Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32902983

RESUMO

The dynamic Stokes shift is a common means for characterizing ultrafast solvation dynamics of electronically excited states. Here we extract the excitation frequency dependent dynamic Stokes shift from 2D electronic spectra of cresyl violet, a molecule with a well-defined vibronic progression. The extracted dynamic Stokes shift function, S(t), exhibits oscillatory behavior and the oscillatory components are assigned to intramolecular vibrational modes through DFT and TD-DFT calculations. The well characterized oscillations are incorporated into the fitting procedure of S(t). The excitation frequency dependence of the ultrafast response is examined through analysis of S(t) obtained from slices taken at different excitation frequencies of the 2DES spectra. The extracted ultrafast timescales range from 36 fs - 98 fs, and we interpret the frequency dependence of the timescales in the context of other dynamic processes that also lead to line shape changes in the 2DES spectrum, such as vibrational energy relaxation and spectral diffusion. Through comparison of the extracted timescales, we find that the fastest timescales are extracted over a range of excitation frequencies, where contributions from vibrational relaxation and spectral diffusion can be minimized.

2.
J Phys Chem Lett ; 11(3): 877-884, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31931562

RESUMO

BODIPY chromophores can serve as organic-based triplet photosensitizers for a wide range of applications. To perform this function, the formation of the triplet state is critical, and a better understanding of how to modulate the formation of the triplet state could lead to further advances in BODIPY-based sensitizers for solar energy conversion and photodynamic therapy. In this work we investigate the ability of halogen bonding, a noncovalent solvent interaction, to facilitate intersystem crossing in a diiodo-BODIPY. Ultrafast transient absorption spectroscopy is applied to diiodo-BODIPY in the presence of pyridine-based halogen bonding solvent molecules to determine the rate constants for intersystem crossing. We find that halogen bonding facilitates the formation of the triplet state by increasing the intersystem crossing rate constant of diiodo-BODIPY. The results are interpreted in terms of the Marcus expression for intersystem crossing. Quantum chemical calculations show that halogen bonding acts to alter both the spin-orbit coupling terms and the relative energetics of the singlet and triplet states.


Assuntos
Compostos de Boro/química , Halogênios/química , Cinética , Piridinas/química , Teoria Quântica , Solventes/química
3.
J Phys Chem B ; 123(7): 1602-1617, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30758206

RESUMO

A highly efficient scheme is proposed and benchmarked to compute 2D optical spectra. This scheme is ideally designed for electronic spectroscopy; however, the method can be applied in a straightforward way to vibrational spectroscopy as well. Our scheme performs dynamics only for the t2 duration, eliminating explicit t1 and t3 coherent dynamics and thus can achieve dramatic improvements in efficiency. To gain this efficiency, we assume the system is in the inhomogeneous regime and that there is no significant nonadiabatic transfer of population during the t1 and t3 coherence times. Preliminary results are presented for the Frenkel Hamiltonian. We obtain excellent agreement with numerically exact results (which are possible for this simplistic model Hamiltonian), capturing all relevant trends at least qualitatively (and sometimes quantitatively).

4.
J Phys Chem Lett ; 10(3): 413-418, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30630311

RESUMO

Self-assembled coordination cages form host-guest complexes through weak noncovalent interactions. Knowledge of how these weak interactions affect the structure, reactivity, and dynamics of guest molecules is important to further the design principles of current systems and optimize their specific functions. We apply ultrafast mid-IR polarization-dependent pump-probe spectroscopy to probe the effects of two Pd6L4 self-assembled nanocages on the properties and dynamics of fluxional group-VIII metal carbonyl guest molecules. We find that the interactions between the Pd6L4 nanocages and guest molecules act to alter the ultrafast dynamics of the guests, restricting rotational diffusional motion and decreasing the vibrational lifetime.

5.
J Am Chem Soc ; 140(37): 11631-11638, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30133281

RESUMO

Photosystem I (PSI) is a naturally occurring light-harvesting complex that drives oxygenic photosynthesis through a series of photoinitiated transmembrane electron transfer reactions that occur with a high quantum efficiency. Understanding the mechanism by which this process occurs is fundamental to understanding the near-unity quantum efficiency of PSI and in turn could lead to further insight into PSI-based technologies for solar energy conversion. In this article, we have applied two-dimensional electronic spectroscopy to PSI complexes isolated from two different cyanobacterial strains to gain further insight into the ultrafast energy transfer in PSI. The PSI complexes studied differ in the number and absorption of the red chlorophylls, chlorophylls that lie to lower energies than the reaction center. By applying a global analysis to the 2D electronic spectra of the PSI complexes we extract 2D decay associated spectra (2D-DAS). Through analysis of the 2D-DAS we observe a 50 fs relaxation among the bulk antenna chlorophylls in addition to two pathways of energy equilibration involving the red chlorophylls: a fast 200 fs equilibration followed by a 2-4 ps equilibration. As demonstrated with a model system, the λ1, λ3 coordinates of the cross-peaks in the 2D-DAS spectra indicate that the two equilibration pathways involve different chlorophyll molecules.


Assuntos
Clorofila/química , Complexo de Proteína do Fotossistema I/química , Clorofila/metabolismo , Transferência de Energia , Modelos Moleculares , Complexo de Proteína do Fotossistema I/metabolismo , Análise Espectral
6.
J Am Chem Soc ; 140(13): 4588-4595, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29359933

RESUMO

Molecular cerium complexes are a new class of tunable and energy-efficient visible- and UV-luminophores. Understanding and controlling the emission brightness and color are important for tailoring them for new and specialized applications. Herein, we describe the experimental and computational analyses for series of tris(guanidinate) (1-8, Ce{(R2N)C(N iPr)2}3, R = alkyl, silyl, or phenyl groups), guanidinate-amide [GA, A = N(SiMe3)2, G = (Me3Si)2NC(N iPr)2], and guanidinate-aryloxide (GOAr, OAr = 2,6-di- tert-butylphenoxide) cerium(III) complexes to understand and develop predictive capabilities for their optical properties. Structural studies performed on complexes 1-8 revealed marked differences in the steric encumbrance around the cerium center induced by various guanidinate ligand backbone substituents, a property that was correlated to photoluminescent quantum yield. Computational studies revealed that consecutive replacements of the amide and aryloxide ligands by guanidinate ligand led to less nonradiative relaxation of bright excited states and smaller Stokes shifts. The results establish a comprehensive structure-luminescence model for molecular cerium(III) luminophores in terms of both quantum yields and colors. The results provide a clear basis for the design of tunable, molecular, cerium-based, luminescent materials.

7.
J Am Chem Soc ; 139(41): 14733-14742, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28945085

RESUMO

Boron-dipyrromethene (BODIPY) chromophores have a wide range of applications, spanning areas from biological imaging to solar energy conversion. Understanding the ultrafast dynamics of electronically excited BODIPY chromophores could lead to further advances in these areas. In this work, we characterize and compare the ultrafast dynamics of halogenated BODIPY chromophores through applying two-dimensional electronic spectroscopy (2DES). Through our studies, we demonstrate a new data analysis procedure for extracting the dynamic Stokes shift from 2DES spectra revealing an ultrafast solvent relaxation. In addition, we extract the frequency of the vibrational modes that are strongly coupled to the electronic excitation, and compare the results of structurally different BODIPY chromophores. We interpret our results with the aid of DFT calculations, finding that structural modifications lead to changes in the frequency, identity, and magnitude of Franck-Condon active vibrational modes. We attribute these changes to differences in the electron density of the electronic states of the structurally different BODIPY chromophores.


Assuntos
Compostos de Boro/química , Boro/química , Porfobilinogênio/análogos & derivados , Solventes/química , Vibração , Elétrons , Porfobilinogênio/química , Teoria Quântica , Solubilidade , Análise Espectral
8.
Chem Rev ; 117(2): 249-293, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27428615

RESUMO

The process of photosynthesis is initiated by the capture of sunlight by a network of light-absorbing molecules (chromophores), which are also responsible for the subsequent funneling of the excitation energy to the reaction centers. Through evolution, genetic drift, and speciation, photosynthetic organisms have discovered many solutions for light harvesting. In this review, we describe the underlying photophysical principles by which this energy is absorbed, as well as the mechanisms of electronic excitation energy transfer (EET). First, optical properties of the individual pigment chromophores present in light-harvesting antenna complexes are introduced, and then we examine the collective behavior of pigment-pigment and pigment-protein interactions. The description of energy transfer, in particular multichromophoric antenna structures, is shown to vary depending on the spatial and energetic landscape, which dictates the relative coupling strength between constituent pigment molecules. In the latter half of the article, we focus on the light-harvesting complexes of purple bacteria as a model to illustrate the present understanding of the synergetic effects leading to EET optimization of light-harvesting antenna systems while exploring the structure and function of the integral chromophores. We end this review with a brief overview of the energy-transfer dynamics and pathways in the light-harvesting antennas of various photosynthetic organisms.


Assuntos
Transferência de Energia , Luz , Fotossíntese , Humanos , Complexos de Proteínas Captadores de Luz/metabolismo , Pigmentos Biológicos/metabolismo , Proteobactérias/fisiologia
9.
J Am Chem Soc ; 138(50): 16266-16273, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27936638

RESUMO

The hexachlorocerate(III) anion, [CeIIICl6]3-, was found to be a potent photoreductant in acetonitrile solution with an estimated excited-state reduction potential of -3.45 V versus Cp2Fe0/+. Despite a short lifetime of 22.1(1) ns, the anion exhibited a photoluminescence quantum yield of 0.61(4) and fast quenching kinetics toward organohalogens allowing for its application in the photocatalytic reduction of aryl chloride substrates.

10.
J Am Chem Soc ; 138(18): 5984-93, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27058605

RESUMO

Two complete mixed-ligand series of luminescent Ce(III) complexes with the general formulas [(Me3Si)2NC(N(i)Pr)2]xCe(III)[N(SiMe3)2]3-x (x = 0, 1-N; x = 1, 2-N, x = 2, 3-N; x = 3, 4) and [(Me3Si)2NC(N(i)Pr)2]xCe(III)(OAr)3-x (x = 0, 1-OAr; x = 1, 2-OAr, x = 2, 3-OAr; x = 3, 4) were developed, featuring photoluminescence quantum yields up to 0.81(2) and lifetimes to 117(1) ns. Although the 4f → 5d absorptive transitions for these complexes were all found at ca. 420 nm, their emission bands exhibited large Stokes shifts with maxima occurring at 553 nm for 1-N, 518 nm for 2-N, 508 nm for 3-N, and 459 nm for 4, featuring yellow, lime-green, green, and blue light, respectively. Combined time-dependent density functional theory (TD-DFT) calculations and spectroscopic studies suggested that the long-lived (2)D excited states of these complexes corresponded to singly occupied 5dz(2) orbitals. The observed difference in the Stokes shifts was attributed to the relaxation of excited states through vibrational processes facilitated by the ligands. The photochemistry of the sterically congested complex 4 was demonstrated by C-C bond forming reaction between 4-fluoroiodobenzene and benzene through an outer sphere electron transfer pathway, which expands the capabilities of cerium photosensitizers beyond our previous results that demonstrated inner sphere halogen atom abstraction reactivity by 1-N.

11.
J Am Chem Soc ; 137(29): 9234-7, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26151154

RESUMO

Luminescent Ce(III) complexes, Ce[N(SiMe3)2]3 (1) and [(Me3Si)2NC(RN)2]Ce[N(SiMe3)2]2 (R = (i)Pr, 1-(i)Pr; R = Cy, 1-Cy), with C(3v) and C(2v) solution symmetries display absorptive 4f → 5d electronic transitions in the visible region. Emission bands are observed at 553, 518, and 523 nm for 1, 1-(i)Pr, and 1-Cy with lifetimes of 24, 67, and 61 ns, respectively. Time-dependent density functional theory (TD-DFT) studies on 1 and 1-(i)Pr revealed the (2)A1 excited states corresponded to singly occupied 5d(z(2)) orbitals. The strongly reducing metalloradical character of 1, 1-(i)Pr, and 1-Cy in their (2)A1 excited states afforded photochemical halogen atom abstraction reactions from sp(3) and sp(2) C-X (X = Cl, Br, I) bonds for the first time with a lanthanide cation. The dehalogenation reactions could be turned over with catalytic amounts of photosensitizers by coupling salt metathesis and reduction to the photopromoted atom abstraction reactions.

12.
J Chem Phys ; 141(13): 134313, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25296812

RESUMO

Using rapidly acquired spectral diffusion, a recently developed variation of heterodyne detected infrared photon echo spectroscopy, we observe ∼3 ps solvent independent spectral diffusion of benzene chromium tricarbonyl (C6H6Cr(CO)3, BCT) in a series of nonpolar linear alkane solvents. The spectral dynamics is attributed to low-barrier internal torsional motion. This tripod complex has two stable minima corresponding to staggered and eclipsed conformations, which differ in energy by roughly half of kBT. The solvent independence is due to the relative size of the rotor compared with the solvent molecules, which create a solvent cage in which torsional motion occurs largely free from solvent damping. Since the one-dimensional transition state is computed to be only 0.03 kBT above the higher energy eclipsed conformation, this model system offers an unusual, nearly barrierless reaction, which nevertheless is characterized by torsional coordinate dependent vibrational frequencies. Hence, by studying the spectral diffusion of the tripod carbonyls, it is possible to gain insight into the fundamental dynamics of internal rotational motion, and we find some evidence for the importance of non-diffusive ballistic motion even in the room-temperature liquid environment. Using several different approaches to describe equilibrium kinetics, as well as the influence of reactive dynamics on spectroscopic observables, we provide evidence that the low-barrier torsional motion of BCT provides an excellent test case for detailed studies of the links between chemical exchange and linear and nonlinear vibrational spectroscopy.

13.
J Phys Chem B ; 117(38): 11349-62, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23865801

RESUMO

Excited state dynamics in LH2 complexes of two purple bacterial species were studied by broad-band two-dimensional electronic spectroscopy. The optical response was measured in the 500-600 nm spectral region on the 0-400 fs time scale. Global target analysis of two-dimensional (2D) transient spectra revealed the main energy transfer pathways between carotenoid S2, 1Bu(-) and S1 states and bacteriochlorophyll Qx state. Global analysis ascertained the evolutionary and vibration-associated spectra, which also indicated the presence of a higher-lying vibrational level in the carotenoid S1 state. The estimation of the spectral overlap between the 1Bu(-) state and the Qx state indicated a significant contribution of the 1Bu(-) state to the overall S2-to-Qx excitation energy transfer.


Assuntos
Proteínas de Bactérias/química , Complexos de Proteínas Captadores de Luz/química , Proteobactérias/metabolismo , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/química , Carotenoides/química , Transferência de Energia , Cinética , Complexos de Proteínas Captadores de Luz/metabolismo , Espectroscopia Fotoeletrônica , Rhodobacter/metabolismo , Rodopseudomonas/metabolismo , Fatores de Tempo
14.
J Phys Chem Lett ; 3(24): 3677-84, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26291095

RESUMO

Two-dimensional electronic spectroscopy (2DES) was used to investigate the ultrafast energy-transfer dynamics of trimeric photosystem I of the cyanobacterium Thermosynechococcus elongatus. We demonstrate the ability of 2DES to resolve dynamics in a large pigment-protein complex containing ∼300 chromophores with both high frequency and time resolution. Monitoring the waiting-time-dependent changes of the line shape of the inhomogeneously broadened Qy(0-0) transition, we directly observe downhill energy equilibration on the 50 fs time scale.

15.
Inorg Chem ; 50(19): 9273-83, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21875040

RESUMO

Two-dimensional infrared (2DIR) spectroscopy is applied to both (Cp)(2)Fe(2)(CO)(4) and its ruthenium analog (Cp)(2)Ru(2)(CO)(4) in order to study the vibrational dynamics of these two systems. Combining the results of 2DIR spectroscopy and DFT calculations, the different structural forms of both the iron and the ruthenium complexes were characterized, furthering the previous assignment of the linear IR spectrum by determining the transition frequencies associated with the different isomeric forms. Monitoring the time-dependent amplitudes of the cross peaks enabled the observation of equilibrium energy transfer dynamics between different vibrational modes of the cis-B (Cp)(2)Fe(2)(CO)(4) and the gauche-NB (Cp)(2)Ru(2)(CO)(4) complexes. Treating the energy transfer as an equilibrium process, we extracted the rate constants associated with both the uphill and the downhill transfer of vibrational energy, finding that the difference in the rate constants of the two metal complexes maps to the difference in the energy gap between the two modes involved.

16.
Phys Chem Chem Phys ; 13(13): 5579-83, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21359345

RESUMO

Ultrafast two-dimensional infrared spectroscopy and molecular dynamics simulations of Mn(2)(CO)(10) in a series of linear alcohols reveal that the rate of intramolecular vibrational redistribution among the terminal carbonyl stretches is dictated by the average number of hydrogen bonds formed between the solute and solvent. The presence of hydrogen bonds was found to hinder vibrational redistribution between eigenstates, while leaving the overall T(1) relaxation rate unchanged.

17.
J Chem Phys ; 133(17): 174506, 2010 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21054050

RESUMO

A systematic investigation of the solvent's dynamic influence on activated barrier crossings on an electronic ground state is performed using ultrafast two-dimensional infrared chemical exchange spectroscopy. These measurements facilitate a direct comparison with the widely adopted Kramers theory of condensed phase reaction kinetics, and for the first time avoid the significant complication of electronic excitation to probe directly in the time domain a ground electronic state reaction with a well-defined transition state. The picosecond timescale interconversion between two stable isomers of the metal carbonyl complex Co(2)(CO)(8) in a series of linear alkane solvents shows negligible energetic variation with solvent carbon chain length, providing an exclusive probe of the effects of solvent friction. Relative to the linear alkane series, cyclohexane does alter the potential energy surface by preferentially stabilizing one of the isomers. Despite this pronounced modification of the reaction barrier energetics, combination of experiment and computation enables the removal of the nondynamical barrier contribution to the rate constant, isolating the dynamical influence of solvent friction. The experimental data, supported with quantum and classical computations, show agreement with a simple Markovian Kramers theory for the isomerization rate constant's dependence on solvent viscosity.

18.
J Phys Chem A ; 113(24): 6544-7, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19514782

RESUMO

Ultrafast 2DIR chemical exchange spectroscopy was used to study the dynamic equilibrium between different isomers of dicobalt octacarbonyl. Exchange of population between bridged and unbridged isomers takes place on the time scale of a few picoseconds, corresponding to activation barriers of several kcal/mol. Despite overlapping spectral features in the 2DIR spectrum, the exchange component of the waiting time dependence was isolated by exploiting the well-characterized coherent modulation of nonexchange crosspeaks. The temperature dependence of the forward and reverse rate constants enabled extraction of isomerization energy barriers, where analysis using the Eyring equation indicated a substantial entropic contribution to the free energy barrier (DeltaS(double dagger)(exp) > 0). Comparison to quantum chemical calculations showed reasonable enthalpy agreement, but qualitative disagreement for the entropy of the transition state relative to the isomers (DeltaS(double dagger)(comp) < 0).


Assuntos
Cobalto/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Termodinâmica , Isomerismo , Cinética
19.
Acc Chem Res ; 42(9): 1395-404, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19453102

RESUMO

Metal carbonyl complexes offer both rich chemistry and complex vibrational spectroscopy due to strong coupling among the carbonyl stretches. Using two-dimensional infrared (2DIR) spectroscopy, it is possible to resolve the underlying transitions between vibrational energy levels, determine the orientations and relative magnitude of the corresponding transition dipole moments, measure the coupling between modes due to the anharmonicity of the potential, and probe energy redistribution among the modes as well as energy relaxation to other degrees of freedom. Measurements on metal carbonyl complexes have played, and continue to play, a crucial role in facilitating the development of 2DIR spectroscopy. These compounds have provided powerful demonstrations of the unique ability of 2DIR spectroscopy to resolve vibrational structure and dynamics in multimode systems. In addition, invaluable new information has been obtained on metal-to-ligand charge transfer processes, solvent-solute interactions and fluxionality. Since transition metal complexes play important roles in catalysis and as dye sensitizers for semiconductor nanoparticle photocatalysis, detailed probes of equilibrium and phototriggered dynamics should aid our understanding of these key catalytic systems. The richness and level of detail provided by the 2DIR spectra of metal carbonyl complexes turn them into extremely useful model systems for testing the accuracy of ab initio quantum chemical calculations. Accurate modeling of the 2DIR spectra of solvated metal carbonyl complexes requires the development of new theoretical and computational tools beyond those employed in the standard analysis of one-dimensional IR spectra, and represents an ongoing challenge to currently available computational methodologies. These challenges are further compounded by the increasing interest in triggered 2DIR experiments that involve nonequilibrium vibrational dynamics on multiple electronic potential surfaces. In this Account, we review the various metal carbonyl complexes studied via 2DIR spectroscopy and outline the theoretical approaches used in order to model the spectra. The capabilities of 2DIR spectroscopy and its interplay with modern ab initio calculations are demonstrated in the context of the metal carbonyl complex Mn(2)(CO)(10) recently studied in our lab. Continued progress in experimental implementation and theoretical analysis will enable transient 2D spectroscopy to provide structurally sensitive details of complex, highly interacting nonequilibrium processes that are central to diverse chemical transformations.

20.
J Chem Phys ; 129(8): 084503, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19044831

RESUMO

Multidimensional infrared (MDIR) spectroscopy of a strongly coupled multilevel vibrational system Mn(2)(CO)(10) (dimanganese decacarbonyl) in cyclohexane solution reveals fully resolved excited vibrational state coherences that exhibit slow 0.25-0.50 ps(-1) decay constants. Detailed analysis of the waiting-time dependence of certain cross-peak amplitudes shows modulation at multiple frequencies, providing a direct signature of excited vibrational coherences resulting from coherence transfer. A new signature of coherence transfer is observed as temporally modulated cross-peak amplitudes with more than one modulation frequency. The relative importance of different coherence transfer paths is considered in the context of the orientational response of a system which includes two vibrational modes with parallel dipole moments. Since MDIR spectroscopy enables spectral isolation of individual excited vibrational coherences (i.e., coherences between fundamental excitations), these experiments report directly on the frequency-frequency correlation functions of the excited states relative to each other as well as relative to the ground state. These results highlight the rich information contained in fully exploring three-dimensional third-order spectroscopy, particularly regarding chemically relevant slower dynamics and the importance of intramolecular interactions leading to dephasing by optically dark or low-frequency modes of the molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA