Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Am Heart Assoc ; 10(20): e021436, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34612059

RESUMO

Background We examined the association of long-term exposure to air pollution and road traffic noise with incident heart failure (HF). Methods And Results Using data on female nurses from the Danish Nurse Cohort (aged >44 years), we investigated associations between 3-year mean exposures to air pollution and road traffic noise and incident HF using Cox regression models, adjusting for relevant confounders. Incidence of HF was defined as the first hospital contact (inpatient, outpatient, or emergency) between cohort baseline (1993 or 1999) and December 31, 2014, based on the Danish National Patient Register. Annual mean levels of particulate matter with a diameter <2.5 µm since 1990 and NO2 and road traffic noise since 1970 were estimated at participants' residences. Of the 22 189 nurses, 484 developed HF. We detected associations with all 3 pollutants, with hazard ratios (HRs) of 1.17 (95% CI, 1.01-1.36), 1.10 (95% CI, 0.99-1.22), and 1.12 (95% CI, 0.99-1.26) per increase of 5.1 µg/m3 in particulate matter with a diameter <2.5 µm, 8.6 µg/m3 in NO2, and 9.3 dB in road traffic noise, respectively. We observed an enhanced risk of HF incidence for those exposed to high levels of the 3 pollutants; however, the effect modification of coexposure was not statistically significant. Former smokers and nurses with hypertension showed the strongest associations with particulate matter with a diameter <2.5 µm (Peffect modification<0.05). Conclusions We found that long-term exposures to air pollution and road traffic noise were independently associated with HF.

2.
Environ Health Perspect ; 129(10): 107002, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34605674

RESUMO

BACKGROUND: Transportation noise is increasingly acknowledged as a cardiovascular risk factor, but the evidence base for an association with stroke is sparse. OBJECTIVE: We aimed to investigate the association between transportation noise and stroke incidence in a large Scandinavian population. METHODS: We harmonized and pooled data from nine Scandinavian cohorts (seven Swedish, two Danish), totaling 135,951 participants. We identified residential address history and estimated road, railway, and aircraft noise for all addresses. Information on stroke incidence was acquired through linkage to national patient and mortality registries. We analyzed data using Cox proportional hazards models, including socioeconomic and lifestyle confounders, and air pollution. RESULTS: During follow-up (median=19.5y), 11,056 stroke cases were identified. Road traffic noise (Lden) was associated with risk of stroke, with a hazard ratio (HR) of 1.06 [95% confidence interval (CI): 1.03, 1.08] per 10-dB higher 5-y mean time-weighted exposure in analyses adjusted for individual- and area-level socioeconomic covariates. The association was approximately linear and persisted after adjustment for air pollution [particulate matter (PM) with an aerodynamic diameter of ≤2.5µm (PM2.5) and NO2]. Stroke was associated with moderate levels of 5-y aircraft noise exposure (40-50 vs. ≤40 dB) (HR=1.12; 95% CI: 0.99, 1.27), but not with higher exposure (≥50 dB, HR=0.94; 95% CI: 0.79, 1.11). Railway noise was not associated with stroke. DISCUSSION: In this pooled study, road traffic noise was associated with a higher risk of stroke. This finding supports road traffic noise as an important cardiovascular risk factor that should be included when estimating the burden of disease due to traffic noise. https://doi.org/10.1289/EHP8949.

4.
Lancet Planet Health ; 5(9): e620-e632, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34508683

RESUMO

BACKGROUND: Long-term exposure to outdoor air pollution increases the risk of cardiovascular disease, but evidence is unclear on the health effects of exposure to pollutant concentrations lower than current EU and US standards and WHO guideline limits. Within the multicentre study Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we investigated the associations of long-term exposures to fine particulate matter (PM2·5), nitrogen dioxide (NO2), black carbon, and warm-season ozone (O3) with the incidence of stroke and acute coronary heart disease. METHODS: We did a pooled analysis of individual data from six population-based cohort studies within ELAPSE, from Sweden, Denmark, the Netherlands, and Germany (recruited 1992-2004), and harmonised individual and area-level variables between cohorts. Participants (all adults) were followed up until migration from the study area, death, or incident stroke or coronary heart disease, or end of follow-up (2011-15). Mean 2010 air pollution concentrations from centrally developed European-wide land use regression models were assigned to participants' baseline residential addresses. We used Cox proportional hazards models with increasing levels of covariate adjustment to investigate the association of air pollution exposure with incidence of stroke and coronary heart disease. We assessed the shape of the concentration-response function and did subset analyses of participants living at pollutant concentrations lower than predefined values. FINDINGS: From the pooled ELAPSE cohorts, data on 137 148 participants were analysed in our fully adjusted model. During a median follow-up of 17·2 years (IQR 13·8-19·5), we observed 6950 incident events of stroke and 10 071 incident events of coronary heart disease. Incidence of stroke was associated with PM2·5 (hazard ratio 1·10 [95% CI 1·01-1·21] per 5 µg/m3 increase), NO2 (1·08 [1·04-1·12] per 10 µg/m3 increase), and black carbon (1·06 [1·02-1·10] per 0·5 10-5/m increase), whereas coronary heart disease incidence was only associated with NO2 (1·04 [1·01-1·07]). Warm-season O3 was not associated with an increase in either outcome. Concentration-response curves indicated no evidence of a threshold below which air pollutant concentrations are not harmful for cardiovascular health. Effect estimates for PM2·5 and NO2 remained elevated even when restricting analyses to participants exposed to pollutant concentrations lower than the EU limit values of 25 µg/m3 for PM2·5 and 40 µg/m3 for NO2. INTERPRETATION: Long-term air pollution exposure was associated with incidence of stroke and coronary heart disease, even at pollutant concentrations lower than current limit values. FUNDING: Health Effects Institute.

5.
Sci Total Environ ; 804: 150091, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34517316

RESUMO

BACKGROUND: Ambient air pollution exposure has been associated with higher mortality risk in numerous studies. We assessed potential variability in the magnitude of this association for non-accidental, cardiovascular disease, respiratory disease, and lung cancer mortality in a country-wide administrative cohort by exposure assessment method and by adjustment for geographic subdivisions. METHODS: We used the Belgian 2001 census linked to population and mortality register including nearly 5.5 million adults aged ≥30 (mean follow-up: 9.97 years). Annual mean concentrations for fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) were assessed at baseline residential address using two exposure methods; Europe-wide hybrid land use regression (LUR) models [100x100m], and Belgium-wide interpolation-dispersion (RIO-IFDM) models [25x25m]. We used Cox proportional hazards models with age as the underlying time scale and adjusted for various individual and area-level covariates. We further adjusted main models for two different area-levels following the European Nomenclature of Territorial Units for Statistics (NUTS); NUTS-1 (n = 3), or NUTS-3 (n = 43). RESULTS: We found no consistent differences between both exposure methods. We observed most robust associations with lung cancer mortality. Hazard Ratios (HRs) per 10 µg/m3 increase for NO2 were 1.060 (95%CI 1.042-1.078) [hybrid LUR] and 1.040 (95%CI 1.022-1.058) [RIO-IFDM]. Associations with non-accidental, respiratory disease and cardiovascular disease mortality were generally null in main models but were enhanced after further adjustment for NUTS-1 or NUTS-3. HRs for non-accidental mortality per 5 µg/m3 increase for PM2.5 for the main model using hybrid LUR exposure were 1.023 (95%CI 1.011-1.035). After including random effects HRs were 1.044 (95%CI 1.033-1.057) [NUTS-1] and 1.076 (95%CI 1.060-1.092) [NUTS-3]. CONCLUSION: Long-term air pollution exposure was associated with higher lung cancer mortality risk but not consistently with the other studied causes. Magnitude of associations varied by adjustment for geographic subdivisions, area-level socio-economic covariates and less by exposure assessment method.

6.
BMJ ; 374: n1904, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470785

RESUMO

OBJECTIVE: To investigate the associations between air pollution and mortality, focusing on associations below current European Union, United States, and World Health Organization standards and guidelines. DESIGN: Pooled analysis of eight cohorts. SETTING: Multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE) in six European countries. PARTICIPANTS: 325 367 adults from the general population recruited mostly in the 1990s or 2000s with detailed lifestyle data. Stratified Cox proportional hazard models were used to analyse the associations between air pollution and mortality. Western Europe-wide land use regression models were used to characterise residential air pollution concentrations of ambient fine particulate matter (PM2.5), nitrogen dioxide, ozone, and black carbon. MAIN OUTCOME MEASURES: Deaths due to natural causes and cause specific mortality. RESULTS: Of 325 367 adults followed-up for an average of 19.5 years, 47 131 deaths were observed. Higher exposure to PM2.5, nitrogen dioxide, and black carbon was associated with significantly increased risk of almost all outcomes. An increase of 5 µg/m3 in PM2.5 was associated with 13% (95% confidence interval 10.6% to 15.5%) increase in natural deaths; the corresponding figure for a 10 µg/m3 increase in nitrogen dioxide was 8.6% (7% to 10.2%). Associations with PM2.5, nitrogen dioxide, and black carbon remained significant at low concentrations. For participants with exposures below the US standard of 12 µg/m3 an increase of 5 µg/m3 in PM2.5 was associated with 29.6% (14% to 47.4%) increase in natural deaths. CONCLUSIONS: Our study contributes to the evidence that outdoor air pollution is associated with mortality even at low pollution levels below the current European and North American standards and WHO guideline values. These findings are therefore an important contribution to the debate about revision of air quality limits, guidelines, and standards, and future assessments by the Global Burden of Disease.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/mortalidade , Exposição Ambiental/efeitos adversos , Doenças não Transmissíveis/mortalidade , Europa (Continente) , Humanos
7.
Environ Health Perspect ; 129(8): 87002, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34338552

RESUMO

BACKGROUND: Associations between long-term exposure to air pollution and road traffic noise have been established for ischemic heart disease, but findings have been mixed for atrial fibrillation (AF). OBJECTIVES: The goal of the study was to examine associations of long-term exposure to road traffic noise and air pollution with AF. METHODS: Time-varying Cox regression models were used to estimate associations of 1-, 3-, and 23-y mean road traffic noise and air pollution exposures with AF incidence in 23,528 women enrolled in the Danish Nurse Cohort (age >44y at baseline in 1993 or 1999). AF diagnoses were ascertained via the Danish National Patient Register. Annual mean weighted 24-h average road traffic noise levels (Lden) at the nurses' residences, since 1970, were estimated using the Nord2000 model, and annual mean levels of particulate matter with a diameter <2.5µm (PM2.5) and nitrogen dioxide (NO2) were estimated using the DEHM/UBM/AirGIS model. RESULTS: Of 23,528 nurses with no prior AF diagnosis at the cohort baseline, 1,522 developed AF during follow-up. In a fully adjusted model (including PM2.5), the estimated risk of AF was 18% higher [hazard ratio (HR); 95% confidence interval (CI): 1.18; 1.02, 1.36] in nurses with residential 3-y mean Lden levels >58 dB vs. <48 dB, with similar findings for 1-y mean exposures. A 3.9-µg/m3 increase in 3-y mean PM2.5 was associated with incident AF before and after adjustment for concurrent exposure to road traffic noise (HR 1.09; 95% CI: 1.00, 1.20 and 1.08; 95% CI: 0.97, 1.19, respectively). Associations with 1-y mean PM2.5 exposures were positive but closer to the null and not significant. Associations with NO2 were null for all time periods before and after adjustment for road traffic noise and inverse when adjusted for concurrent PM2.5. CONCLUSION: Our analysis of prospective data from a cohort of Danish female nurses followed for up to 14 y provided suggestive evidence of independent associations between incident AF and 1- and 3-y exposures to road traffic noise and PM2.5. https://doi.org/10.1289/EHP8090.

9.
Eur Respir J ; 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986028

RESUMO

BACKGROUND: While air pollution has been linked to the development of chronic obstructive pulmonary disease (COPD), evidence on the role of environmental noise is just emerging. We examined the associations of long-term exposure to air pollution and road traffic noise with COPD incidence. METHODS: We defined COPD incidence for 24 538 female nurses from the Danish Nurse Cohort (age>44 years) as the first hospital contact between baseline (1993 or 1999) and 2015. We estimated residential annual mean concentrations of particulate matter with diameter<2.5 µm (PM2.5) since 1990 and nitrogen dioxide (NO2) since 1970 by the Danish DEHM/UBM/AirGIS modeling system, and road traffic noise (Lden) since 1970 by the Nord2000 model. Time-varying Cox regression models were applied to assess the associations of air pollution and road traffic noise with COPD incidence. RESULTS: 977 nurses developed COPD during 18.6 years' mean follow-up. We observed associations with COPD for all three exposures with hazard ratios (HRs) and 95% confidence intervals (CIs) of 1.19 (1.01, 1.41) per 6.26 µg·m-3 for PM2.5, 1.13 (1.05, 1.20) per 8.19 µg·m-3 for NO2, and 1.15 (1.06, 1.25) per 10 dB for Lden. Associations with NO2 and Lden attenuated slightly after mutual adjustment, but were robust to adjustment for PM2.5. Associations with PM2.5 were attenuated to null after adjustment for either NO2 or Lden. No potential interaction effect was observed between air pollutants and noise. CONCLUSIONS: Long-term exposure to air pollution, especially traffic-related NO2, and road traffic noise were independently associated with COPD.

10.
Environ Health Perspect ; 129(4): 47009, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33844598

RESUMO

BACKGROUND: Inconsistent associations between long-term exposure to particles with an aerodynamic diameter ≤2.5 µm [fine particulate matter (PM2.5)] components and mortality have been reported, partly related to challenges in exposure assessment. OBJECTIVES: We investigated the associations between long-term exposure to PM2.5 elemental components and mortality in a large pooled European cohort; to compare health effects of PM2.5 components estimated with two exposure modeling approaches, namely, supervised linear regression (SLR) and random forest (RF) algorithms. METHODS: We pooled data from eight European cohorts with 323,782 participants, average age 49 y at baseline (1985-2005). Residential exposure to 2010 annual average concentration of eight PM2.5 components [copper (Cu), iron (Fe), potassium (K), nickel (Ni), sulfur (S), silicon (Si), vanadium (V), and zinc (Zn)] was estimated with Europe-wide SLR and RF models at a 100×100 m scale. We applied Cox proportional hazards models to investigate the associations between components and natural and cause-specific mortality. In addition, two-pollutant analyses were conducted by adjusting each component for PM2.5 mass and nitrogen dioxide (NO2) separately. RESULTS: We observed 46,640 natural-cause deaths with 6,317,235 person-years and an average follow-up of 19.5 y. All SLR-modeled components were statistically significantly associated with natural-cause mortality in single-pollutant models with hazard ratios (HRs) from 1.05 to 1.27. Similar HRs were observed for RF-modeled Cu, Fe, K, S, V, and Zn with wider confidence intervals (CIs). HRs for SLR-modeled Ni, S, Si, V, and Zn remained above unity and (almost) significant after adjustment for both PM2.5 and NO2. HRs only remained (almost) significant for RF-modeled K and V in two-pollutant models. The HRs for V were 1.03 (95% CI: 1.02, 1.05) and 1.06 (95% CI: 1.02, 1.10) for SLR- and RF-modeled exposures, respectively, per 2 ng/m3, adjusting for PM2.5 mass. Associations with cause-specific mortality were less consistent in two-pollutant models. CONCLUSION: Long-term exposure to V in PM2.5 was most consistently associated with increased mortality. Associations for the other components were weaker for exposure modeled with RF than SLR in two-pollutant models. https://doi.org/10.1289/EHP8368.

11.
Environ Epidemiol ; 5(3): e148, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33912785

RESUMO

Background: Evidence of nonauditory health effects of road traffic noise exposure is growing. This prospective cohort study aimed to estimate the association between long-term exposure to road traffic noise above a threshold and incident myocardial infarction (MI) in Denmark. Methods: In the Danish Nurse Cohort study, we used data of 22,378 women, at recruitment in 1993 and 1999, who reported information on MI risk factors. The participants' first hospital contact or out-of-hospital death due to MI were followed-up until 2014. We investigated a relationship between residential exposures to road traffic noise levels (Lden) up to 23 years and incident MI (overall, nonfatal, and fatal) using time-varying Cox regression models adjusting for potential confounders and air pollutants. We estimated thresholds of road traffic noise (53, 56, and 58 dB) associated with incident MI in a piece-wise linear regression model. Results: Of the 22,378 participants, 633 developed MI, 502 of which were nonfatal. We observed a non-linear relationship between the 23-year running mean of Lden and incident MI with a threshold level of 56 dB, above which hazard ratios (95% confidence intervals) were 1.30 (0.97, 1.75) for overall and 1.46 (1.05, 2.03) for nonfatal MI per 10 dB. The association with nonfatal MI attenuated slightly to 1.34 (0.95, 1.90) after adjustment for fine particles. Conclusions: We found that long-term exposure to road traffic noise above 56 dB may increase the risk of MI. The study findings suggest that road traffic noise above 56 dB may need regulation in addition to the regulation of ambient pollutants.

12.
Int J Cancer ; 149(3): 585-593, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33729548

RESUMO

The association between oophorectomy and risk of breast cancer in the general population is uncertain. The aim of our study was to determine the breast cancer rate in women from the general population after oophorectomy (performed before/after menopause), and whether this varies by use of hormone replacement therapy (HRT), hysterectomy, body mass index (BMI) and shift work. The study included 24 409 female nurses (aged ≥45 years) participating in the Danish Nurse Cohort. Nurses were followed from cohort entry until date of breast cancer, death, emigration or end of follow-up at 31 December 2018, whichever came first. Poisson regression with log-transformed person-years as the offset examined the association between oophorectomy and breast cancer (all ages and stratified by menopausal status at time of oophorectomy). The potential modifying effect of HRT use, hysterectomy, BMI and shift work on the associations was estimated. During 502 463 person-years of follow-up, 1975 (8.1%) nurses were diagnosed with breast cancer. Bilateral oophorectomy was associated with a reduced breast cancer rate compared to nurses with preserved ovaries, adjusted rate ratio (95% confidence interval): 0.79 (0.64; 0.99). Similar associations (magnitude and direction) were detected for unilateral oophorectomy and when stratifying according to menopausal status at time of oophorectomy, but without statistical significance. Unilateral and bilateral oophorectomy is associated with a reduced breast cancer rate in women from the general population. This association is not modified by use of HRT, hysterectomy, BMI or shift work.


Assuntos
Neoplasias da Mama/epidemiologia , Terapia de Reposição Hormonal/efeitos adversos , Histerectomia/efeitos adversos , Menopausa , Ovariectomia/efeitos adversos , Adulto , Idoso , Índice de Massa Corporal , Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Dinamarca/epidemiologia , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Fatores de Risco
13.
Environ Int ; 152: 106464, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33684733

RESUMO

BACKGROUND: Ambient air pollution is likely a risk factor for asthma, and recent evidence suggests the possible relevance of road traffic noise. OBJECTIVES: We examined the associations of long-term exposure to air pollution and road traffic noise with adult-asthma incidence. METHODS: We followed 28,731 female nurses (age > 44 years) from the Danish Nurse Cohort, recruited in 1993 and 1999, for first hospital contact for asthma from 1977 until 2015. We estimated residential annual mean concentrations of particulate matter with diameter < 2.5 µm (PM2.5) since 1990 and nitrogen dioxide (NO2) since 1970 with the Danish DEHM/UBM/AirGIS modeling system, and road traffic noise (Lden) since 1970 with the Nord2000 model. Time-varying Cox regression models were used to associate air pollution and road traffic noise exposure with asthma incidence. RESULTS: During 18.6 years' mean follow-up, 528 out of 23,093 participants had hospital contact for asthma. The hazard ratios (HR) and 95% confidence intervals for asthma incidence associated with 3-year moving average exposures were 1.29 (1.03, 1.61) per 6.3 µg/m3 for PM2.5, 1.16 (1.07, 1.27) per 8.2 µg/m3 for NO2, and 1.12 (1.00, 1.25) per 10 dB for Lden. The HR for NO2 remained unchanged after adjustment for either PM2.5 or Lden, while the HRs for PM2.5 and Lden attenuated to unity after adjustment for NO2. CONCLUSIONS: Long-term exposure to air pollution was associated with adult-asthma incidence independently of road traffic noise, with NO2 most relevant. Road traffic noise was not independently associated with adult-asthma incidence.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Ruído dos Transportes , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Asma/epidemiologia , Asma/etiologia , Dinamarca/epidemiologia , Exposição Ambiental/análise , Feminino , Humanos , Incidência , Ruído dos Transportes/efeitos adversos , Material Particulado/análise
14.
Environ Int ; 146: 106306, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395948

RESUMO

INTRODUCTION: To characterize air pollution exposure at a fine spatial scale, different exposure assessment methods have been applied. Comparison of associations with health from different exposure methods are scarce. The aim of this study was to evaluate associations of air pollution based on hybrid, land-use regression (LUR) and dispersion models with natural cause and cause-specific mortality. METHODS: We followed a Dutch national cohort of approximately 10.5 million adults aged 29+ years from 2008 until 2012. We used Cox proportional hazard models with age as underlying time scale and adjusted for several potential individual and area-level socio-economic status confounders to evaluate associations of annual average residential NO2, PM2.5 and BC exposure estimates based on two stochastic models (Dutch LUR, European-wide hybrid) and deterministic Dutch dispersion models. RESULTS: Spatial variability of PM2.5 and BC exposure was smaller for LUR compared to hybrid and dispersion models. NO2 exposure variability was similar for the three methods. Pearson correlations between hybrid, LUR and dispersion modeled NO2 and BC ranged from 0.72 to 0.83; correlations for PM2.5 were slightly lower (0.61-0.72). In general, all three models showed stronger associations of air pollutants with respiratory disease and lung cancer mortality than with natural cause and cardiovascular disease mortality. The strength of the associations differed between the three exposure models. Associations of air pollutants estimated by LUR were generally weaker compared to associations of air pollutants estimated by hybrid and dispersion models. For natural cause mortality, we found a hazard ratio (HR) of 1.030 (95% confidence interval (CI): 1.019, 1.041) per 10 µg/m3 for hybrid modeled NO2, a HR of 1.003 (95% CI: 0.993, 1.013) per 10 µg/m3 for LUR modeled NO2 and a HR of 1.015 (95% CI: 1.005, 1.024) per 10 µg/m3 for dispersion modeled NO2. CONCLUSION: Air pollution was positively associated with natural cause and cause-specific mortality, but the strength of the associations differed between the three exposure models. Our study documents that the selected exposure model may contribute to heterogeneity in effect estimates of associations between air pollution and health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Respiratórias , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Material Particulado/efeitos adversos , Material Particulado/análise
15.
Environ Int ; 147: 106371, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33422970

RESUMO

BACKGROUND: We evaluated methods for the analysis of multi-level survival data using a pooled dataset of 14 cohorts participating in the ELAPSE project investigating associations between residential exposure to low levels of air pollution (PM2.5 and NO2) and health (natural-cause mortality and cerebrovascular, coronary and lung cancer incidence). METHODS: We applied five approaches in a multivariable Cox model to account for the first level of clustering corresponding to cohort specification: (1) not accounting for the cohort or using (2) indicator variables, (3) strata, (4) a frailty term in frailty Cox models, (5) a random intercept under a mixed Cox, for cohort identification. We accounted for the second level of clustering due to common characteristics in the residential area by (1) a random intercept per small area or (2) applying variance correction. We assessed the stratified, frailty and mixed Cox approach through simulations under different scenarios for heterogeneity in the underlying hazards and the air pollution effects. RESULTS: Effect estimates were stable under approaches used to adjust for cohort but substantially differed when no adjustment was applied. Further adjustment for the small area grouping increased the effect estimates' standard errors. Simulations confirmed identical results between the stratified and frailty models. In ELAPSE we selected a stratified multivariable Cox model to account for between-cohort heterogeneity without adjustment for small area level, due to the small number of subjects and events in the latter. CONCLUSIONS: Our study supports the need to account for between-cohort heterogeneity in multi-center collaborations using pooled individual level data.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/análise , Humanos , Material Particulado/análise
16.
Environ Int ; 146: 106267, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276316

RESUMO

BACKGROUND: Air pollution has been suggested as a risk factor for chronic obstructive pulmonary disease (COPD), but evidence is sparse and inconsistent. OBJECTIVES: We examined the association between long-term exposure to low-level air pollution and COPD incidence. METHODS: Within the 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE) study, we pooled data from three cohorts, from Denmark and Sweden, with information on COPD hospital discharge diagnoses. Hybrid land use regression models were used to estimate annual mean concentrations of particulate matter with a diameter < 2.5 µm (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) in 2010 at participants' baseline residential addresses, which were analysed in relation to COPD incidence using Cox proportional hazards models. RESULTS: Of 98,058 participants, 4,928 developed COPD during 16.6 years mean follow-up. The adjusted hazard ratios (HRs) and 95% confidence intervals for associations with COPD incidence were 1.17 (1.06, 1.29) per 5 µg/m3 for PM2.5, 1.11 (1.06, 1.16) per 10 µg/m3 for NO2, and 1.11 (1.06, 1.15) per 0.5 10-5m-1 for BC. Associations persisted in subset participants with PM2.5 or NO2 levels below current EU and US limit values and WHO guidelines, with no evidence for a threshold. HRs for NO2 and BC remained unchanged in two-pollutant models with PM2.5, whereas the HR for PM2.5 was attenuated to unity with NO2 or BC. CONCLUSIONS: Long-term exposure to low-level air pollution is associated with the development of COPD, even below current EU and US limit values and possibly WHO guidelines. Traffic-related pollutants NO2 and BC may be the most relevant.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença Pulmonar Obstrutiva Crônica , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/análise , Europa (Continente)/epidemiologia , Humanos , Incidência , Material Particulado/análise , Material Particulado/toxicidade , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Suécia
17.
Environ Res ; 194: 110631, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33345898

RESUMO

BACKGROUND: Knowledge of the role of melatonin, xenograft experiments, and epidemiological studies suggests that exposure to light at night (LAN) may disturb circadian rhythms, possibly increasing the risk of developing breast cancer. OBJECTIVES: We examined the association between residential outdoor LAN and the incidence of breast cancer: overall and subtypes classified by estrogen (ER) and progesterone (PR) receptor status. METHODS: We used data on 16,941 nurses from the Danish Nurse Cohort who were followed-up from the cohort baseline in 1993 or 1999 through 2012 in the Danish Cancer Registry for breast cancer incidence and the Danish Breast Cancer Cooperative Group for breast cancer ER and PR status. LAN exposure data were obtained from the U.S. Defense Meteorological Satellite Program (DMSP) available for 1996, 1999, 2000, 2003, 2004, 2006, and 2010 in nW/cm2/sr unit, and assigned to the study participants' residence addresses during the follow-up. Time-varying Cox regression models were used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between LAN and breast cancer, adjusting for individual characteristics, road traffic noise, and air pollution. RESULTS: Of 16,941 nurses, 745 developed breast cancer in total during 320,289 person-years of follow-up. We found no association between exposure to LAN and overall breast cancer. In the fully adjusted models, HRs for the highest (65.8-446.4 nW/cm2/sr) and medium (22.0-65.7 nW/cm2/sr) LAN tertiles were 0.97 (95% CI: 0.77, 1.23) and 1.09 (95% CI: 0.90, 1.31), respectively, compared to the lowest tertile of LAN exposure (0-21.9 nW/cm2/sr). We found a suggestive association between LAN and ER-breast cancer. CONCLUSION: This large cohort study of Danish female nurses suggests weak evidence of the association between LAN and breast cancer incidence.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Ritmo Circadiano , Estudos de Coortes , Dinamarca/epidemiologia , Feminino , Humanos , Incidência , Luz , Fatores de Risco
18.
Environ Sci Technol ; 54(24): 15698-15709, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33237771

RESUMO

We developed Europe-wide models of long-term exposure to eight elements (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in particulate matter with diameter <2.5 µm (PM2.5) using standardized measurements for one-year periods between October 2008 and April 2011 in 19 study areas across Europe, with supervised linear regression (SLR) and random forest (RF) algorithms. Potential predictor variables were obtained from satellites, chemical transport models, land-use, traffic, and industrial point source databases to represent different sources. Overall model performance across Europe was moderate to good for all elements with hold-out-validation R-squared ranging from 0.41 to 0.90. RF consistently outperformed SLR. Models explained within-area variation much less than the overall variation, with similar performance for RF and SLR. Maps proved a useful additional model evaluation tool. Models differed substantially between elements regarding major predictor variables, broadly reflecting known sources. Agreement between the two algorithm predictions was generally high at the overall European level and varied substantially at the national level. Applying the two models in epidemiological studies could lead to different associations with health. If both between- and within-area exposure variability are exploited, RF may be preferred. If only within-area variability is used, both methods should be interpreted equally.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Europa (Continente) , Modelos Lineares , Material Particulado/análise , Zinco/análise
19.
CA Cancer J Clin ; 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32964460

RESUMO

Outdoor air pollution is a major contributor to the burden of disease worldwide. Most of the global population resides in places where air pollution levels, because of emissions from industry, power generation, transportation, and domestic burning, considerably exceed the World Health Organization's health-based air-quality guidelines. Outdoor air pollution poses an urgent worldwide public health challenge because it is ubiquitous and has numerous serious adverse human health effects, including cancer. Currently, there is substantial evidence from studies of humans and experimental animals as well as mechanistic evidence to support a causal link between outdoor (ambient) air pollution, and especially particulate matter (PM) in outdoor air, with lung cancer incidence and mortality. It is estimated that hundreds of thousands of lung cancer deaths annually worldwide are attributable to PM air pollution. Epidemiological evidence on outdoor air pollution and the risk of other types of cancer, such as bladder cancer or breast cancer, is more limited. Outdoor air pollution may also be associated with poorer cancer survival, although further research is needed. This report presents an overview of outdoor air pollutants, sources, and global levels, as well as a description of epidemiological evidence linking outdoor air pollution with cancer incidence and mortality. Biological mechanisms of air pollution-derived carcinogenesis are also described. This report concludes by summarizing public health/policy recommendations, including multilevel interventions aimed at individual, community, and regional scales. Specific roles for medical and health care communities with regard to prevention and advocacy and recommendations for further research are also described.

20.
Environ Int ; 142: 105891, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32593048

RESUMO

Ambient air pollution has been linked to stroke, but few studies have examined in detail stroke subtypes and confounding by road traffic noise, which was recently associated with stroke. Here we examined the association between long-term exposure to air pollution and incidence of stroke (overall, ischemic, hemorrhagic), adjusting for road traffic noise. In a nationwide Danish Nurse Cohort consisting of 23,423 nurses, recruited in 1993 or 1999, we identified 1,078 incident cases of stroke (944 ischemic and 134 hemorrhagic) up to December 31, 2014, defined as first-ever hospital contact. The full residential address histories since 1970 were obtained for each participant and the annual means of air pollutants (particulate matter with diameter < 2.5 µm and < 10 µm (PM2.5 and PM10), nitrogen dioxide (NO2), nitrogen oxides (NOx)) and road traffic noise were determined using validated models. Time-varying Cox regression models were used to estimate hazard ratios (HR) (95% confidence intervals (CI)) for the associations of one-, three, and 23-year running mean of air pollutants with stroke adjusting for potential confounders and noise. In fully adjusted models, the HRs (95% CI) per interquartile range increase in one-year running mean of PM2.5 and overall, ischemic, and hemorrhagic stroke were 1.12 (1.01-1.25), 1.13 (1.01-1.26), and 1.07 (0.80-1.44), respectively, and remained unchanged after adjustment for noise. Long-term exposure to ambient PM2.5 was associated with the risk of stroke independent of road traffic noise.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Acidente Vascular Cerebral , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Estudos de Coortes , Dinamarca/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Incidência , Dióxido de Nitrogênio/análise , Material Particulado/análise , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...