Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 50(11): 6613-6658, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34100042

RESUMO

This work provides an overview of the recent advances in the field of two-photon absorbing chromophores active in the short-wavelength infrared (SWIR) spectral range. Herein the common strategies and main structure-property relationships that lead to near-infrared (NIR) electronic absorption of chromophores are described. A complete review of the molecules that feature two-photon absorption (2PA) beyond 1100 nm is presented for the purpose of further use in optical power limiting applications in the SWIR band. Recent progress in the development of optical power limiting in this particular spectral region is reported with emphasis on the use of the two-photon induced excited state absorption (ESA) process as an optical power limiting enhancer.

2.
Chemistry ; 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33769628

RESUMO

Although tetraphenylethylene (TPE) and its derivatives have been the most commonly used building blocks in the construction of molecules with aggregation-induced emission (AIE) properties, no absolute consensus exists regarding the mechanisms at the origin of the phenomenon. Restriction of intramolecular rotations (RIR) of peripheral phenyls has historically been a dominant paradigm, which has served as a valuable guideline in the molecular engineering of AIEgens. Yet, an increasing number of recent works have established that photoisomerization or photocyclization may actively participate in the nonradiative dissipation of the excitation energy. In this paper, the first experimental evaluation of the quantum efficiencies of these different processes is reported, and photoisomerization is shown to be by far the dominant photophysical pathway in solution, accounting for virtually all nonradiative decay of the molecule's excited state in degassed solution.

3.
Nanoscale ; 13(6): 3767-3781, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33555278

RESUMO

Neuroinflammation is a process common to several brain pathologies. Despites its medical relevance, it still remains poorly understood; there is therefore a need to develop new in vivo preclinical imaging strategies to monitor inflammatory processes longitudinally. We here present the development of a hybrid imaging nanoprobe named NP3, that was specifically designed to get internalized by phagocytic cells and imaged in vivo with MRI and bi-photon microscopy. NP3 is composed of a 16 nm core of gadolinium fluoride (GdF3), coated with bisphosphonate polyethylene glycol (PEG) and functionalized with a Lemke-type fluorophore. It has a hydrodynamic diameter of 28 ± 8 nm and a zeta potential of -42 ± 6 mV. The MR relaxivity ratio at 7 T is r1/r2 = 20; therefore, NP3 is well suited as a T2/T2* contrast agent. In vitro cytotoxicity assessments performed on four human cell lines revealed no toxic effects of NP3. In addition, NP3 is internalized by macrophages in vitro without inducing inflammation or cytotoxicity. In vivo, uptake of NP3 has been observed in the spleen and the liver. NP3 has a prolonged vascular remanence, which is an advantage for macrophage uptake in vivo. The proof-of-concept that NP3 may be used as a contrast agent targeting phagocytic cells is provided in an animal model of ischemic stroke in transgenic CX3CR1-GFP/+ mice using three complementary imaging modalities: MRI, intravital two-photon microscopy and phase contrast imaging with synchrotron X-rays. In summary, NP3 is a promising preclinical tool for the multiscale and multimodal investigation of neuroinflammation.


Assuntos
Meios de Contraste , Gadolínio , Animais , Imagem por Ressonância Magnética , Imagem Multimodal , Polietilenoglicóis
4.
Chemistry ; 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33330997

RESUMO

Aza-boron dipyrromethenes (aza-BODIPYs) presenting a benzothiadiazole substitution on upper positions are described. The strong electron-withdrawing effect of the benzothiadiazole moiety permits enhancement of the accepting strength and improves the delocalization of the aza-BODIPY core to attain a significant degree of electronic communication between the lower donating groups and the upper accepting groups. The nature of the intramolecular charge transfer is studied both experimentally and theoretically. Linear spectroscopy highlighted the strongly redshifted absorption and emission of the synthesized molecules with recorded fluorescence spectra over 1000 nm. Nonlinear optical properties were also investigated. Strong enhancement of the two-photon absorption of the substituted dyes compared with the unsubstituted one (up to 4520 GM at 1300 nm) results in an approximately 15-20 % improvement of the optical power limiting performances. These dyes are therefore a good starting point for further improvement of optical power limiting in the short-wave IR range.

5.
ACS Appl Mater Interfaces ; 12(49): 55157-55168, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33217234

RESUMO

This paper aims at designing chromophores with efficient aggregation-induced emission (AIE) properties for two-photon fluorescence microscopy (2PFM), which is one of the best-suited types of microscopy for the imaging of living organisms or thick biological tissues. Tetraphenylethylene (TPE) derivatives are common building blocks in the design of chromophores with efficient AIE properties. Therefore, in this study, extended TPE AIEgens specifically optimized for two-photon absorption (2PA) are synthesized and the resulting (E/Z) isomers are separated using chromatography on chiral supports. Comparative characterization of the AIE properties is performed on the pure (Z) and (E) isomers and the mixture, allowing us, in combination with powder X-ray diffraction and solid-state NMR, to document a profound impact of crystallinity on solid-state fluorescence properties. In particular, we show that stereopure AIEgens form aggregates of superior crystallinity, which in turn exhibit a higher fluorescence quantum yield compared to diastereoisomers mixtures. Preparation of stereopure organic nanoparticles affords very bright fluorescent contrast agents, which are then used for cellular and intravital two-photon microscopy on human breast cancer cells and on zebrafish embryos.

6.
Chemphyschem ; 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33174367

RESUMO

The two-photon absorption (2PA) and photophysics of heptamethine dyes featuring cyanine or dipolar electronic structures have been compared for the first time. The perfectly delocalized cyanine system is classically characterized by a two-photon transition matching the vibronic component of its lower energy absorption band. The dipolar species is generated by ion-pairing with a hard counterion in a non-dissociating solvent and displays significant modifications oft he optical properties, including a significant hypochromic shift of absorption, weaker emission and 2PA matching the lower energy transition, thus revealing symmetry breaking within the polymethine electronic structure.

7.
Artigo em Inglês | MEDLINE | ID: mdl-33089921

RESUMO

Long-lived room temperature phosphorescence from organic molecular crystals attracts great attention. Persistent luminescence depends on the electronic properties of the molecular components, mainly π-conjugated donor-acceptor (D-A) chromophores, and their molecular packing. Here, a strategy is developed by designing two isomeric molecular phosphors incorporating and combining a bridge for σ-conjugation between the D and A units and a structure-directing unit for H-bond-directed supramolecular self-assembly. Calculations highlight the critical role played by the two degrees of freedom of the σ-conjugated bridge on the chromophore optical properties. The molecular crystals exhibit RTP quantum yields up to 20 % and lifetimes up to 520 ms. The crystal structures of the efficient phosphorescent materials establish the existence of an unprecedented well-organization of the emitters into 2D rectangular columnar-like supramolecular structure stabilized by intermolecular H-bonding.

8.
J Am Chem Soc ; 142(22): 10184-10197, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32368907

RESUMO

In addition to the already described ligand L4a, two pyclen-based lanthanide chelators, L4b and L4c, bearing two specific picolinate two-photon antennas (tailor-made for each targeted metal) and one acetate arm arranged in a dissymmetrical manner, have been synthesized, to form a complete family of lanthanide luminescent bioprobes: [EuL4a], [SmL4a], [YbL4b], [TbL4c], and [DyL4c]. Additionally, the symmetrically arranged regioisomer L4a' was also synthesized as well as its [EuL4a'] complex to highlight the astonishing positive impact of the dissymmetrical N-distribution of the functional chelating arms. The investigation clearly shows the high performance of each bioprobe, which, depending on the complexed lanthanide, could be used in various applications. Each presents high brightness, quantum yields, and lifetimes. Staining of the complexes into living human breast cancer cells was observed. In addition, in vivo two-photon microscopy was performed for the first time on a living zebrafish model with [EuL4a]. No apparent toxicity was detected on the growth of the zebrafish, and images of high quality were obtained.

9.
J Chem Theory Comput ; 16(6): 3807-3815, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32379444

RESUMO

Computational modeling and accurate simulations of localized surface plasmon resonance (LSPR) absorption properties are reported for gold nanobipyramids (GNBs), a class of metal nanoparticle that features highly tunable, geometry-dependent optical properties. GNB bicone models with spherical tips performed best in reproducing experimental LSPR spectra while the comparison with other geometrical models provided a fundamental understanding of base shapes and tip effects on the optical properties of GNBs. Our results demonstrated the importance of averaging all geometrical parameters determined from transmission electron microscopy images to build representative models of GNBs. By assessing the performances of LSPR absorption spectra simulations based on a quasi-static approximation, we provided an applicability range of this approach as a function of the nanoparticle size, paving the way to the theoretical study of the coupling between molecular electron densities and metal nanoparticles in GNB-based nanohybrid systems, with potential applications in the design of nanomaterials for bioimaging, optics and photocatalysis.

10.
Chemphyschem ; 21(10): 1036-1043, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32176399

RESUMO

Cationic lanthanide complexes are generally able to spontaneously internalize into living cells. Following our previous works based on a diMe-cyclen framework, a second generation of cationic water-soluble lanthanide complexes based on a constrained cross-bridged cyclam macrocycle functionalized with donor-π-conjugated picolinate antennas was prepared with europium(III) and ytterbium(III). Their spectroscopic properties were thoroughly investigated in various solvents and rationalized with the help of DFT calculations. A significant improvement was observed in the case of the Eu3+ complex, while the Yb3+ analogue conserved photophysical properties in aqueous solvent. Two-photon (2P) microscopy imaging experiments on living T24 human cancer cells confirmed the spontaneous internalization of the probes and images with good signal-to-noise ratio were obtained in the classic NIR-to-visible configuration with the Eu3+ luminescent bioprobe and in the NIR-to-NIR with the Yb3+ one.

11.
Molecules ; 25(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138280

RESUMO

A current trend within photo-dynamic therapy (PDT) is the development of molecular systems targeting hypoxic tumors. Thus, type I PDT sensitizers could here overcome traditional type II molecular systems that rely on the photo-initiated production of toxic singlet oxygen. Here, we investigate the cell localization properties and toxicity of two polymeric anthracene-based fluorescent probes (neutral Ant-PHEA and cationic Ant-PIm). The cell death and DNA damage of Chinese hamster ovary cancer cells (CHO-K1) were characterized as combining PDT, cell survival studies (MTT-assay), and comet assay. Confocal microscopy was utilized on samples incubated together with either DRAQ5, Lyso Tracker Red, or Mito Tracker Deep Red in order to map the localization of the sensitizer into the nucleus and other cell compartments. While Ant-PHEA did not cause significant damage to the cell, Ant-PIm showed increased cell death upon illumination, at the cost of a significant dark toxicity. Both anthracene chromophores localized in cell compartments of the cytosol. Ant-PIm showed a markedly improved selectivity toward lysosomes and mitochondria, two important biological compartments for the cell's survival. None of the two anthracene chromophores showed singlet oxygen formation upon excitation in solvents such as deuterium oxide or methanol. Conclusively, the significant photo-induced cell death that could be observed with Ant-PIm suggests a possible type I PDT mechanism rather than the usual type II mechanism.

12.
J Org Chem ; 84(16): 9965-9974, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31319662

RESUMO

In the context of molecular engineering of push-pull dipolar dyes, we introduce a structural modification of the well-known electron-accepting group 2-dicyanomethylidene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF). Introduction of a (benzo[d]thiazol-2-yl) moiety failed, and unexpected structures were obtained. On the other hand, phenylthio and phenylsulfonyl entities were successfully introduced at position 3 of the 2-(dicyanomethylidene)-2,5-dihydrofuran ring, giving access to new electron-acceptor groups and dipolar fluorophores displaying near-infrared emission in solution or in the solid state, brighter than their TCF analogues.

13.
Bioconjug Chem ; 30(6): 1649-1657, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31136151

RESUMO

Endotoxin (lipooligosaccharide, LOS, and lipopolysaccharide, LPS) is the major molecular component of Gram-negative bacteria outer membrane, and very potent pro-inflammatory substance. Visualizing and tracking the distribution of the circulating endotoxin is one of the fundamental approaches to understand the molecular aspects of infection with subsequent inflammatory and immune responses, LPS also being a key player in the molecular dialogue between microbiota and host. While fluorescently labeled LPS has previously been used to track its subcellular localization and colocalization with TLR4 receptor and downstream effectors, our knowledge on lipopolysaccharide (LOS) localization and cellular activity remains almost unexplored. In this study, LOS was labeled with a novel fluorophore, Cy7N, featuring a large Stokes-shifted emission in the deep-red spectrum resulting in lower light scattering and better imaging contrast. The LOS-Cy7N chemical identity was determined by mass spectrometry, and immunoreactivity of the conjugate was evaluated. Interestingly, its application to microscopic imaging showed a faster cell internalization compared to LPS-Alexa488, despite that it is also CD14-dependent and undergoes the same endocytic pathway as LPS toward lysosomal detoxification. Our results suggest the use of the new infrared fluorophore Cy7N for cell imaging of labeled LOS by confocal fluorescence microscopy, and propose that LOS is imported in the cells by mechanisms different from those responsible for LPS uptake.


Assuntos
Bactérias/metabolismo , Carbocianinas/química , Lipopolissacarídeos/síntese química , Microscopia/métodos , Endocitose , Corantes Fluorescentes/química , Técnicas In Vitro , Receptor 4 Toll-Like/metabolismo
14.
J Phys Chem Lett ; 10(9): 2214-2219, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30958006

RESUMO

The intramolecular cooperative effect in branched molecules is a consequence of the interaction and extent of electronic coupling among the different axes of charge transfer. Such an effect is the key to obtain remarkable nonlinear optical response in molecular systems. Here we show that triphenylamine derivative molecules containing only two branches present the strongest electronic interaction between them at the excited state, generating exponential enhancement of the 2PA cross section. The primary factor for such behavior was ascribed to the substantial extent and interaction of the π-electron delocalization promoted by the strong electron-donating and acceptor antisymmetrical groups present in each branch. However, for the three-branch molecules we observed an anticooperative effect, i.e., the 2PA cross section decreases as compared to the one-branch structure as we normalized the signal by the effective π-electron number in each molecule.

15.
Chemistry ; 25(38): 9026-9034, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30972809

RESUMO

Two trispicolinate 1,4,7-triazacyclonane (TACN)-based ligands bearing three picolinate biphotonic antennae were synthetized and their Yb3+ and Gd3+ complexes isolated. One series differs from the other by the absence (L1 )/presence (L2 ) of bromine atoms on the antenna backbone, offering respectively improved optical and singlet-oxygen generation properties. Photophysical properties of the ligands, complexes and micellar Pluronic suspensions were investigated. Complexes exhibit high two-photon absorption cross-section combined either with NIR emission (Yb) or excellent 1 O2 generation (Gd). The very large intersystem crossing efficiency induced by the combination of bromine atom and heavy rare-earth element was corroborated with theoretical calculations. The 1 O2 generation properties of L2 Gd micellar suspension under two-photon activation leads to tumour cell death, suggesting the potential of such structures for theranostic applications.

16.
Chemphyschem ; 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30198105

RESUMO

A family of europium (III) complexes based on a polydentate ligand functionalized by charge-transfer antennae presents remarkable one- and two-photon photophysical proper-ties in water or buffer. A detailed analysis of their emission properties suggests that the wrapping of the ligand around the central rare-earth ion results in an overall Cs symmetry in agreement with the theoretical simulation and that about 65-70 % of the emission intensity is concentrated in the hypersensitive 5 D0 →7 F2 transition at 615 nm. Their brightness is excellent, in the range of the best lanthanide bioprobes making them very attractive for bio-imaging experiments.

17.
ACS Appl Mater Interfaces ; 10(30): 25154-25165, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979019

RESUMO

Fluorescent nanoparticles built from aggregation-induced emission-active organic molecules (AIE-FONs) have emerged as powerful tools in life science research for in vivo bioimaging of organs, biosensing, and therapy. However, the practical use of such biotracers has been hindered owing to the difficulty of designing bright nanoparticles with controlled dimensions (typically below 200 nm), narrow size dispersity and long shelf stability. In this article, we present a very simple yet effective approach to produce monodisperse sub-200 nm AIE fluorescent organic solid dispersions with excellent redispersibility and colloidal stability in aqueous medium by combination of nanoprecipitation and freeze-drying procedures. By selecting polymer additives that simultaneously act as stabilizers, promoters of amorphous-crystalline transition, and functionalization/cross-linking platforms, we demonstrate a straightforward access to stable nanocrystalline FONs that exhibit significantly higher brightness than their amorphous precursors and constitute efficient probes for in vivo imaging of the normal and tumor vasculature. FONs design principles reported here are universal, applicable to a range of fluorophores with different chemical structures and crystallization abilities, and are suitable for high-throughput production and manufacturing of functional imaging probes.


Assuntos
Nanopartículas , Corantes Fluorescentes , Polímeros
20.
Chemistry ; 24(14): 3408-3412, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29341302

RESUMO

The design of original twisted charge transfer antennae in which a non-planar geometry is enforced thanks to one or two bulky ortho-Me substituents allows us to prepare the corresponding ultra-bright TbIII and DyIII bioprobes. The brightness of the TbIII derivative compares well with that of the benchmark Tb-Lumi4 complex. The first bio-imaging experiments with a DyIII luminescent bioprobe are also reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...