Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Natl Cancer Inst ; 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31584660

RESUMO

The performance of breast cancer risk models for women with a family history but negative BRCA1 and/or BRCA2 mutation test results is uncertain. We calculated the cumulative 10-year invasive breast cancer risk at cohort entry for 14,657 unaffected women (96.1% had an affected relative) not known to carry BRCA1 or BRCA2 mutations at baseline using three pedigree-based models (BOADICEA, BRCAPRO and IBIS). During follow-up, 482 women were diagnosed with invasive breast cancer. Mutation testing was conducted independent of incident cancers. All models under-predicted risk by 26.3-56.7% for women who tested negative but whose relatives had not been tested (N = 1,363; 63 breast cancers). While replication studies with larger sample sizes are needed, until these models are re-calibrated for women who test negative and have no relatives tested, caution should be used when considering changing the breast cancer risk management intensity of such women based on risk estimates from these models.

2.
Cancer Res ; 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578201

RESUMO

While physical activity is associated with lower breast cancer risk for average-risk women, it is not known if this association applies to women at high familial/genetic risk. We examined the association of recreational physical activity (self-reported by questionnaire) with breast cancer risk using the Prospective Family Study Cohort (ProF-SC), which is enriched with women who have a breast cancer family history (N=15,550). We examined associations of adult and adolescent recreational physical activity (quintiles of age-adjusted total metabolic equivalents (METs) per week) with breast cancer risk using multivariable Cox proportional hazards regression, adjusted for demographics, lifestyle factors, and body mass index. We tested for multiplicative interactions of physical activity with predicted absolute breast cancer familial risk based on pedigree data and with BRCA1 and BRCA2 mutation status. Baseline recreational physical activity level in the highest 4 quintiles compared with the lowest quintile was associated with a 20% lower breast cancer risk (HR=0.80, 95% CI=0.68, 0.93). The association was not modified by familial risk or BRCA mutation status (p-interactions>0.05). No overall association was found for adolescent recreational physical activity. Recreational physical activity in adulthood may lower breast cancer risk for women across the spectrum of familial risk.

4.
Sci Rep ; 9(1): 12524, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467304

RESUMO

Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.

5.
Int J Cancer ; 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31265136

RESUMO

A small number of circulating proteins have been reported to be associated with breast cancer risk, with inconsistent results. Herein, we attempted to identify novel protein biomarkers for breast cancer via the integration of genomics and proteomics data. In the Breast Cancer Association Consortium (BCAC), with 122,977 cases and 105,974 controls of European descendants, we evaluated the associations of the genetically predicted concentrations of >1,400 circulating proteins with breast cancer risk. We used data from a large-scale protein quantitative trait loci (pQTL) analysis as our study instrument. Summary statistics for these pQTL variants related to breast cancer risk were obtained from the BCAC and used to estimate odds ratios (OR) for each protein using the inverse-variance weighted method. We identified 56 proteins significantly associated with breast cancer risk by instrumental analysis (false discovery rate <0.05). Of these, the concentrations of 32 were influenced by variants close to a breast cancer susceptibility locus (ABO, 9q34.2). Many of these proteins, such as insulin receptor, insulin-like growth factor receptor 1 and other membrane receptors (OR: 0.82-1.18, p values: 6.96 × 10-4 -3.28 × 10-8 ), are linked to insulin resistance and estrogen receptor signaling pathways. Proteins identified at other loci include those involved in biological processes such as alcohol and lipid metabolism, proteolysis, apoptosis, immune regulation and cell motility and proliferation. Consistent associations were observed for 22 proteins in the UK Biobank data (p < 0.05). The study identifies potential novel biomarkers for breast cancer, but further investigation is needed to replicate our findings.

6.
Br J Cancer ; 121(2): 180-192, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31213659

RESUMO

BACKGROUND: Height and body mass index (BMI) are associated with higher ovarian cancer risk in the general population, but whether such associations exist among BRCA1/2 mutation carriers is unknown. METHODS: We applied a Mendelian randomisation approach to examine height/BMI with ovarian cancer risk using the Consortium of Investigators for the Modifiers of BRCA1/2 (CIMBA) data set, comprising 14,676 BRCA1 and 7912 BRCA2 mutation carriers, with 2923 ovarian cancer cases. We created a height genetic score (height-GS) using 586 height-associated variants and a BMI genetic score (BMI-GS) using 93 BMI-associated variants. Associations were assessed using weighted Cox models. RESULTS: Observed height was not associated with ovarian cancer risk (hazard ratio [HR]: 1.07 per 10-cm increase in height, 95% confidence interval [CI]: 0.94-1.23). Height-GS showed similar results (HR = 1.02, 95% CI: 0.85-1.23). Higher BMI was significantly associated with increased risk in premenopausal women with HR = 1.25 (95% CI: 1.06-1.48) and HR = 1.59 (95% CI: 1.08-2.33) per 5-kg/m2 increase in observed and genetically determined BMI, respectively. No association was found for postmenopausal women. Interaction between menopausal status and BMI was significant (Pinteraction < 0.05). CONCLUSION: Our observation of a positive association between BMI and ovarian cancer risk in premenopausal BRCA1/2 mutation carriers is consistent with findings in the general population.

8.
J Natl Cancer Inst ; 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31143935

RESUMO

BACKGROUND: DNA methylation plays a critical role in breast cancer development. Previous studies have identified DNA methylation marks in white blood cells as promising biomarkers for breast cancer. However, these studies were limited by low statistical power and potential biases. Utilizing a new methodology, we investigated DNA methylation marks for their associations with breast cancer risk. METHODS: Statistical models were built to predict levels of DNA methylation marks using genetic data and DNA methylation data from HumanMethylation450 BeadChip from the Framingham Heart Study (N=1,595). The prediction models were validated using data from the Women's Health Initiative (N=883). We applied these models to genome-wide association study (GWAS) data of 122,977 breast cancer cases and 105,974 controls to evaluate if the genetically predicted DNA methylation levels at CpGs are associated with breast cancer risk. All statistical tests were two-sided. RESULTS: Of the 62,938 CpG sites (CpGs) investigated, statistically significant associations with breast cancer risk were observed for 450 CpGs at a Bonferroni-corrected threshold of P<7.94 × 10-7, including 45 CpGs residing in 18 genomic regions which have not previously been associated with breast cancer risk. Of the remaining 405 CpGs located within 500 kilobase flaking regions of 70 GWAS-identified breast cancer risk variants, the associations for 11 CpGs were independent of GWAS-identified variants. Integrative analyses of genetic, DNA methylation and gene expression data found that 38 CpGs may affect breast cancer risk through regulating expression of 21 genes. CONCLUSION: Our new methodology can identify novel DNA methylation biomarkers for breast cancer risk and can be applied to other diseases.

9.
Hum Mutat ; 40(10): 1781-1796, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31112363

RESUMO

BRCA1 and BRCA2 (BRCA1/2) pathogenic sequence variants (PSVs) confer elevated risks of multiple cancers. However, most BRCA1/2 PSVs reports focus on European ancestry individuals. Knowledge of the PSV distribution in African descent individuals is poorly understood. We undertook a systematic review of the published literature and publicly available databases reporting BRCA1/2 PSVs also accessed the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) database to identify African or African descent individuals. Using these data, we inferred which of the BRCA PSVs were likely to be of African continental origin. Of the 43,817 BRCA1/2 PSV carriers in the CIMBA database, 469 (1%) were of African descent. Additional African descent individuals were identified in public databases (n = 291) and the literature (n = 601). We identified 164 unique BRCA1 and 173 unique BRCA2 PSVs in individuals of African ancestry. Of these, 83 BRCA1 and 91 BRCA2 PSVs are of likely or possible African origin. We observed numerous differences in the distribution of PSV type and function in African origin versus non-African origin PSVs. Research in populations of African ancestry with BRCA1/2 PSVs is needed to provide the information needed for clinical management and decision-making in African descent individuals worldwide.

10.
Nat Commun ; 10(1): 1741, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988301

RESUMO

Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Locos de Características Quantitativas
11.
Breast Cancer Res ; 21(1): 52, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30999962

RESUMO

BACKGROUND: The use of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) has been associated with reduced breast cancer risk, but it is not known if this association extends to women at familial or genetic risk. We examined the association between regular NSAID use and breast cancer risk using a large cohort of women selected for breast cancer family history, including 1054 BRCA1 or BRCA2 mutation carriers. METHODS: We analyzed a prospective cohort (N = 5606) and a larger combined, retrospective and prospective, cohort (N = 8233) of women who were aged 18 to 79 years, enrolled before June 30, 2011, with follow-up questionnaire data on medication history. The prospective cohort was further restricted to women without breast cancer when medication history was asked by questionnaire. Women were recruited from seven study centers in the United States, Canada, and Australia. Associations were estimated using multivariable Cox proportional hazards regression models adjusted for demographics, lifestyle factors, family history, and other medication use. Women were classified as regular or non-regular users of aspirin, COX-2 inhibitors, ibuprofen and other NSAIDs, and acetaminophen (control) based on self-report at follow-up of ever using the medication for at least twice a week for ≥1 month prior to breast cancer diagnosis. The main outcome was incident invasive breast cancer, based on self- or relative-report (81% confirmed pathologically). RESULTS: From fully adjusted analyses, regular aspirin use was associated with a 39% and 37% reduced risk of breast cancer in the prospective (HR = 0.61; 95% CI = 0.33-1.14) and combined cohorts (HR = 0.63; 95% CI = 0.57-0.71), respectively. Regular use of COX-2 inhibitors was associated with a 61% and 71% reduced risk of breast cancer (prospective HR = 0.39; 95% CI = 0.15-0.97; combined HR = 0.29; 95% CI = 0.23-0.38). Other NSAIDs and acetaminophen were not associated with breast cancer risk in either cohort. Associations were not modified by familial risk, and consistent patterns were found by BRCA1 and BRCA2 carrier status, estrogen receptor status, and attained age. CONCLUSION: Regular use of aspirin and COX-2 inhibitors might reduce breast cancer risk for women at familial or genetic risk.

12.
JAMA Netw Open ; 2(2): e190083, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30794303

RESUMO

Importance: Early breast development is a risk factor for breast cancer, and girls with a breast cancer family history (BCFH) experience breast development earlier than girls without a BCFH. Objectives: To assess whether prepubertal androgen concentrations are associated with timing of breast development (analysis 1) and to compare serum androgen concentrations in girls with and without a BCFH (analysis 2). Design, Setting, and Participants: Prospective cohort study of 104 girls aged 6 to 13 years at baseline using data collected between August 16, 2011, and March 24, 2016, from the Lessons in Epidemiology and Genetics of Adult Cancer From Youth (LEGACY) Girls Study, New York site. Exposures: Analysis 1 included serum concentrations of dehydroepiandrosterone sulfate, androstenedione, and testosterone (free and total) measured before breast development and divided at the median into high and low categories. Analysis 2 included the degree of BCFH: first-degree was defined as having a mother with breast cancer and second-degree was defined as having a grandmother or aunt with breast cancer. Main Outcomes and Measures: Analysis 1 included age at onset of breast development measured using the Pubertal Development Scale (scores range from 1-4; scores ≥2 indicate breast development), and analysis 2 included serum androgen concentrations. We also assessed breast cancer-specific distress using the 8-item Child Impact of Events Scale. Results: Our analyses included 36 girls for the prospective model, 92 girls for the cross-sectional model, and 104 girls for the longitudinal model. Of the 104 girls, the mean (SD) age at baseline was 10.3 (2.5) years, and 41 (39.4%) were non-Hispanic white, 41 (39.4%) were Hispanic, 13 (12.5%) were non-Hispanic black, and 9 (8.7%) were other race/ethnicity. Forty-two girls (40.4%) had a positive BCFH. Girls with prepubertal androstenedione concentrations above the median began breast development 1.5 years earlier than girls with concentrations below the median (Weibull survival model-estimated median age, 9.4 [95% CI, 9.0-9.8] years vs 10.9 [95% CI, 10.4-11.5] years; P = .001). Similar patterns were observed for dehydroepiandrosterone sulfate (1.1 years earlier: age, 9.6 [95% CI, 9.1-10.1] years vs 10.7 [95% CI, 10.2-11.3] years; P = .009), total testosterone (1.4 years earlier: age, 9.5 [95% CI, 9.1-9.9] years vs 10.9 [95% CI, 10.4-11.5] years; P = .001), and free testosterone (1.1 years earlier: age, 9.7 [95% CI, 9.2-10.1] years vs 10.8 [95% CI, 10.2-11.4] years; P = .01). Compared with girls without BCFH, girls with a first-degree BCFH, but not a second-degree BCFH, had 240% higher androstenedione concentrations (geometric means: no BCFH, 0.49 ng/mL vs first-degree BCFH, 1.8 ng/mL vs second-degree, 1.6 ng/mL; P = .01), 10% higher total testosterone concentrations (12.7 ng/dL vs 14.0 ng/dL vs 13.7 ng/dL; P = .01), and 92% higher free testosterone concentrations (1.3 pg/mL vs 2.5 pg/mL vs 0.3 pg/mL; P = .14). The dehydroepiandrosterone sulfate concentration did not differ between BCFH-positive and BCFH-negative girls but was elevated in girls with breast cancer-specific distress. Conclusions and Relevance: Our findings suggest that androgen concentrations may differ between girls with and without a BCFH and that elevated hormone concentrations during adolescence may be another factor to help explain the familial clustering of breast cancer.

13.
Int J Cancer ; 145(2): 370-379, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30725480

RESUMO

Benign breast disease (BBD) is an established breast cancer (BC) risk factor, but it is unclear whether the magnitude of the association applies to women at familial or genetic risk. This information is needed to improve BC risk assessment in clinical settings. Using the Prospective Family Study Cohort, we used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of BBD with BC risk. We also examined whether the association with BBD differed by underlying familial risk profile (FRP), calculated using absolute risk estimates from the Breast Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) model. During 176,756 person-years of follow-up (median: 10.9 years, maximum: 23.7) of 17,154 women unaffected with BC at baseline, we observed 968 incident cases of BC. A total of 4,704 (27%) women reported a history of BBD diagnosis at baseline. A history of BBD was associated with a greater risk of BC: HR = 1.31 (95% CI: 1.14-1.50), and did not differ by underlying FRP, with HRs of 1.35 (95% CI: 1.11-1.65), 1.26 (95% CI: 1.00-1.60), and 1.40 (95% CI: 1.01-1.93), for categories of full-lifetime BOADICEA score <20%, 20 to <35%, ≥35%, respectively. There was no difference in the association for women with BRCA1 mutations (HR: 1.64; 95% CI: 1.04-2.58), women with BRCA2 mutations (HR: 1.34; 95% CI: 0.78-2.3) or for women without a known BRCA1 or BRCA2 mutation (HR: 1.31; 95% CI: 1.13-1.53) (pinteraction = 0.95). Women with a history of BBD have an increased risk of BC that is independent of, and multiplies, their underlying familial and genetic risk.

14.
Eur J Epidemiol ; 34(6): 591-600, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30737679

RESUMO

Observational studies suggest that higher birth weight (BW) is associated with increased risk of breast cancer in adult life. We conducted a two-sample Mendelian randomisation (MR) study to assess whether this association is causal. Sixty independent single nucleotide polymorphisms (SNPs) known to be associated at P < 5 × 10-8 with BW were used to construct (1) a 41-SNP instrumental variable (IV) for univariable MR after removing SNPs with pleiotropic associations with other breast cancer risk factors and (2) a 49-SNP IV for multivariable MR after filtering SNPs for data availability. BW predicted by the 41-SNP IV was not associated with overall breast cancer risk in inverse-variance weighted (IVW) univariable MR analysis of genetic association data from 122,977 breast cancer cases and 105,974 controls (odds ratio = 0.86 per 500 g higher BW; 95% confidence interval 0.73-1.01). Sensitivity analyses using four alternative methods and three alternative IVs, including an IV with 59 of the 60 BW-associated SNPs, yielded similar results. Multivariable MR adjusting for the effects of the 49-SNP IV on birth length, adult height, adult body mass index, age at menarche, and age at menopause using IVW and MR-Egger methods provided estimates consistent with univariable analyses. Results were also similar when all analyses were repeated after restricting to estrogen receptor-positive or -negative breast cancer cases. Point estimates of the odds ratios from most analyses performed indicated an inverse relationship between genetically-predicted BW and breast cancer, but we are unable to rule out an association between the non-genetically-determined component of BW and breast cancer. Thus, genetically-predicted higher BW was not associated with an increased risk of breast cancer in adult life in our MR study.


Assuntos
Peso ao Nascer , Neoplasias da Mama/epidemiologia , Peso ao Nascer/genética , Feminino , Humanos , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Medição de Risco
15.
Br J Cancer ; 120(6): 647-657, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30787463

RESUMO

BACKGROUND: We examined the associations between germline variants and breast cancer mortality using a large meta-analysis of women of European ancestry. METHODS: Meta-analyses included summary estimates based on Cox models of twelve datasets using ~10.4 million variants for 96,661 women with breast cancer and 7697 events (breast cancer-specific deaths). Oestrogen receptor (ER)-specific analyses were based on 64,171 ER-positive (4116) and 16,172 ER-negative (2125) patients. We evaluated the probability of a signal to be a true positive using the Bayesian false discovery probability (BFDP). RESULTS: We did not find any variant associated with breast cancer-specific mortality at P < 5 × 10-8. For ER-positive disease, the most significantly associated variant was chr7:rs4717568 (BFDP = 7%, P = 1.28 × 10-7, hazard ratio [HR] = 0.88, 95% confidence interval [CI] = 0.84-0.92); the closest gene is AUTS2. For ER-negative disease, the most significant variant was chr7:rs67918676 (BFDP = 11%, P = 1.38 × 10-7, HR = 1.27, 95% CI = 1.16-1.39); located within a long intergenic non-coding RNA gene (AC004009.3), close to the HOXA gene cluster. CONCLUSIONS: We uncovered germline variants on chromosome 7 at BFDP < 15% close to genes for which there is biological evidence related to breast cancer outcome. However, the paucity of variants associated with mortality at genome-wide significance underpins the challenge in providing genetic-based individualised prognostic information for breast cancer patients.

16.
Lancet Oncol ; 20(4): 504-517, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30799262

RESUMO

BACKGROUND: Independent validation is essential to justify use of models of breast cancer risk prediction and inform decisions about prevention options and screening. Few independent validations had been done using cohorts for common breast cancer risk prediction models, and those that have been done had small sample sizes and short follow-up periods, and used earlier versions of the prediction tools. We aimed to validate the relative performance of four commonly used models of breast cancer risk and assess the effect of limited data input on each one's performance. METHODS: In this validation study, we used the Breast Cancer Prospective Family Study Cohort (ProF-SC), which includes 18 856 women from Australia, Canada, and the USA who did not have breast cancer at recruitment, between March 17, 1992, and June 29, 2011. We selected women from the cohort who were 20-70 years old and had no previous history of bilateral prophylactic mastectomy or ovarian cancer, at least 2 months of follow-up data, and information available about family history of breast cancer. We used this selected cohort to calculate 10-year risk scores and compare four models of breast cancer risk prediction: the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm model (BOADICEA), BRCAPRO, the Breast Cancer Risk Assessment Tool (BCRAT), and the International Breast Cancer Intervention Study model (IBIS). We compared model calibration based on the ratio of the expected number of breast cancer cases to the observed number of breast cancer cases in the cohort, and on the basis of their discriminatory ability to separate those who will and will not have breast cancer diagnosed within 10 years as measured with the concordance statistic (C-statistic). We did subgroup analyses to compare the performance of the models at 10 years in BRCA1 or BRCA2 mutation carriers (ie, BRCA-positive women), tested non-carriers and untested participants (ie, BRCA-negative women), and participants younger than 50 years at recruitment. We also assessed the effect that limited data input (eg, restriction of the amount of family history and non-genetic information included) had on the models' performance. FINDINGS: After median follow-up of 11·1 years (IQR 6·0-14·4), 619 (4%) of 15 732 women selected from the ProF-SC cohort study were prospectively diagnosed with breast cancer after recruitment, of whom 519 (84%) had histologically confirmed disease. BOADICEA and IBIS were well calibrated in the overall validation cohort, whereas BRCAPRO and BCRAT underpredicted risk (ratio of expected cases to observed cases 1·05 [95% CI 0·97-1·14] for BOADICEA, 1·03 [0·96-1·12] for IBIS, 0·59 [0·55-0·64] for BRCAPRO, and 0·79 [0·73-0·85] for BRCAT). The estimated C-statistics for the complete validation cohort were 0·70 (95% CI 0·68-0·72) for BOADICEA, 0·71 (0·69-0·73) for IBIS, 0·68 (0·65-0·70) for BRCAPRO, and 0·60 (0·58-0·62) for BCRAT. In subgroup analyses by BRCA mutation status, the ratio of expected to observed cases for BRCA-negative women was 1·02 (95% CI 0·93-1·12) for BOADICEA, 1·00 (0·92-1·10) for IBIS, 0·53 (0·49-0·58) for BRCAPRO, and 0·97 (0·89-1·06) for BCRAT. For BRCA-positive participants, BOADICEA and IBIS were well calibrated, but BRCAPRO underpredicted risk (ratio of expected to observed cases 1·17 [95% CI 0·99-1·38] for BOADICEA, 1·14 [0·96-1·35] for IBIS, and 0·80 [0·68-0·95] for BRCAPRO). We noted similar patterns of calibration for women younger than 50 years at recruitment. Finally, BOADICEA and IBIS predictive scores were not appreciably affected by limiting input data to family history for first-degree and second-degree relatives. INTERPRETATION: Our results suggest that models that include multigenerational family history, such as BOADICEA and IBIS, have better ability to predict breast cancer risk, even for women at average or below-average risk of breast cancer. Although BOADICEA and IBIS performed similarly, further improvements in the accuracy of predictions could be possible with hybrid models that incorporate the polygenic risk component of BOADICEA and the non-family-history risk factors included in IBIS. FUNDING: US National Institutes of Health, National Cancer Institute, Breast Cancer Research Foundation, Australian National Health and Medical Research Council, Victorian Health Promotion Foundation, Victorian Breast Cancer Research Consortium, Cancer Australia, National Breast Cancer Foundation, Queensland Cancer Fund, Cancer Councils of New South Wales, Victoria, Tasmania, and South Australia, and Cancer Foundation of Western Australia.

17.
Nat Commun ; 10(1): 431, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683880

RESUMO

Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (rg = 0.57, p = 4.6 × 10-8), breast and ovarian cancer (rg = 0.24, p = 7 × 10-5), breast and lung cancer (rg = 0.18, p =1.5 × 10-6) and breast and colorectal cancer (rg = 0.15, p = 1.1 × 10-4). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.


Assuntos
Neoplasias da Mama/genética , Neoplasias Colorretais/genética , Neoplasias de Cabeça e Pescoço/genética , Padrões de Herança , Neoplasias Pulmonares/genética , Neoplasias Ovarianas/genética , Neoplasias da Próstata/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/etnologia , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/etnologia , Neoplasias Colorretais/patologia , Grupo com Ancestrais do Continente Europeu , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/etnologia , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/etnologia , Neoplasias Pulmonares/patologia , Masculino , Transtornos Mentais/etnologia , Transtornos Mentais/genética , Transtornos Mentais/fisiopatologia , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/etnologia , Neoplasias Ovarianas/patologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/patologia , Fumar/etnologia , Fumar/genética , Fumar/fisiopatologia
18.
Am J Hum Genet ; 104(1): 21-34, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30554720

RESUMO

Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.

19.
Oncoimmunology ; 7(12): e1509820, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524905

RESUMO

To better understand the expression pattern of programmed death-ligand 1 (PD-L1) expression in different breast cancer types, we characterized PD-L1 expression in tumor and tumor-infiltrating immune cells, in relation to mutation rate, BRCA1-like status and survival. We analyzed 410 primary treatment-naive breast tumors comprising 162 estrogen receptor-positive (ER+) and HER2-, 101 HER2+ and 147 triple-negative (TN) cancers. Pathologists quantified tumor-infiltrating lymphocytes (TILs) and PD-L1 expression in tumor cells and TILs using whole slides and tissue microarray. Mutation rate was assessed by DNA sequencing, BRCA1-like status using multiplex ligation-dependent probe amplification, and immune landscape by multiplex image analyses of CD4, CD68, CD8, FOXP3, cytokeratin, and PD-L1. Half of PD-L1 scores evaluated by tissue microarray were false negatives compared to whole slide evaluations. We observed at least 1% of PD-L1-positive (PD-L1+) cells in 53.1% of ER+HER2-, 73.3% of HER2+, and 84.4% of TN tumors. PD-L1 expression was higher in ductal compared to lobular carcinomas, also within ER+HER2- tumors (p = 0.04). High PD-L1+ TILs score (> 50%) was independently associated with better outcome in TN tumors (HR = 0.27; 95%CI = 0.10-0.69). Within TN tumors, PD-L1 and TIL scores showed a modest but significant positive association with the number of silent mutations, but no association with BRCA1-like status. Multiplex image analyses indicated that PD-L1 is expressed on multiple immune cells (CD68+ macrophages, CD4+, FOXP3+, and CD8+ T cells) in the breast tumor microenvironment, independent of the PD-L1 status of the tumor cells. We found no evidence that levels of PD-L1+ TILs in TN breast cancer are driven by high mutation rate or BRCA1-like status.

20.
Breast Cancer Res ; 20(1): 132, 2018 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390716

RESUMO

BACKGROUND: The association between body mass index (BMI) and risk of breast cancer depends on time of life, but it is unknown whether this association depends on a woman's familial risk. METHODS: We conducted a prospective study of a cohort enriched for familial risk consisting of 16,035 women from 6701 families in the Breast Cancer Family Registry and the Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer followed for up to 20 years (mean 10.5 years). There were 896 incident breast cancers (mean age at diagnosis 55.7 years). We used Cox regression to model BMI risk associations as a function of menopausal status, age, and underlying familial risk based on pedigree data using the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA), all measured at baseline. RESULTS: The strength and direction of the BMI risk association depended on baseline menopausal status (P < 0.001); after adjusting for menopausal status, the association did not depend on age at baseline (P = 0.6). In terms of absolute risk, the negative association with BMI for premenopausal women has a much smaller influence than the positive association with BMI for postmenopausal women. Women at higher familial risk have a much larger difference in absolute risk depending on their BMI than women at lower familial risk. CONCLUSIONS: The greater a woman's familial risk, the greater the influence of BMI on her absolute postmenopausal breast cancer risk. Given that age-adjusted BMI is correlated across adulthood, maintaining a healthy weight throughout adult life is particularly important for women with a family history of breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA