, were irradiated with a 305 nm light-emitting diode and the release of several OVOCs, including acetic acid, acetone, formic acid and acetaldehyde, was measured with a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The release of OVOCs from photodegradation of SOM at typical ambient mid-values of RH (30-70%) was 2-4 times higher than under dry conditions. The release of OVOCs was slightly enhanced in the presence of low concentrations of iron (0.04 Fe molar ratio) but it was suppressed at higher concentrations (0.50 Fe molar ratio) of iron indicating the existence of a complicated radical chemistry driving the photodegradation of SOM. Our findings suggest that the presence of iron in atmospheric aerosol particles will either increase or decrease release of OVOCs due to the photodegradation of SOM depending on whether the relative iron concentration is low or high, respectively. At atmospherically relevant RH conditions, the expected fractional mass loss induced by these photochemical processes from limonene SOA particles would be between 2 and 4% of particle mass per hour. Therefore, photodegradation is an important aging mechanism for this type of SOA.

10.
Phys Chem Chem Phys ; 20(37): 24408-24417, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30221299

RESUMO

Interactions between trace gases and ice are important in environmental chemistry and for Earth's climate. In particular, the adsorption of trace gases to ice surfaces at temperatures approaching the melting point has raised interest in the past, because of the prevailing pre-melting. Here, we present Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy data at ambient partial pressure of water to better define the onset temperature of pre-melting at the interfacial region of ice. Further, this study directly compares the interaction between an organic acid common in the atmosphere, formic acid, and that of an aliphatic carbon with ice at 253 K. It makes use of X-ray Photoelectron Spectroscopy (XPS) with its inherent narrow probing depth covering both the surface and near-surface bulk region when detecting electrons. We use the tender X-ray range for excitation to locate the organic species within the interfacial region with an extended probing depth compared to published XPS work. Electron kinetic energy dependent C1s photoemission data indicate that, at low coverage of a few 1014 molecules cm-2, the presence of formic acid is restricted to the upper ice layers of the interfacial region. Increasing the dosage, formic acid penetrates 6-7 nm into the air-ice interface. The presence of the more hydrophobic aliphatic carbon is restricted to the upper ice monolayers. This direct comparison of an organic acid with an aliphatic compound confirms the emerging picture where solutes enter the interfacial region of ice at a depth related to their specific tendency to form solvation shells.

11.
Environ Sci Technol ; 52(14): 7680-7688, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29898357

RESUMO

Atmospheric aerosol particles may contain light absorbing (brown carbon, BrC), triplet forming organic compounds that can sustain catalytic radical reactions and thus contribute to oxidative aerosol aging. We quantify UVA induced radical production initiated by imidazole-2-carboxaldehyde (IC), benzophenone (BPh). and 4-benzoylbenzoic acid (BBA) in the presence of the nonabsorbing organics citric acid (CA), shikimic acid (SA), and syringol (Syr) at varying mixing ratios. We observed a maximum HO2 release of 1013 molecules min-1 cm-2 at a mole ratio XBPh < 0.02 for BPh in CA. Mixtures of either IC or BBA with CA resulted in 1011-1012 molecules min-1 cm-2 of HO2 at mole ratios ( XIC and XBBA) between 0.01 and 0.15. HO2 release was affected by relative humidity ( RH) and film thickness suggesting coupled photochemical reaction and diffusion processes. Quantum yields of HO2 formed per absorbed photon for IC, BBA and BPh were between 10-7 and 5 × 10-5. The nonphotoactive organics, Syr and SA, increased HO2 production due to the reaction with the triplet excited species ensuing ketyl radical production. Rate coefficients of the triplet of IC with Syr and SA measured by laser flash photolysis experiments were kSyr = (9.4 ± 0.3) × 108 M-1 s-1 and kSA = (2.7 ± 0.5) × 107 M-1 s-1. A simple kinetic model was used to assess total HO2 and organic radical production in the condensed phase and to upscale to ambient aerosol, indicating that BrC induced radical production may amount to an upper limit of 20 and 200 M day-1 of HO2 and organic radical respectively, which is greater or in the same order of magnitude as the internal radical production from other processes, previously estimated to be around 15 M per day.


Assuntos
Compostos Orgânicos , Aerossóis , Difusão , Cinética , Oxirredução
12.
Sci Rep ; 7(1): 12693, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978998

RESUMO

Organic interfaces that exist at the sea surface microlayer or as surfactant coatings on cloud droplets are highly concentrated and chemically distinct from the underlying bulk or overlying gas phase. Therefore, they may be potentially unique locations for chemical or photochemical reactions. Recently, photochemical production of volatile organic compounds (VOCs) was reported at a nonanoic acid interface however, subsequent secondary organic aerosol (SOA) particle production was incapable of being observed. We investigated SOA particle formation due to photochemical reactions occurring at an air-water interface in presence of model saturated long chain fatty acid and alcohol surfactants, nonanoic acid and nonanol, respectively. Ozonolysis of the gas phase photochemical products in the dark or under continued UV irradiation both resulted in nucleation and growth of SOA particles. Irradiation of nonanol did not yield detectable VOC or SOA production. Organic carbon functionalities of the SOA were probed using X-ray microspectroscopy and compared with other laboratory generated and field collected particles. Carbon-carbon double bonds were identified in the condensed phase which survived ozonolysis during new particle formation and growth. The implications of photochemical processes occurring at organic coated surfaces are discussed in the context of marine SOA particle atmospheric fluxes.

13.
J Phys Chem Lett ; 8(19): 4757-4762, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28902513

RESUMO

The interfacial ionization of strong acids is an essential factor of multiphase and heterogeneous chemistry in environmental science, cryospheric science, catalysis research and material science. Using near ambient pressure core level X-ray photoelectron spectroscopy, we directly detected a low surface coverage of adsorbed HCl at 253 K in both molecular and dissociated states. Depth profiles derived from XPS data indicate the results as physisorbed molecular HCl at the outermost ice surface and dissociation occurring upon solvation deeper in the interfacial region. Complementary X-ray absorption measurements confirm that the presence of Cl- ions induces significant changes to the hydrogen bonding network in the interfacial region. This study gives clear evidence for nonuniformity across the air-ice interface and questions the use of acid-base concepts in interfacial processes.

14.
Nat Commun ; 8(1): 700, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28951540

RESUMO

Oxidation of bromide in aqueous environments initiates the formation of molecular halogen compounds, which is important for the global tropospheric ozone budget. In the aqueous bulk, oxidation of bromide by ozone involves a [Br•OOO-] complex as intermediate. Here we report liquid jet X-ray photoelectron spectroscopy measurements that provide direct experimental evidence for the ozonide and establish its propensity for the solution-vapour interface. Theoretical calculations support these findings, showing that water stabilizes the ozonide and lowers the energy of the transition state at neutral pH. Kinetic experiments confirm the dominance of the heterogeneous oxidation route established by this precursor at low, atmospherically relevant ozone concentrations. Taken together, our results provide a strong case of different reaction kinetics and mechanisms of reactions occurring at the aqueous phase-vapour interface compared with the bulk aqueous phase.Heterogeneous oxidation of bromide in atmospheric aqueous environments has long been suspected to be accelerated at the interface between aqueous solution and air. Here, the authors provide spectroscopic, kinetic and theoretical evidence for a rate limiting, surface active ozonide formed at the interface.

15.
Environ Sci Technol ; 51(13): 7486-7495, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28581723

RESUMO

Irradiated nitrophenols can produce nitrite and nitrous acid (HONO) in bulk aqueous solutions and in viscous aqueous films, simulating the conditions of a high-solute-strength aqueous aerosol, with comparable quantum yields in solution and viscous films (10-5-10-4 in the case of 4-nitrophenol) and overall reaction yields up to 0.3 in solution. The process is particularly important for the para-nitrophenols, possibly because their less sterically hindered nitro groups can be released more easily as nitrite and HONO. The nitrophenols giving the highest photoproduction rates of nitrite and HONO (most notably, 4-nitrophenol and 2-methyl-4-nitrophenol) could significantly contribute to the occurrence of nitrite in aqueous phases in contact with the atmosphere. Interestingly, dew-water evaporation has shown potential to contribute to the gas-phase HONO levels during the morning, which accounts for the possible importance of the studied process.


Assuntos
Aerossóis , Nitritos , Processos Fotoquímicos , Nitrofenóis , Ácido Nitroso
16.
Environ Sci Technol ; 51(5): 2519-2528, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28169528

RESUMO

Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines.


Assuntos
Mudança Climática , Ozônio/química , Poluição do Ar , Atmosfera/química , Ecossistema , Humanos
17.
J Phys Chem A ; 120(49): 9749-9758, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973794

RESUMO

The liquid-vapor interface is playing an important role in aerosol and cloud chemistry in cloud droplet activation by aerosol particles and potentially also in ice nucleation. We have employed the surface sensitive and chemically selective X-ray photoelectron spectroscopy (XPS) technique to examine the liquid-vapor interface for mixtures of water and small alcohols or small carboxylic acids (C1 to C4), abundant chemicals in the atmosphere in concentration ranges relevant for cloud chemistry or aerosol particles at the point of activation into a cloud droplet. A linear correlation was found between the headgroup carbon 1s core-level signal intensity and the surface excess derived from literature surface tension data with the offset being explained by the bulk contribution to the photoemission signal. The relative interfacial enhancement of the carboxylic acids over the carboxylates at the same bulk concentration was found to be highest (nearly 20) for propionic acid/propionate and still about 5 for formic acid/formate, also in fair agreement with surface tension measurements. This provides direct spectroscopic evidence for high carboxylic acid concentrations at aqueous solution-air interfaces that may be responsible for acid catalyzed chemistry under moderately acidic conditions with respect to their bulk aqueous phase acidity constant. By assessing the ratio of aliphatic to headgroup C 1s signal intensities XPS also provides information about the orientation of the molecules. The results indicate an increasing orientation of alcohols and neutral acids toward the surface normal as a function of chain length, along with increasing importance of lateral hydrophobic interactions at higher surface coverage. In turn, the carboxylate ions exhibit stronger orientation toward the surface normal than the corresponding neutral acids, likely caused by the stronger hydration of the charged headgroup.

18.
Environ Sci Technol ; 50(12): 6334-42, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27219077

RESUMO

The chemical kinetics of organic nitrate production during new particle formation and growth of secondary organic aerosols (SOA) were investigated using the short-lived radioactive tracer (13)N in flow-reactor studies of α-pinene oxidation with ozone. Direct and quantitative measurements of the nitrogen content indicate that organic nitrates accounted for ∼40% of SOA mass during initial particle formation, decreasing to ∼15% upon particle growth to the accumulation-mode size range (>100 nm). Experiments with OH scavengers and kinetic model results suggest that organic peroxy radicals formed by α-pinene reacting with secondary OH from ozonolysis are key intermediates in the organic nitrate formation process. The direct reaction of α-pinene with NO3 was found to be less important for particle-phase organic nitrate formation. The nitrogen content of SOA particles decreased slightly upon increase of relative humidity up to 80%. The experiments show a tight correlation between organic nitrate content and SOA particle-number concentrations, implying that the condensing organic nitrates are among the extremely low volatility organic compounds (ELVOC) that may play an important role in the nucleation and growth of atmospheric nanoparticles.


Assuntos
Aerossóis , Poluentes Atmosféricos/química , Monoterpenos/química , Nitratos/química , Ozônio/química , Tamanho da Partícula , Compostos Orgânicos Voláteis/química
19.
Phys Chem Chem Phys ; 18(18): 12662-74, 2016 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-27095585

RESUMO

Heterogeneous and multiphase reactions of ozone are important pathways for chemical ageing of atmospheric organic aerosols. To demonstrate and quantify how moisture-induced phase changes can affect the gas uptake and chemical transformation of organic matter, we apply a kinetic multi-layer model to a comprehensive experimental data set of ozone uptake by shikimic acid. The bulk diffusion coefficients were determined to be 10(-12) cm(2) s(-1) for ozone and 10(-20) cm(2) s(-1) for shikimic acid under dry conditions, increasing by several orders of magnitude with increasing relative humidity (RH) due to phase changes from amorphous solid over semisolid to liquid. Consequently, the reactive uptake of ozone progresses through different kinetic regimes characterised by specific limiting processes and parameters. At high RH, ozone uptake is driven by reaction throughout the particle bulk; at low RH it is restricted to reaction near the particle surface and kinetically limited by slow diffusion and replenishment of unreacted organic molecules. Our results suggest that the chemical reaction mechanism involves long-lived reactive oxygen intermediates, likely primary ozonides or O atoms, which may provide a pathway for self-reaction and catalytic destruction of ozone at the surface. Slow diffusion and ozone destruction can effectively shield reactive organic molecules in the particle bulk from degradation. We discuss the potential non-orthogonality of kinetic parameters, and show how this problem can be solved by using comprehensive experimental data sets to constrain the kinetic model, providing mechanistic insights into the coupling of transport, phase changes, and chemical reactions of multiple species in complex systems.

20.
Phys Chem Chem Phys ; 17(46): 31101-9, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26536455

RESUMO

Ageing of particulate organic matter affects the composition and properties of atmospheric aerosol particles. Driven by temperature and humidity, the organic fraction can vary its physical state between liquid and amorphous solid, or rarely even crystalline. These transitions can influence the reaction kinetics due to limitations of mass transport in such (semi-) solid states, which in turn may influence the chemical ageing of particles containing such compounds. We have used coated wall flow tube experiments to investigate the reaction kinetics of the ozonolysis of shikimic acid, which serves as a proxy for oxygenated, water-soluble organic matter and can form a glass at room temperature. Particular attention was paid to how the presence of water influences the reaction, since it acts a plasticiser and thereby induces changes in the physical state. We analysed the results by means of a traditional resistor model, which assumes steady-state conditions. The ozonolysis rate of shikimic acid is strongly increased in the presence of water, a fact we attribute to the increased transport of O3 and shikimic acid through the condensed phase at lower viscosities. The analysis using the resistor model suggests that the system undergoes both surface and bulk reaction. The second-order rate coefficient of the bulk reaction is 3.7 (+1.5/-3.2) × 10(3) L mol(-1) s(-1). At low humidity and long timescales, the resistor model fails to describe the measurements appropriately. The persistent O3 uptake at very low humidity suggests contribution of a self-reaction of O3 on the surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA