Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
1.
J Invest Dermatol ; 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31513803

RESUMO

Chronic urticaria is a common skin disorder with heterogeneous causes. In the absence of physical triggers, chronic urticarial rash is called idiopathic or spontaneous. The objective of the current study was to identify the molecular and cellular bases of a disease condition displayed by two unrelated patients aged over 60 years who presented for two decades with a chronic urticaria resistant to standard therapy which occurred in the context of systemic inflammation not triggered by cold. In both patients, a targeted sequencing approach using a next generation technology identified somatic mosaic mutations in NLRP3, a gene encoding a key inflammasome component. The study of several patients' cell types showed that despite the late onset of the disease, NLRP3 mutations were not found to be restricted to myelomonocytic cells. Rather, the data obtained strongly suggested that the mutational event occurred very early, during the embryonic development. As shown by functional studies, the identified mutations -an in-frame deletion and a recurrent NLRP3 missense mutation- have a gain-of-function effect on NLRP3-inflammasome activation. Consistently, a complete remission was obtained in both patients with anti-interleukin 1 receptor antagonists. This study unveils that in late-onset chronic urticaria, the search for autoinflammatory markers and somatic mosaic NLRP3 mutations may have important diagnostic and therapeutic consequences.

2.
Hum Mutat ; 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31469207

RESUMO

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disease of motile cilia. Even though PCD is widely studied, North-African patients have been rarely explored. In this study, we aim at confirming the clinical diagnosis and explore the genetic spectrum of PCD in a cohort of Tunisian patients. Forty clinically-diagnosed PCD patients belonging to 34 families were recruited from Tunisian pediatric departments. In each proband, targeted capture PCD panel sequencing of the 40 PCD genes was performed. PCD panel sequencing identified bi-allelic mutations in 82% of the families in eight PCD genes. Remarkably, 23.5% of patients carried the same c.2190del CCDC39 mutation. SNP profiling in six unrelated patients carrying this mutation has revealed a founder effect in North-African patients. This mutation is estimated to date back at least 1400-1750 years ago. The identification of this major allele allowed us to suggest a cost-effective genetic diagnostic strategy in North-African PCD patients. This article is protected by copyright. All rights reserved.

3.
Am J Hum Genet ; 105(1): 198-212, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31178125

RESUMO

Motile cilia and sperm flagella share an evolutionarily conserved axonemal structure. Their structural and/or functional defects are associated with primary ciliary dyskinesia (PCD), a genetic disease characterized by chronic respiratory-tract infections and in which most males are infertile due to asthenozoospermia. Among the well-characterized axonemal protein complexes, the outer dynein arms (ODAs), through ATPase activity of their heavy chains (HCs), play a major role for cilia and flagella beating. However, the contribution of the different HCs (γ-type: DNAH5 and DNAH8 and ß-type: DNAH9, DNAH11, and DNAH17) in ODAs from both organelles is unknown. By analyzing five male individuals who consulted for isolated infertility and displayed a loss of ODAs in their sperm cells but not in their respiratory cells, we identified bi-allelic mutations in DNAH17. The isolated infertility phenotype prompted us to compare the protein composition of ODAs in the sperm and ciliary axonemes from control individuals. We show that DNAH17 and DNAH8, but not DNAH5, DNAH9, or DNAH11, colocalize with α-tubulin along the sperm axoneme, whereas the reverse picture is observed in respiratory cilia, thus explaining the phenotype restricted to sperm cells. We also demonstrate the loss of function associated with DNAH17 mutations in two unrelated individuals by performing immunoblot and immunofluorescence analyses on sperm cells; these analyses indicated the absence of DNAH17 and DNAH8, whereas DNAH2 and DNALI, two inner dynein arm components, were present. Overall, this study demonstrates that mutations in DNAH17 are responsible for isolated male infertility and provides information regarding ODA composition in human spermatozoa.

4.
Hum Mutat ; 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31231873

RESUMO

Isolated growth hormone deficiency (IGHD) is a rare condition mainly caused by mutations in GH1. The aim of this study was to assess the contribution of GHRHR mutations to IGHD in an unusually large group of patients. All GHRHR coding exons and flanking intronic regions were sequenced in 312 unrelated patients with nonsyndromic IGHD. Functional consequences of all newly identified missense variants were assessed in vitro (i.e., study of the expression of recombinant GHRHRs and their ability to activate the cyclic adenosine monophosphate (cAMP) signaling pathway). Genotype-phenotype correlation analyses were performed according to the nature of the identified mutation. We identified 20 different disease-causing GHRHR mutations (truncating and missense loss-of-function mutations), among which 15 are novel, in 24 unrelated patients. Of note, about half (13/24) of those patients represent sporadic cases. The clinical phenotype of patients with at least one missense GHRHR mutation was found to be indistinguishable from that of patients with bi-allelic truncating mutations. This study, which unveils disease-causing GHRHR mutations in 8% (24/312) of IGHD cases, identifies GHRHR as the second IGHD gene most frequently involved after GH1. The finding that 8% of IGHD cases without GH1 mutations are explained by GHRHR molecular defects (including missense mutations), together with the high proportion of sporadic cases among those patients, has important implications for genetic counseling.

5.
PLoS One ; 14(5): e0217005, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31100086

RESUMO

Circulating serum amyloid A (SAA) is increased in various inflammatory conditions. The human SAA protein family comprises the acute phase SAA1/SAA2, known to activate a large set of innate and adaptive immune cells, and the constitutive SAA4. The liver synthesis of SAA1/SAA2 is well-established but there is still an open debate on extrahepatic SAA expression especially in macrophages. We aimed to investigate the ability of human primary monocytes and monocyte-derived macrophages to express SAA1, SAA2 and SAA4 at both the transcriptional and protein levels, as previous studies almost exclusively dealt with monocytic cell lines. Monocytes and derived macrophages from healthy donors were stimulated under various conditions. In parallel with SAA, pro-inflammatory IL1A, IL1B and IL6 cytokine expression was assessed. While LPS alone was non-effective, a combined LPS/dexamethasone treatment induced SAA1 and to a lesser extent SAA2 transcription in human monocytes and macrophages. In contrast, as expected, pro-inflammatory cytokine expression was strongly induced following stimulation with LPS, an effect which was dampened in the presence of dexamethasone. Furthermore, in monocytes polarized towards a pro-inflammatory M1 phenotype, SAA expression in response to LPS/dexamethasone was potentiated; a result mainly seen for SAA1. However, a major discrepancy was observed between SAA mRNA and intracellular protein levels under the experimental conditions used. Our results demonstrate that human monocytes and macrophages can express SAA genes, mainly SAA1 in response to an inflammatory environment. While SAA is considered as a member of a large cytokine network, its expression in the monocytes-macrophages in response to LPS-dexamethasone is strikingly different from that observed for classic pro-inflammatory cytokines. As monocytes-macrophages are major players in chronic inflammatory diseases, it may be hypothesized that SAA production from macrophages may contribute to the local inflammatory microenvironment, especially when macrophages are compactly organized in granulomas as in sarcoidosis.

6.
J Rheumatol ; 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30877203

RESUMO

OBJECTIVE: To describe a new autoinflammatory syndrome with recurrent fever and monoclonal gammopathy that differs from Schnitzler syndrome. METHODS: We conducted a retrospective study of patients with monoclonal gammopathy and recurrent fever of unknown origin. RESULTS: Five patients were studied; median age at onset of symptoms was 44 years. Median frequency of fever attacks was 6 episodes per year. In the absence of treatment, the median duration of fevers was 3 days. CONCLUSION: This new autoinflammatory syndrome is defined by an association among monoclonal gammopathy, arthralgias, and recurrent fever.

7.
Am J Hum Genet ; 104(2): 229-245, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30665704

RESUMO

Primary ciliary dyskinesia (PCD) is a genetic disorder in which impaired ciliary function leads to chronic airway disease. Exome sequencing of a PCD subject identified an apparent homozygous frameshift variant, c.887_890delTAAG (p.Val296Glyfs∗13), in exon 5; this frameshift introduces a stop codon in amino acid 308 of the growth arrest-specific protein 2-like 2 (GAS2L2). Further genetic screening of unrelated PCD subjects identified a second proband with a compound heterozygous variant carrying the identical frameshift variant and a large deletion (c.867_∗343+1207del; p.?) starting in exon 5. Both individuals had clinical features of PCD but normal ciliary axoneme structure. In this research, using human nasal cells, mouse models, and X.laevis embryos, we show that GAS2L2 is abundant at the apical surface of ciliated cells, where it localizes with basal bodies, basal feet, rootlets, and actin filaments. Cultured GAS2L2-deficient nasal epithelial cells from one of the affected individuals showed defects in ciliary orientation and had an asynchronous and hyperkinetic (GAS2L2-deficient = 19.8 Hz versus control = 15.8 Hz) ciliary-beat pattern. These results were recapitulated in Gas2l2-/- mouse tracheal epithelial cell (mTEC) cultures and in X. laevis embryos treated with Gas2l2 morpholinos. In mice, the absence of Gas2l2 caused neonatal death, and the conditional deletion of Gas2l2 impaired mucociliary clearance (MCC) and led to mucus accumulation. These results show that a pathogenic variant in GAS2L2 causes a genetic defect in ciliary orientation and impairs MCC and results in PCD.

9.
Nat Commun ; 9(1): 5338, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559449

RESUMO

Mutations in the nucleotide-binding oligomerization domain protein 12 (NLRP12) cause recurrent episodes of serosal inflammation. Here we show that NLRP12 efficiently sequesters HSP90 and promotes K48-linked ubiquitination and degradation of NOD2 in response to bacterial muramyl dipeptide (MDP). This interaction is mediated by the linker-region proximal to the nucleotide-binding domain of NLRP12. Consequently, the disease-causing NLRP12 R284X mutation fails to repress MDP-induced NF-κB and subsequent activity of the JAK/STAT signaling pathway. While NLRP12 deficiency renders septic mice highly susceptible towards MDP, a sustained sensing of MDP through NOD2 is observed among monocytes lacking NLRP12. This loss of tolerance in monocytes results in greater colonization resistance towards Citrobacter rodentium. Our data show that this is a consequence of NOD2-dependent accumulation of inflammatory mononuclear cells that correlates with induction of interferon-stimulated genes. Our study unveils a relevant process of tolerance towards the gut microbiota that is exploited by an attaching/effacing enteric pathogen.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/metabolismo , Cápsulas Bacterianas/metabolismo , Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Proteínas de Choque Térmico HSP90/metabolismo , Tolerância Imunológica/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Animais , Linhagem Celular , Infecções por Enterobacteriaceae/microbiologia , Microbioma Gastrointestinal/imunologia , Células HEK293 , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Ubiquitinação
10.
Am J Hum Genet ; 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30471717

RESUMO

Motile cilia move body fluids and gametes and the beating of cilia lining the airway epithelial surfaces ensures that they are kept clear and protected from inhaled pathogens and consequent respiratory infections. Dynein motor proteins provide mechanical force for cilia beating. Dynein mutations are a common cause of primary ciliary dyskinesia (PCD), an inherited condition characterized by deficient mucociliary clearance and chronic respiratory disease coupled with laterality disturbances and subfertility. Using next-generation sequencing, we detected mutations in the ciliary outer dynein arm (ODA) heavy chain gene DNAH9 in individuals from PCD clinics with situs inversus and in one case male infertility. DNAH9 and its partner heavy chain DNAH5 localize to type 2 ODAs of the distal cilium and in DNAH9-mutated nasal respiratory epithelial cilia we found a loss of DNAH9/DNAH5-containing type 2 ODAs that was restricted to the distal cilia region. This confers a reduced beating frequency with a subtle beating pattern defect affecting the motility of the distal cilia portion. 3D electron tomography ultrastructural studies confirmed regional loss of ODAs from the distal cilium, manifesting as either loss of whole ODA or partial loss of ODA volume. Paramecium DNAH9 knockdown confirms an evolutionarily conserved function for DNAH9 in cilia motility and ODA stability. We find that DNAH9 is widely expressed in the airways, despite DNAH9 mutations appearing to confer symptoms restricted to the upper respiratory tract. In summary, DNAH9 mutations reduce cilia function but some respiratory mucociliary clearance potential may be retained, widening the PCD disease spectrum.

11.
N Engl J Med ; 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30345907

RESUMO

BACKGROUND: Given the phenotypic similarities between rheumatoid arthritis (RA)-associated interstitial lung disease (ILD) (hereafter, RA-ILD) and idiopathic pulmonary fibrosis, we hypothesized that the strongest risk factor for the development of idiopathic pulmonary fibrosis, the gain-of-function MUC5B promoter variant rs35705950, would also contribute to the risk of ILD among patients with RA. METHODS: Using a discovery population and multiple validation populations, we tested the association of the MUC5B promoter variant rs35705950 in 620 patients with RA-ILD, 614 patients with RA without ILD, and 5448 unaffected controls. RESULTS: Analysis of the discovery population revealed an association of the minor allele of the MUC5B promoter variant with RA-ILD when patients with RA-ILD were compared with unaffected controls (adjusted odds ratio, 3.8; 95% confidence interval [CI], 2.8 to 5.2; P=9.7×10-17). The MUC5B promoter variant was also significantly overrepresented among patients with RA-ILD, as compared with unaffected controls, in an analysis of the multiethnic case series (adjusted odds ratio, 5.5; 95% CI, 4.2 to 7.3; P=4.7×10-35) and in a combined analysis of the discovery population and the multiethnic case series (adjusted odds ratio, 4.7; 95% CI, 3.9 to 5.8; P=1.3×10-49). In addition, the MUC5B promoter variant was associated with an increased risk of ILD among patients with RA (adjusted odds ratio in combined analysis, 3.1; 95% CI, 1.8 to 5.4; P=7.4×10-5), particularly among those with evidence of usual interstitial pneumonia on high-resolution computed tomography (adjusted odds ratio in combined analysis, 6.1; 95% CI, 2.9 to 13.1; P=2.5×10-6). However, no significant association with the MUC5B promoter variant was observed for the diagnosis of RA alone. CONCLUSIONS: We found that the MUC5B promoter variant was associated with RA-ILD and more specifically associated with evidence of usual interstitial pneumonia on imaging. (Funded by Société Française de Rhumatologie and others.).

12.
BMJ Open ; 8(8): e021037, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166293

RESUMO

INTRODUCTION: Autoimmune and autoinflammatory diseases (AIDs) represent a socioeconomic burden as the second cause of chronic illness in Western countries. In this context, the TRANSIMMUNOM clinical protocol is designed to revisit the nosology of AIDs by combining basic, clinical and information sciences. Based on classical and systems biology analyses, it aims to uncover important phenotypes that cut across diagnostic groups so as to discover biomarkers and identify novel therapeutic targets. METHODS AND ANALYSIS: TRANSIMMUNOM is an observational clinical protocol that aims to cross-phenotype a set of 19 AIDs, six related control diseases and healthy volunteers . We assembled a multidisciplinary cohort management team tasked with (1) selecting informative biological (routine and omics type) and clinical parameters to be captured, (2) standardising the sample collection and shipment circuit, (3) selecting omics technologies and benchmarking omics data providers, (4) designing and implementing a multidisease electronic case report form and an omics database and (5) implementing supervised and unsupervised data analyses. ETHICS AND DISSEMINATION: The study was approved by the institutional review board of Pitié-Salpêtrière Hospital (ethics committee Ile-De-France 48-15) and done in accordance with the Declaration of Helsinki and good clinical practice. Written informed consent is obtained from all participants before enrolment in the study. TRANSIMMUNOM's project website provides information about the protocol (https://www.transimmunom.fr/en/) including experimental set-up and tool developments. Results will be disseminated during annual scientific committees appraising the project progresses and at national and international scientific conferences. DISCUSSION: Systems biology approaches are increasingly implemented in human pathophysiology research. The TRANSIMMUNOM study applies such approach to the pathophysiology of AIDs. We believe that this translational systems immunology approach has the potential to provide breakthrough discoveries for better understanding and treatment of AIDs. TRIAL REGISTRATION NUMBER: NCT02466217; Pre-results.

14.
Mech Ageing Dev ; 172: 131-137, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29545203

RESUMO

Photoaging and epithelial skin tumorigenesis are complex processes triggered mainly by UV radiation from chronic sun exposure. This leads to DNA damage and reactive oxygen species (ROS) production, which initiate an inflammatory response that alters cell structure and function. Changes in cell homeostasis and ROS production activate intracellular multiprotein platforms called inflammasomes. Inflammasomes nucleate around cytoplasmic receptors mainly of the NLR (nucleotide-binding domain and leucine-rich repeat) family and regulate caspase-1-dependant secretion of pro-inflammatory interleukin (IL)1ß and IL18 cytokines, and an inflammatory form of death named pyroptosis. NLRP1 inflammasomes have taken centre stage in skin biology, as mutations in NLRP1 underlie the genetic etiology of dermatological diseases and increase the susceptibility to skin cancer. Targeting inflammasome(s) might be an important approach to improve skin inflammation, photoaging and reduce the risk of epithelial skin tumorigenesis. In this context, we discuss the potential implication of NLRP1 and NLRP3 inflammasomes.


Assuntos
Envelhecimento da Pele/efeitos da radiação , Neoplasias Cutâneas/metabolismo , Raios Ultravioleta/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Cutâneas/patologia
15.
Pharmacol Ther ; 187: 133-149, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29466702

RESUMO

Inflammasomes are intracellular multiprotein signaling complexes, mainly present in myeloid cells. They commonly assemble around a cytoplasmic receptor of the nucleotide-binding leucine-rich repeat containing receptor (NLR) family, although other cytoplasmic receptors like pyrin have been shown to form inflammasomes. The nucleation of the multiprotein scaffolding platform occurs upon detection of a microbial, a danger or a homeostasis pattern by the receptor that will, most commonly, associate with the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) through homotypic domain interactions resulting in recruitment of procaspase-1. This will lead to the autoproteolytic activation of caspase-1, which regulates the secretion of proinflammatory IL1ß and IL18 cytokines and pyroptosis, a caspase-1-mediated form of cell death. Pyroptosis occurs through cleavage of Gasdermin D, a membrane pore forming protein. Recently, non-canonical inflammasomes have been described, which directly sense intracellular pathogens through caspase-4 and -5 in humans, leading to pyroptosis. Inflammasomes are important in host defense; however, a deregulated activity is associated with a number of inflammatory, immune and metabolic disorders. Furthermore, mutations in inflammasome receptor coding genes are causal for an increasing number of rare autoinflammatory diseases. Biotherapies targeting the products of inflammasome activation as well as molecules that directly or indirectly inhibit inflammasome nucleation and activation are promising therapeutic areas. This review discusses recent advances in inflammasome biology, the molecular pathology of several inflammasomes, and current therapeutic approaches in autoinflammatory diseases and in selected common multifactorial inflammasome-mediated disorders.

16.
Hum Mol Genet ; 27(7): 1196-1211, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29365104

RESUMO

Motile cilia and sperm flagella share an extremely conserved microtubule-based cytoskeleton, called the axoneme, which sustains beating and motility of both organelles. Ultra-structural and/or functional defects of this axoneme are well-known to cause primary ciliary dyskinesia (PCD), a disorder characterized by recurrent respiratory tract infections, chronic otitis media, situs inversus, male infertility and in most severe cases, hydrocephalus. Only recently, mutations in genes encoding axonemal proteins with preferential expression in the testis were identified in isolated male infertility; in those cases, individuals displayed severe asthenozoospermia due to Multiple Morphological Abnormalities of the sperm Flagella (MMAF) but not PCD features. In this study, we performed genetic investigation of two siblings presenting MMAF without any respiratory PCD features, and we report the identification of the c.2018T > G (p.Leu673Pro) transversion in AK7, encoding an adenylate kinase, expressed in ciliated tissues and testis. By performing transcript and protein analyses of biological samples from individual carrying the transversion, we demonstrate that this mutation leads to the loss of AK7 protein in sperm cells but not in respiratory ciliated cells, although both cell types carry the mutated transcript and no tissue-specific isoforms were detected. This work therefore, supports the notion that proteins shared by both cilia and sperm flagella may have specific properties and/or function in each organelle, in line with the differences in their mode of assembly and organization. Overall, this work identifies a novel genetic cause of asthenozoospermia due to MMAF and suggests that in humans, more deleterious mutations of AK7 might induce PCD.

17.
Hum Mol Genet ; 27(2): 266-282, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29121203

RESUMO

A child presenting with Mainzer-Saldino syndrome (MZSDS), characterized by renal, retinal and skeletal involvements, was also diagnosed with lung infections and airway ciliary dyskinesia. These manifestations suggested dysfunction of both primary and motile cilia, respectively. Targeted exome sequencing identified biallelic mutations in WDR19, encoding an IFT-A subunit previously associated with MZSDS-related chondrodysplasia, Jeune asphyxiating thoracic dysplasia and cranioectodermal dysplasia, linked to primary cilia dysfunction, and in TEKT1 which encodes tektin-1 an uncharacterized member of the tektin family, mutations of which may cause ciliary dyskinesia. Tektin-1 localizes at the centrosome in cycling cells, at basal bodies of both primary and motile cilia and to the axoneme of motile cilia in airway cells. The identified mutations impaired these localizations. In addition, airway cells from the affected individual showed severe motility defects without major ultrastructural changes. Knockdown of tekt1 in zebrafish resulted in phenotypes consistent with a function for tektin-1 in ciliary motility, which was confirmed by live imaging. Finally, experiments in the zebrafish also revealed a synergistic effect of tekt1 and wdr19. Altogether, our data show genetic interactions between WDR19 and TEKT1 likely contributing to the overall clinical phenotype observed in the affected individual and provide strong evidence for TEKT1 as a new candidate gene for primary ciliary dyskinesia.

19.
Eur Respir J ; 49(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28495692

RESUMO

Despite its high prevalence and mortality, little is known about the pathogenesis of rheumatoid arthritis-associated interstitial lung disease (RA-ILD). Given that familial pulmonary fibrosis (FPF) and RA-ILD frequently share the usual pattern of interstitial pneumonia and common environmental risk factors, we hypothesised that the two diseases might share additional risk factors, including FPF-linked genes. Our aim was to identify coding mutations of FPF-risk genes associated with RA-ILD.We used whole exome sequencing (WES), followed by restricted analysis of a discrete number of FPF-linked genes and performed a burden test to assess the excess number of mutations in RA-ILD patients compared to controls.Among the 101 RA-ILD patients included, 12 (11.9%) had 13 WES-identified heterozygous mutations in the TERT, RTEL1, PARN or SFTPC coding regions. The burden test, based on 81 RA-ILD patients and 1010 controls of European ancestry, revealed an excess of TERT, RTEL1, PARN or SFTPC mutations in RA-ILD patients (OR 3.17, 95% CI 1.53-6.12; p=9.45×10-4). Telomeres were shorter in RA-ILD patients with a TERT, RTEL1 or PARN mutation than in controls (p=2.87×10-2).Our results support the contribution of FPF-linked genes to RA-ILD susceptibility.


Assuntos
Artrite Reumatoide/genética , Predisposição Genética para Doença , Doenças Pulmonares Intersticiais/genética , Fibrose Pulmonar/genética , Adulto , Idoso , Artrite Reumatoide/complicações , Estudos de Casos e Controles , DNA Helicases/genética , Europa (Continente) , Exoma , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Doenças Pulmonares Intersticiais/complicações , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Fibrose Pulmonar/complicações , Fatores de Risco , Análise de Sequência de DNA , Software , Telomerase/genética
20.
PLoS One ; 12(4): e0175336, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28403163

RESUMO

Inflammasomes are multiprotein complexes nucleating around an NLR (Nucleotide-binding domain and Leucine-rich Repeat containing protein), which regulate the secretion of the pro-inflammatory interleukin (IL)-1ß and IL-18 cytokines. Monocytes and macrophages, the main cells expressing the inflammasome genes, adapt to their surrounding microenvironment by a phenotypic polarization towards a pro-inflammatory M1 phenotype that promotes inflammation or an anti-inflammatory M2 phenotype important for resolution of inflammation. Despite the importance of inflammasomes in health and disease, little is known about inflammasome gene expression in relevant human cells and the impact of monocyte and macrophage polarization in inflammasome gene expression. We examined the expression of several members of the NLR, caspase and cytokine family, and we studied the activation of the well-described NLRP3 inflammasome in an experimental model of polarized human primary monocytes and monocyte-derived macrophages (M1/M2 phenotypes) before and after activation with LPS, a well-characterized microbial pattern used in inflammasome activation studies. Our results show that the differentiation of monocytes to macrophages alters NLR expression. Polarization using IFN-γ (M1 phenotype), induces among the NLRs studied, only the expression of NOD2. One of the key results of our study is that the induction of NLRP3 expression by LPS is inhibited in the presence of IL-4+IL-13 (M2 phenotype) at both mRNA and protein level in monocytes and macrophages. Unlike caspase-3, the expression of inflammasome-related CASP1 (encodes caspase-1) and CASP4 (encodes caspase-4) is up-regulated in M1 but not in M2 cells. Interestingly, the presence of LPS marginally influenced IL18 mRNA expression and secretion, unlike its impact on IL1B. Our data provide the basis for a better understanding of the role of different inflammasomes within a given environment (M1 and M2) in human cells and their impact in the pathophysiology of several important inflammatory disorders.


Assuntos
Inflamassomos/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteínas NLR/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Caspases/genética , Caspases/imunologia , Polaridade Celular , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Regulação da Expressão Gênica , Humanos , Inflamassomos/genética , Lipopolissacarídeos/imunologia , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas NLR/genética , Proteína Adaptadora de Sinalização NOD2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA