Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 62: 68-78, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33524585

RESUMO

The use of retaining glycoside hydrolases as synthetic tools for glycochemistry is highly topical and the focus of considerable research. However, due to the incomplete identification of the molecular determinants of the transglycosylation/hydrolysis partition (t/h), rational engineering of retaining glycoside hydrolases to create transglycosylases remains challenging. Therefore, to understand better the factors that underpin transglycosylation in a GH51 retaining α-l-arabinofuranosidase from Thermobacillus xylanilyticus, the investigation of this enzyme's active site was pursued. Specifically, the properties of two mutants, F26L and L352M, located in the vicinity of the active site are described, using kinetic and 3D structural analyses and molecular dynamics simulations. The results reveal that the presence of L352M in the context of a triple mutant (also containing R69H and N216W) generates changes both in the donor and acceptor subsites, the latter being the result of a domino-like effect. Overall, the mutant R69H-N216W-L352M displays excellent transglycosylation activity (70 % yield, 78 % transfer rate and reduced secondary hydrolysis of the product). In the course of this study, the central role played by the conserved R69 residue was also reaffirmed. The mutation R69H affects both the catalytic nucleophile and the acid/base, including their flexibility, and has a determinant effect on the t/h partition. Finally, the results reveal that increased loop flexibility in the acceptor subsites creates new interactions with the acceptor, in particular with a hydrophobic binding platform composed of N216W, W248 and W302.

2.
Blood ; 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545713

RESUMO

Immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome is caused by mutations in FOXP3, which lead to the loss of function of regulatory T cells (Treg) and the development of autoimmune manifestations early in life. The selective induction of a Treg program in autologous CD4+ T cells by FOXP3 gene transfer is a promising approach for curing IPEX. We have established a novel in vivo assay of Treg functionality, based on adoptive transfer of these cells into scurfy mice (an animal model of IPEX) and a combination of cyclophosphamide conditioning and interleukin-2 treatment. This model highlighted the possibility of rescuing scurfy disease after the latter's onset. By using this in vivo model and an optimized lentiviral vector expressing human Foxp3 and as a reporter a truncated form of the 5 low-affinity nerve growth factor receptor (DLNGFR), we demonstrated that the adoptive transfer of FOXP3-transduced scurfy CD4+ T cells enabled the long-term rescue of scurfy autoimmune disease. The efficiency was similar to that seen with wild-type Treg. After in vivo expansion, the converted CD4FOXP3 cells recapitulated the transcriptomic core signature for Treg. These findings demonstrate that FOXP3 expression converts CD4+ T cells into functional Treg capable of controlling severe autoimmune disease.

3.
Sci Rep ; 11(1): 2474, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510212

RESUMO

The (chemo-)enzymatic synthesis of oligosaccharides has been hampered by the lack of appropriate enzymatic tools with requisite regio- and stereo-specificities. Engineering of carbohydrate-active enzymes, in particular targeting the enzyme active site, has notably led to catalysts with altered regioselectivity of the glycosylation reaction thereby enabling to extend the repertoire of enzymes for carbohydrate synthesis. Using a collection of 22 mutants of ΔN123-GBD-CD2 branching sucrase, an enzyme from the Glycoside Hydrolase family 70, containing between one and three mutations in the active site, and a lightly protected chemically synthesized tetrasaccharide as an acceptor substrate, we showed that altered glycosylation product specificities could be achieved compared to the parental enzyme. Six mutants were selected for further characterization as they produce higher amounts of two favored pentasaccharides compared to the parental enzyme and/or new products. The produced pentasaccharides were shown to be of high interest as they are precursors of representative haptens of Shigella flexneri serotypes 3a, 4a and 4b. Furthermore, their synthesis was shown to be controlled by the mutations introduced in the active site, driving the glucosylation toward one extremity or the other of the tetrasaccharide acceptor. To identify the molecular determinants involved in the change of ΔN123-GBD-CD2 regioselectivity, extensive molecular dynamics simulations were carried out in combination with in-depth analyses of amino acid residue networks. Our findings help to understand the inter-relationships between the enzyme structure, conformational flexibility and activity. They also provide new insight to further engineer this class of enzymes for the synthesis of carbohydrate components of bacterial haptens.

4.
Front Microbiol ; 11: 579521, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281771

RESUMO

Plant α-galactosides belonging to the raffinose family oligosaccharides (RFOs) and considered as prebiotics, are commonly degraded by α-galactosidases produced by the human gut microbiome. In this environment, the Ruminococcus gnavus E1 symbiont-well-known for various benefit-is able to produce an original RgAgaSK bifunctional enzyme. This enzyme contains an hydrolytic α-galactosidase domain linked to an ATP dependent extra-domain, specifically involved in the α-galactoside hydrolysis and the phosphorylation of the glucose, respectively. However, the multi-modular relationships between both catalytic domains remained hitherto unexplored and has been, consequently, herein investigated. Biochemical characterization of heterologously expressed enzymes either in full-form or in separated domains revealed similar kinetic parameters. These results were supported by molecular modeling studies performed on the whole enzyme in complex with different RFOs. Further enzymatic analysis associated with kinetic degradation of various substrates followed by high pressure anionic exchange chromatography revealed that catalytic efficiency decreased as the number of D-galactosyl moieties branched onto the oligosaccharide increased, suggesting a preference of RgAgaSK for RFO's short chains. A wide prevalence and abundance study on a human metagenomic library showed a high prevalence of the RgAgaSK encoding gene whatever the health status of the individuals. Finally, phylogeny and synteny studies suggested a limited spread by horizontal transfer of the clusters' containing RgAgaSK to only few species of Firmicutes, highlighting the importance of these undispersed tandem activities in the human gut microbiome.

5.
J Org Chem ; 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32700907

RESUMO

Progress in glycoscience is strongly dependent on the availability of broadly diverse tailored-made, well-defined and often complex oligosaccharides. Herein, going beyond natural resources and aiming to circumvent chemical boundaries in glycochemistry, we tackle the development of an in vitro chemoenzymatic strategy holding great potential to answer the need for molecular diversity characterizing microbial cell-surface carbohydrates. The concept is exemplified in the context of Shigella flexneri, a major cause of diarrheal disease. Aiming at a broad serotype coverage S. flexneri glycoconjugate vaccine, a non-natural lightly protected tetrasaccharide was designed for compatibility with (i) serotype-specific glucosylations and O-acetylations defining S. flexneri O-antigens, (ii) recognition by suitable α-transglucosylases, and (iii) programmed oligomerization post enzymatic -D-glucosylation. The tetrasaccharide core was chemically synthesized from two crystalline monosaccharide precursors. Six α-transglucosylases found in the Glycoside Hydrolase family 70 were shown to transfer glucosyl residues on the non-natural acceptor. The successful proof-of-concept is achieved for a pentasaccharide featuring the glucosylation pattern from the S. flexneri type IV O-antigen. It demonstrates the potential of appropriately planned chemo-enzymatic pathways involving non-natural acceptors and low-cost donor/transglucosylase systems to achieve the demanding regioselective -D-glucosylation of large substrates, paving the way to microbial oligosaccharides of vaccinal interest.

6.
Front Immunol ; 11: 1154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582217

RESUMO

Autosomal recessive mutations in genes required for cytotoxicity are causative of a life-threatening, early-onset hyperinflammatory syndrome termed familial hemophagocytic lymphohistiocytosis (FHL). Mutations in UNC13D cause FHL type 3. UNC13D encodes Munc13-4, a member of the Unc13 protein family which control SNARE complex formation and vesicle fusion. We have previously identified FHL3-associated mutations in the first intron of UNC13D which control transcription from an alternative transcriptional start site. Using isoform specific antibodies, we demonstrate that this alternative Munc13-4 isoform with a unique N-terminus is preferentially expressed in human lymphocytes and platelets, as compared to the conventional isoform that was mostly expressed in monocytes and neutrophils. The distinct N-terminal of the two isoforms did not impact on Munc13-4 localization or trafficking to the immunological synapse of cytotoxic T cells. Moreover, ectopic expression of both isoforms efficiently restored exocytosis by FHL3 patient-derived Munc13-4 deficient T cells. Thus, we demonstrate that the conventional and alternative Munc13-4 isoforms have different expression pattern in hematopoietic cell subsets, but display similar localization and contribution to T cell exocytosis. The use of an alternative transcriptional starting site (TSS) in lymphocytes and platelets could be selected for increasing the overall levels of Munc13-4 expression for efficient secretory granule release.

8.
Am J Transplant ; 20(8): 2243-2253, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32065452

RESUMO

Acute graft-versus-host disease (GVHD) is a rare but frequently lethal complication after solid organ transplantation. GVHD occurs in unduly immunocompromised hosts but requires the escalation of immunosuppression, which does not discriminate between host and donor cells. In contrast, donor-targeted therapy would ideally mitigate graft-versus-host reactivity while sparing recipient immune functions. We report two children with end-stage renal disease and severe primary immune deficiency (Schimke syndrome) who developed severe steroid-resistant acute GVHD along with full and sustained donor T cell chimerism after isolated kidney transplantation. Facing a therapeutic dead end, we used a novel strategy based on the adoptive transfer of anti-HLA donor-specific antibodies (DSAs) through the transfusion of highly selected plasma. After approval by the appropriate regulatory authority, an urgent nationwide search was launched among more than 3800 registered blood donors with known anti-HLA sensitization. Adoptively transferred DSAs bound to and selectively depleted circulating donor T cells. The administration of DSA-rich plasma was well tolerated and notably did not induce antibody-mediated rejection of the renal allografts. Acute GVHD symptoms promptly resolved in one child. This report provides a proof of concept for a highly targeted novel therapeutic approach for solid organ transplantation-associated GVHD.

9.
Blood ; 135(15): 1219-1231, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32040546

RESUMO

In gene therapy with human hematopoietic stem and progenitor cells (HSPCs), each gene-corrected cell and its progeny are marked in a unique way by the integrating vector. This feature enables lineages to be tracked by sampling blood cells and using DNA sequencing to identify the vector integration sites. Here, we studied 5 cell lineages (granulocytes, monocytes, T cells, B cells, and natural killer cells) in patients having undergone HSPC gene therapy for Wiskott-Aldrich syndrome or ß hemoglobinopathies. We found that the estimated minimum number of active, repopulating HSPCs (which ranged from 2000 to 50 000) was correlated with the number of HSPCs per kilogram infused. We sought to quantify the lineage output and dynamics of gene-modified clones; this is usually challenging because of sparse sampling of the various cell types during the analytical procedure, contamination during cell isolation, and different levels of vector marking in the various lineages. We therefore measured the residual contamination and corrected our statistical models accordingly to provide a rigorous analysis of the HSPC lineage output. A cluster analysis of the HSPC lineage output highlighted the existence of several stable, distinct differentiation programs, including myeloid-dominant, lymphoid-dominant, and balanced cell subsets. Our study evidenced the heterogeneous nature of the cell lineage output from HSPCs and provided methods for analyzing these complex data.


Assuntos
Células Clonais/citologia , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Hemoglobinopatias/terapia , Síndrome de Wiskott-Aldrich/terapia , Diferenciação Celular , Rastreamento de Células , Células Clonais/metabolismo , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Hemoglobinopatias/genética , Humanos , Síndrome de Wiskott-Aldrich/genética
10.
ACS Chem Biol ; 15(2): 416-424, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31990173

RESUMO

The enzymatic transamination of ketones into (R)-amines represents an important route for accessing a range of pharmaceuticals or building blocks. Although many publications have dealt with enzyme discovery, protein engineering, and the application of (R)-selective amine transaminases [(R)-ATA] in biocatalysis, little is known about the actual in vivo role and how these enzymes have evolved from the ubiquitous α-amino acid transaminases (α-AATs). Here, we show the successful introduction of an (R)-transaminase activity in an α-amino acid aminotransferase with one to six amino acid substitutions in the enzyme's active site. Bioinformatic analysis combined with computational redesign of the d-amino acid aminotransferase (DATA) led to the identification of a sextuple variant having a specific activity of 326 milliunits mg-1 in the conversion of (R)-phenylethylamine and pyruvate to acetophenone and d-alanine. This value is similar to those of natural (R)-ATAs, which typically are in the range of 250 milliunits mg-1. These results demonstrate that (R)-ATAs can evolve from α-AAT as shown here for the DATA scaffold.

11.
Haematologica ; 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919089

RESUMO

Severe combined immunodeficiencies (SCIDs) constitute a heterogeneous group of life-threatening genetic disorders that typically present in the first year of life. They are defined by the absence of autologous T cells and the presence of an intrinsic or extrinsic defect in the B-cell compartment. In three newborns presenting with frequent infections and profound leukopenia, we identified a private, heterozygous mutation in the RAC2 gene (p.G12R). This mutation was de novo in the index case, who had been cured by hematopoietic stem cell transplantation but had transmitted the mutation to her sick daughter. Biochemical assays showed that the mutation was associated with a gain of function. The results of in vitro differentiation assays showed that RAC2 is essential for the survival and differentiation of hematopoietic stem/progenitor cells. Therefore, screening for RAC2 gain-of-function mutations should be considered in patients with a SCID phenotype and who lack a molecular diagnosis.

12.
J Chromatogr A ; 1614: 460720, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31785895

RESUMO

The interest for a better understanding of ion-exchange mechanisms at the atomic level has strongly increased over the past decades. Indeed, molecular-level information about physico-chemical mechanisms could help optimizing chromatographic processes for protein purification, which are sub-optimized due to the lack of predictive models. A promising approach is based on the use of Molecular Dynamics (MD) simulations to study local phenomena inside adsorbents which can then be challenged against experimental results. In this work, macroscopic experimental data, consisting in the ion-exchange uptake of α-chymotrypsin onto SP Sepharose FF, have been compared to the adsorption behavior predicted by MD simulations. The chromatographic surface, represented as a uniform distribution of ligands with a counterion layer, in the presence of the protein was modeled using all-atom representation. The SMA formalism was used to describe single adsorption isotherms and to relate macroscopic observations with molecular simulations. Two SMA parameters based on physical principles, the characteristic charge n and the steric factor σ, have been estimated by both experiments and MD simulations. At pH 5 and NaCl concentration of 100 mM, our study shows a fairly good agreement between both results, especially for the characteristic charge. It is shown that the steric factor calculation is strongly dependent on the ligand density on the adsorbent surface, whose value must be carefully determined in order to obtain reliable predictions. In addition, four binding patches were identified as being involved in the adsorption, which have been confirmed through binding free energy calculations.


Assuntos
Resinas de Troca de Cátion/química , Quimotripsina/química , Simulação de Dinâmica Molecular , Adsorção , Cromatografia por Troca Iônica , Ligantes , Sefarose/química
13.
Haematologica ; 105(5): 1240-1247, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31537695

RESUMO

Although studies of mixed chimerism following hematopoietic stem cell transplantation in patients with sickle cell disease (SCD) may provide insights into the engraftment needed to correct the disease and into immunological reconstitution, an extensive multilineage analysis is lacking. We analyzed chimerism simultaneously in peripheral erythroid and granulomonocytic precursors/progenitors, highly purified B and T lymphocytes, monocytes, granulocytes and red blood cells (RBC). Thirty-four patients with mixed chimerism and ≥12 months of follow-up were included. A selective advantage of donor RBC and their progenitors/precursors led to full chimerism in mature RBC (despite partial engraftment of other lineages), and resulted in the clinical control of the disease. Six patients with donor chimerism <50% had hemolysis (reticulocytosis) and higher HbS than their donor. Four of them had donor chimerism <30%, including a patient with AA donor (hemoglobin >10 g/dL) and three with AS donors (hemoglobin <10 g/dL). However, only one vaso-occlusive crisis occurred with 68.7% HbS. Except in the patients with the lowest chimerism, the donor engraftment was lower for T cells than for the other lineages. In a context of mixed chimerism after hematopoietic stem cell transplantation for SCD, myeloid (rather than T cell) engraftment was the key efficacy criterion. Results show that myeloid chimerism as low as 30% was sufficient to prevent a vaso-occlusive crisis in transplants from an AA donor but not constantly from an AS donor. However, the correction of hemolysis requires higher donor chimerism levels (i.e ≥50%) in both AA and AS recipients. In the future, this group of patients may need a different therapeutic approach.

14.
Bone Marrow Transplant ; 54(Suppl 2): 749-755, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31431705

RESUMO

Prolonged T-cell immunodeficiency following HLA- incompatible hematopoietic stem cell transplantation (HSCT) represents a major obstacle hampering the more widespread use of this approach. Strategies to fasten T-cell reconstitution in this setting are highly warranted as opportunistic infections and an increased risk of relapse account for high rates of morbidity and mortality especially during early month following this type of HSCT. We have implemented a feeder free cell system based on the use of the notch ligand DL4 and cytokines allowing for the in vitro differentiation of human T-Lymphoid Progenitor cells (HTLPs) from various sources of CD34+ hematopoietic stem and precursor cells (HSPCs). Co- transplantion of human T-lymphoid progenitors (HTLPs) and non- manipulated HSPCs into immunodeficient mice successfully accelerated the reconstitution of a polyclonal T-cell repertoire. This review summarizes preclinical data on the use of T-cell progenitors for treatment of post- transplantation immunodeficiency and gives insights into the development of GMP based protocols for potential clinical applications including gene therapy approaches. Future clinical trials implementing this protocol will aim at the acceleration of immune reconstitution in different clinical settings such as SCID and leukemia patients undergoing allogeneic transplantation. Apart from pure cell-therapy approaches, the combination of DL-4 culture with gene transduction protocols will open new perspectives in terms of gene therapy applications for primary immunodeficiencies.


Assuntos
Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Reconstituição Imune/imunologia , Linfócitos T/imunologia , Condicionamento Pré-Transplante/métodos , Animais , Humanos , Camundongos
15.
Front Chem ; 7: 269, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114783

RESUMO

By means of QM(DFT)/MM metadynamics we have unraveled the hydrolytic reaction mechanism of Neisseria polysaccharea amylosucrase (NpAS), a member of GH13 family. Our results provide an atomistic picture of the active site reorganization along the catalytic double-displacement reaction, clarifying whether the glycosyl-enzyme reaction intermediate features an α-glucosyl unit in an undistorted 4 C 1 conformation, as inferred from structural studies, or a distorted 1 S 3-like conformation, as expected from mechanistic analysis of glycoside hydrolases (GHs). We show that, even though the first step of the reaction (glycosylation) results in a 4 C 1 conformation, the α-glucosyl unit undergoes an easy conformational change toward a distorted conformation as the active site preorganizes for the forthcoming reaction step (deglycosylation), in which an acceptor molecule, i.e., a water molecule for the hydrolytic reaction, performs a nucleophilic attack on the anomeric carbon. The two conformations (4 C 1 ad E 3) can be viewed as two different states of the glycosyl-enzyme intermediate (GEI), but only the E 3 state is preactivated for catalysis. These results are consistent with the general conformational itinerary observed for α-glucosidases.

16.
Stem Cells Transl Med ; 8(7): 650-657, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30887712

RESUMO

Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of choice for a large number of malignant and nonmalignant (inherited) diseases of the hematopoietic system. Nevertheless, non-HLA identical transplantations are complicated by a severe T-cell immunodeficiency associated with a high rate of infection, relapse and graft-versus-host disease. Initial recovery of T-cell immunity following HSCT relies on peripheral expansion of memory T cells mostly driven by cytokines. The reconstitution of a diverse, self-tolerant, and naive T-cell repertoire, however, may take up to 2 years and crucially relies on the interaction of T-cell progenitors with the host thymic epithelium, which may be altered by GvHD, age or transplant-related toxicities. In this review, we summarize current concepts to stimulate reconstitution of a peripheral and polyclonal T-cell compartment following allogeneic transplantation such as graft manipulation (i.e., T-cell depletion), transfusion of ex vivo manipulated donor T cells or the exogenous administration of cytokines and growth factors to stimulate host-thymopoiesis with emphasis on approaches which have led to clinical trials. Particular attention will be given to the development of cellular therapies such as the ex vivo generation of T-cell precursors to fasten generation of a polyclonal and functional host-derived T-cell repertoire. Having been tested so far only in preclinical mouse models, clinical studies are now on the way to validate the efficacy of such T-cell progenitors in enhancing immune reconstitution following HSCT in various clinical settings. Stem Cells Translational Medicine 2019;00:1-8.


Assuntos
Citocinas/uso terapêutico , Transplante de Células-Tronco Hematopoéticas , Memória Imunológica/efeitos dos fármacos , Linfócitos T/imunologia , Quimeras de Transplante/imunologia , Animais , Humanos , Camundongos , Recuperação de Função Fisiológica , Linfócitos T/patologia , Transplante Homólogo
17.
Interface Focus ; 9(2): 20180069, 2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842872

RESUMO

Combined with chemical synthesis, the use of glycoenzyme biocatalysts has shown great synthetic potential over recent decades owing to their remarkable versatility in terms of substrates and regio- and stereoselectivity that allow structurally controlled synthesis of carbohydrates and glycoconjugates. Nonetheless, the lack of appropriate enzymatic tools with requisite properties in the natural diversity has hampered extensive exploration of enzyme-based synthetic routes to access relevant bioactive oligosaccharides, such as cell-surface glycans or prebiotics. With the remarkable progress in enzyme engineering, it has become possible to improve catalytic efficiency and physico-chemical properties of enzymes but also considerably extend the repertoire of accessible catalytic reactions and tailor novel substrate specificities. In this review, we intend to give a brief overview of the advantageous use of engineered glycoenzymes, sometimes in combination with chemical steps, for the synthesis of natural bioactive oligosaccharides or their precursors. The focus will be on examples resulting from the three main classes of glycoenzymes specialized in carbohydrate synthesis: glycosyltransferases, glycoside hydrolases and glycoside phosphorylases.

18.
Blood Adv ; 3(3): 461-475, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755435

RESUMO

T cells represent a valuable tool for treating cancers and infectious and inherited diseases; however, they are mainly short-lived in vivo. T-cell therapies would strongly benefit from gene transfer into long-lived persisting naive T cells or T-cell progenitors. Here we demonstrate that baboon envelope glycoprotein pseudotyped lentiviral vectors (BaEV-LVs) far outperformed other LV pseudotypes for transduction of naive adult and fetal interleukin-7-stimulated T cells. Remarkably, BaEV-LVs efficiently transduced thymocytes and T-cell progenitors generated by culture of CD34+ cells on Delta-like ligand 4 (Dll4). Upon NOD/SCIDγC-/- engraftment, high transduction levels (80%-90%) were maintained in all T-cell subpopulations. Moreover, T-cell lineage reconstitution was accelerated in NOD/SCIDγC-/- recipients after T-cell progenitor injection compared with hematopoietic stem cell transplantation. Furthermore, γC-encoding BaEV-LVs very efficiently transduced Dll4-generated T-cell precursors from a patient with X-linked severe combined immunodeficiency (SCID-X1), which fully rescued T-cell development in vitro. These results indicate that BaEV-LVs are valuable tools for the genetic modification of naive T cells, which are important targets for gene therapy. Moreover, they allowed for the generation of gene-corrected T-cell progenitors that rescued SCID-X1 T-cell development in vitro. Ultimately, the coinjection of LV-corrected T-cell progenitors and hematopoietic stem cells might accelerate T-cell reconstitution in immunodeficient patients.


Assuntos
Lentivirus/genética , Células-Tronco/metabolismo , Animais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Papio
19.
Sci Rep ; 8(1): 15153, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310109

RESUMO

Enzymatic glycosylation of flavonoids is an efficient mean to protect aglycons against degradation while enhancing their solubility, life time and, by extension, their bioavailability which is critical for most of their applications in health care. To generate a valuable enzymatic platform for flavonoid glucosylation, an α-1,2 branching sucrase belonging to the family 70 of glycoside-hydrolases was selected as template and subsequently engineered. Two libraries of variants targeting pair-wise mutations inferred by molecular docking simulations were generated and screened for quercetin glucosylation using sucrose as a glucosyl donor. Only a limited number of variants (22) were retained on the basis of quercetin conversion and product profile. Their acceptor promiscuity towards five other flavonoids was subsequently assessed, and the automated screening effort revealed variants showing remarkable ability for luteolin, morin and naringenin glucosylation with conversion ranging from 30% to 90%. Notably, naringenin and morin, a priori considered as recalcitrant compounds to glucosylation using this α-transglucosylases, could also be modified. The approach reveals the potential of small platforms of engineered GH70 α-transglucosylases and opens up the diversity of flavonoid glucosides to molecular structures inaccessible yet.


Assuntos
Flavonoides/metabolismo , Glucosídeos/metabolismo , Simulação de Acoplamento Molecular , Sacarase/química , Sítios de Ligação , Flavonoides/química , Glucosídeos/química , Ligação Proteica , Sacarase/genética , Sacarase/metabolismo , Sacarose/química , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...