Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32134076

RESUMO

In this communication, we report the second harmonic scattering from mass characterized 2D graphene oxide sheets dispersed in an aqueous suspension, in the femtosecond regime at 800 nm laser excitation. Charge-detection mass-spectrometry, performing at the single sheet level, allows for an exhaustive molar mass distribution and thus concentration for these 2D nanomaterials samples. The orientation-averaged hyperpolarizability value is (1.36 ± 0.15) × 10-25 esu as determined by the concentration-dependent harmonic scattering signal. In addition, the multi-photon excited fluorescence spectrum is characterized by a broad band in the visible range between 350 and 700 nm centered at about 500 nm.

2.
Theranostics ; 10(4): 1633-1648, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32042327

RESUMO

Unique physicochemical features place gold nanoclusters at the forefront of nanotechnology for biological and biomedical applications. To date, information on the interactions of gold nanoclusters with biological macromolecules is limited and restricts their use in living cells. Methods: Our multidisciplinary study begins to fill the current knowledge gap by focusing on lysosomes and associated biological pathways in U251N human glioblastoma cells. We concentrated on lysosomes, because they are the intracellular destination for many nanoparticles, regulate cellular homeostasis and control cell survival. Results: Quantitative data presented here show that gold nanoclusters (with 15 and 25 gold atoms), surface-modified with glutathione or PEG, did not diminish cell viability at concentrations ≤1 µM. However, even at sublethal concentrations, gold nanoclusters modulated the abundance, positioning, pH and enzymatic activities of lysosomes. Gold nanoclusters also affected other aspects of cellular homeostasis. Specifically, they stimulated the transient nuclear accumulation of TFEB and Nrf2, transcription factors that promote lysosome biogenesis and stress responses. Moreover, gold nanoclusters also altered the formation of protein aggregates in the cytoplasm. The cellular responses elicited by gold nanoclusters were largely reversible within a 24-hour period. Conclusions: Taken together, this study explores the subcellular and molecular effects induced by gold nanoclusters and shows their effectiveness to regulate lysosome biology. Our results indicate that gold nanoclusters cause homeostatic perturbations without marked cell loss. Notably, cells adapt to the challenge inflicted by gold nanoclusters. These new insights provide a framework for the further development of gold nanocluster-based applications in biological sciences.

3.
Phys Chem Chem Phys ; 21(43): 23916-23921, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31657396

RESUMO

Gold nanoclusters (Au NCs) are an emerging class of luminescent nanomaterials but still suffer from moderate photoluminescence quantum yields. Recent efforts have focused on tailoring their emission properties. Introducing zwitterionic ligands to cap the metallic kernel is an efficient approach to enhance their one-photon excitation fluorescence intensity. In this work, we extend this concept to the nonlinear optical regime, i.e., two-photon excitation fluorescence. For a proper comparison between theory and experiment, both ligand and solvent effects should be considered. The effects of ligand shell size and of aqueous solvent on the optical properties of zwitterion functionalized gold nanoclusters have been studied by performing quantum mechanics/molecular mechanics (QM/MM) simulations.

4.
Nanomaterials (Basel) ; 9(9)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31455035

RESUMO

Gold decorated graphene-based nano-hybrids find extensive research interest due to their enhanced chemical catalytic performance and biochemical sensing. The unique physicochemical properties and the very large surface area makes them propitious platform for the rapid buildouts of science and technology. Graphene serves as an outstanding matrix for anchoring numerous nanomaterials because of its atomically thin 2D morphological features. Herein, we have designed a metal-graphene nano-hybrid through pulsed laser ablation. Commercially available graphite powder was employed for the preparation of graphene oxide (GO) using modified Hummers' method. A solid, thin gold (Au) foil was ablated in an aqueous suspension of GO using second harmonic wavelength (532 nm) of the Nd:YAG laser for immediate generation of the Au-GO nano-hybrid. The synthesis strategy employed here does not entail any detrimental chemical reagents and hence avoids the inclusion of reagent byproducts to the reaction mixture, toxicity, and environmental or chemical contamination. Optical and morphological characterizations were performed to substantiate the successful anchoring of Au nanoparticles (Au NPs) on the GO sheets. Remarkably, these photon-generated nano-hybrids can act as an excellent surface enhanced Raman spectroscopy (SERS) platform for the sensing/detection of the 4-mercaptobenzoic acid (4-MBA) with a very low detection limit of 1 × 10-12 M and preserves better reproducibility also. In addition, these hybrid materials were found to act as an effective catalyst for the reduction of 4-nitrophenol (4-NP). Thus, this is a rapid, mild, efficient and green synthesis approach for the fabrication of active organometallic sensors and catalysts.

5.
Rapid Commun Mass Spectrom ; : e8539, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31353622

RESUMO

Advances in soft ionization techniques for mass spectrometry (MS) of polymeric materials make it possible to determine the masses of intact molecular ions exceeding megadaltons. Interfacing MS with separation and fragmentation methods has additionally led to impressive advances in the ability to structurally characterize polymers. Even if the gap to the megadalton range has been bridged by MS for polymers standards, the MS-based analysis for more complex polymeric materials is still challenging. Charge detection mass spectrometry (CDMS) is a single-molecule method where the mass and the charge of each ion are directly determined from individual measurements. The entire molecular mass distribution of a polymer sample can be thus accurately measured. Described in this perspective paper is how molecular weight distribution as well as charge distribution can provide new insights into the structural and compositional studies of synthetic polymers and polymeric nanomaterials in the megadalton to gigadalton range of molecular weight. The recent multidimensional CDMS studies involving couplings with separation and dissociation techniques will be presented. And, finally, an outlook for the future avenues of the CDMS technique in the field of synthetic polymers of ultra-high molar mass and polymeric nanomaterials will be provided.

6.
Nanoscale ; 11(25): 12092-12096, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31210229

RESUMO

Incorporating anisotropic surface charges on atomically precise gold nanoclusters (Au NCs) led to a strong absorption in the near-infrared region and could enable the formation of self-assembled Au NCs exhibiting an intense absorption band at ∼1000 nm. This surface modification showed a striking enhancement of the photoluminescence in the Shortwave Infrared (SWIR) region with a quantum yield as high as 6.1% in water.

7.
Nanoscale ; 11(26): 12436-12448, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31162509

RESUMO

Ligated silver and gold nanoclusters belonging to a non-scalable size regime with molecular-like discrete electronic states represent an emerging class of extremely interesting optical materials. Nonlinear optical (NLO) characteristics of such quantum clusters have revealed remarkable features. The two-photon absorption (TPA) cross section of ligated noble metal nanoclusters is several orders of magnitude larger than that of commercially-available dyes. Several such case studies on NLO properties of ligated silver and gold nanoclusters have been reported, making them promising candidates for various bio-imaging techniques such as multiphoton-excited fluorescence microscopy. However, the structure-property relationship is of great importance and needs to be properly addressed in order to design new nonlinear optical materials. Using small ligated silver nanoclusters as test systems, we illustrate how theoretical approaches together with experimental findings can contribute to the understanding of structure-property relationships that might ultimately guide nanocluster synthesis.

8.
Nanomedicine ; 20: 102011, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31103735

RESUMO

With the objective to evaluate the potential of ultra-small gold (Au) nanoclusters (NCs) for optical image-guided surgery, we synthesized and characterized AuNCs shelled by zwitterionic or pegylated ligands. The toxicity of the different AuNCs was evaluated on the Head and Neck Squamous Cell Carcinoma (HNSCC) CAL-33 and SQ20B cell lines in vitro. The safer AuNCs were administrated intravenously to mice for the determination of the pharmacokinetic properties. Biodistributions were performed on orthotopic CAL-33 HNSCC-bearing mice. Finally, the AuNCs were used for image-guided surgery, allowing the increase of the survival time vs. control animals, and the number of animals without any local recurrence.

9.
Phys Chem Chem Phys ; 21(23): 12091-12099, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31080974

RESUMO

The ability of gold(i) thiolates to self-assemble into supramolecular architectures opens the route for a new class of nanomaterials with a unique structure-optical property relationship. However, for a confirmed structure-optical property relationship, a control of the supramolecular architectures is required. In this work, we report a simple synthesis of sub-100 nanometer gold-cysteine and silver doped gold-cysteine supramolecular assemblies. We explore in particular silver-doping as a strategy to enhance the optical properties of these supramolecular assemblies. By an accurate characterization of as-synthesized supramolecular nanoparticles, we have been able to measure for the first time, their absolute two-photon absorption cross-section, two-photon excited fluorescence cross-section and first hyperpolarizabilities at different near-IR wavelengths. Huge values are obtained for silver doped gold-cysteine supramolecular assemblies, as compared to their corresponding undoped counterpart. In addition, we employ DFT and TD-DFT methods to study the geometric and electronic structures of model gold-cysteine and silver doped gold-cysteine compounds in order to address the structure-linear/nonlinear optical property relationship. The aim is to gain insights into the origin of the nonlinear optical enhancement of silver-doped gold supramolecular assemblies.

10.
Nanomaterials (Basel) ; 9(3)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893867

RESUMO

Thiolate-protected metal nanoclusters have highly size- and structure-dependent physicochemical properties and are a promising class of nanomaterials. As a consequence, for the rationalization of their synthesis and for the design of new clusters with tailored properties, a precise characterization of their composition and structure at the atomic level is required. We report a combined ion mobility-mass spectrometry approach with density functional theory (DFT) calculations for determination of the structural and optical properties of ultra-small gold nanoclusters protected by thioglycolic acid (TGA) as ligand molecules, Au10(TGA)10. Collision cross-section (CCS) measurements are reported for two charge states. DFT optimized geometrical structures are used to compute CCSs. The comparison of the experimentally- and theoretically-determined CCSs allows concluding that such nanoclusters have catenane structures.

11.
Nanotoxicology ; 13(3): 285-304, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30691378

RESUMO

Gold nanoparticles (AuNP) have unique physicochemical properties and have been used as delivery vehicles, contrast agents, and therapeutic compounds. Although the effects of AuNPs on peripheral tissues and immortalized cell lines have been extensively characterized, their effects on the central nervous system (CNS) are predominantly unknown. The main objective of the current study was to evaluate how AuNPs of varying sizes (1-100 nm), shapes (clusters, spheres, rods, flowers), and surfaces impact synaptic structures in the hippocampus, a brain structure often affected in neurodegeneration. Using a combination of organotypic hippocampal, as well as, primary neuronal, glial, and astrocytic cultures, we examined AuNPs impact on hippocampal dendritic spine density, internalization in various neural cells, and lysosomal status in astrocytes. Considering that neurons interact with astrocytes, and that lysosomes play a role in dendritic spine status, transcription factor TFEB and abundance of lysosomal marker, LAMP1 were evaluated. Both biomarkers were significantly increased in astrocytes exposed to AuNPs, suggesting that AuNPs not only enter lysosomes, but also increase lysosome biogenesis. Results from our studies show that AuNPs with poly(ethylene glycol) (AuNPs-PEG) or glutathione (AuNP-GSH) surfaces do not substantially decrease hippocampal dendritic spine density. Conversely, AuNPs coated with the detergent, CTAB, significantly decreased total spine density. Interestingly small gold nanoclusters (Au15(SG)13) with GSH reduced spine density, whereas larger gold nanoclusters (Au25(SG)18) with the same ligand did not. Thus, assessment of dendritic morphology, spine densities can reveal subtler changes of neural cells than cell death when exposed to nanoparticles, including AuNPs.


Assuntos
Ouro/toxicidade , Hipocampo/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/ultraestrutura , Ouro/química , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Lisossomos/efeitos dos fármacos , Lisossomos/ultraestrutura , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroglia/ultraestrutura , Neurônios/ultraestrutura , Técnicas de Cultura de Órgãos , Tamanho da Partícula , Cultura Primária de Células , Propriedades de Superfície
12.
Rapid Commun Mass Spectrom ; 33 Suppl 1: 28-34, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29885203

RESUMO

RATIONALE: Among the sources of structural diversity in biomolecular ions, the co-existence of protomers is particularly difficult to take into account, which in turn complicates structural interpretation of gas-phase data. METHODS: We investigated the sensitivity of gas-phase photo-fragmentation measurements and ion mobility spectrometry (IMS) to the protonation state of a model peptide derivatized with chromophores. Accessible interconversion pathways between the different identified conformers were probed by tandem ion mobility measurement. Furthermore, the excitation coupling between the chromophores has been probed through photo-fragmentation measurements on mobility-selected ions. All results were interpreted based on molecular dynamics simulations. RESULTS: We show that protonation can significantly affect the photo-fragmentation yields. Especially, conformers with very close collision cross sections (CCSs) may display dramatically different photo-fragmentation yields in relation with different protonation patterns. CONCLUSIONS: We show that, even if precise structure assignment based on molecular modeling is in principle difficult for large biomolecular assemblies, the combination of photo-fragmentation and IMS can help to identify the signature of protomer co-existence for a population of biomolecular ions in the gas phase. Such spectroscopic data are particularly suitable to follow conformational changes.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Fotólise , Subunidades Proteicas , Simulação de Dinâmica Molecular , Peptídeos/análise , Peptídeos/química , Subunidades Proteicas/análise , Subunidades Proteicas/química , Espectrometria de Massas em Tandem/métodos
13.
Rapid Commun Mass Spectrom ; 33 Suppl 1: 35-39, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29885254

RESUMO

RATIONALE: Calf-thymus (CT-DNA) is widely used as a binding agent. The commercial samples are known to be "highly polymerized DNA" samples. CT-DNA is known to be fragile in particular upon ultrasonic wave irradiation. Degradation products could have dramatic consequences on its bio-sensing activity, and an accurate determination of the molecular weight distribution and stability of commercial samples is highly demanded. METHODS: We investigated the sensitivity of charge detection mass spectrometry (CDMS), a single-molecule MS method, both with single-pass and ion trap CDMS ("Benner" trap) modes to the determination of the composition and stability (under multiphoton IR irradiation) of calf-thymus DNAs. We also investigated the changes in molecular weight distributions in the course of sonication by irradiating ultrasonic waves to CT-DNA. RESULTS: We report, for the first time, the direct molecular weight (MW) distribution of DNA sodium salt from calf-thymus revealing two populations at high (~10 MDa) and low (~3 MDa) molecular weights. We evidence a transition between the high-MW to the low-MW distribution, confirming that the low-MW distribution results from degradation of CT-DNA. Finally, we report also IRMPD experiments carried out on trapped single-stranded linear DNAs from calf-thymus allowing extraction of their activation energy for unimolecular dissociation. CONCLUSIONS: We show that single-pass CDMS is a direct, efficient and accurate MS-based approach to determine the composition of calf-thymus DNAs. Furthermore, ion trap CDMS allows us to evaluate the stability (both under multiphoton IR irradiation and in the course of sonication by irradiating ultrasonic wave) of calf-thymus DNAs.


Assuntos
DNA/análise , DNA/química , Espectrometria de Massas/métodos , DNA/efeitos da radiação , DNA de Cadeia Simples/análise , DNA de Cadeia Simples/química , DNA de Cadeia Simples/efeitos da radiação , Raios Infravermelhos , Peso Molecular , Sonicação
14.
J Am Soc Mass Spectrom ; 29(9): 1826-1834, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29949057

RESUMO

The nonapeptide oxytocin (OT) is used as a model sulfur-containing peptide to study the damage induced by vacuum UV (VUV) radiations. In particular, the effect of the presence (or absence in reduced OT) of oxytocin's internal disulfide bridge is evaluated in terms of photo-fragmentation yield and nature of the photo-fragments. Intact, as well as reduced, OT is studied as dianions and radical anions. Radical anions are prepared and photo-fragmented in two-color experiments (UV + VUV) in a linear ion trap. VUV photo-fragmentation patterns are analyzed and compared, and radical-induced mechanisms are proposed. The effect of VUV is principally to ionize but secondary fragmentation is also observed. This secondary fragmentation seems to be considerably enabled by the initial position of the radical on the molecule. In particular, the possibility to form a radical on free cysteines seems to increase the susceptibility to VUV fragmentation. Interestingly, disulfide bridges, which are fundamental for protein structure, could also be responsible for an increased resistance to ionizing radiations. Graphical Abstract.


Assuntos
Ânions/química , Dissulfetos/química , Ocitocina/química , Espectrometria de Massas , Oxirredução , Fotólise , Raios Ultravioleta , Vácuo
15.
Sci Rep ; 8(1): 9665, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941939

RESUMO

Cavitation in pure liquids and in liquids containing nanoparticles enables applications in mechanics, bio-medicine, and energy. Its evolution carries a significant interest. We describe the multiscale dynamic evolution of ultrafast-laser-induced cavitation in pure and gold-nanoparticles-doped liquids in one-dimensional geometries induced by non-diffractive ultrashort Bessel-Gauss laser beams. Covering the complete electronic and thermomechanical cycle, from the early plasma phase to bubble cavitation and collapse on ms timescales, we reconstitute, using time-resolved imaging with amplitude and phase sensitivity, the hydrodynamic phenomena concurring to bubble evolution. We indicate geometry-specific instabilities accompanying the collapse. The insertion of gold nanoparticles of 200 nm size has subtle effects in the process energetics. Albeit a moderate field enhancement minimizing the contribution to breakdown, the nanoparticles play a role in the overall relaxation dynamics of bubbles. The evolving bubble border in nanoparticles-containing liquids create a snow-plough effect that sweeps the nanoparticles at the gas liquid interface. This indicates that during the macroscopic cavity development, the nanoparticles were removed from the interaction region and dragged by the hydrodynamic movement. We thus shed light on the evolution of cavitation bubbles not triggered but perturbed by the presence of nanoparticles.

16.
Nanoscale ; 10(24): 11335-11341, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29713724

RESUMO

Thiolate-protected gold nanoclusters have recently attracted considerable attention due to their size-dependent luminescence characterized by a long lifetime and large Stokes shift. However, the optimization of nanocluster properties such as the luminescence quantum yield is still a challenge. We report here the transformation of Au25Capt18 (Capt labels captopril) nanoclusters occurring at low pH and yielding a product with a much increased luminescence quantum yield which we have identified as Au23Capt17. We applied a simple method of treatment with HCl to accomplish this transformation and we characterized the absorption and emission of the newly created ligated nanoclusters as well as their morphology. Based on DFT calculations we show which Au nanocluster size transformations can lead to highly luminescent species such as Au23Capt17.

17.
Chem Sci ; 9(10): 2791-2796, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29732065

RESUMO

Heterogeneity and polymorphism are generic features of amyloid fibers with some important effects on the related disease development. We report here the characterization, by charge detection mass spectrometry, of amyloid fibers made of three polypeptides involved in neurodegenerative diseases: Aß1-42 peptide, tau and α-synuclein. Beside the mass of individual fibers, this technique enables to characterize the heterogeneity and the polymorphism of the population. In the case of Aß1-42 peptide and tau protein, several coexisting species could be distinguished and characterized. In the case of α-synuclein, we show how the polymorphism affects the mass and charge distributions.

18.
Phys Chem Chem Phys ; 20(17): 11959-11966, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29670983

RESUMO

In this study, we report the unimolecular dissociation mechanism of megadalton SO3-containing poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) polymer cations and anions with the aid of infrared multiphoton dissociation coupled to charge detection ion trap mass spectrometry. A gated electrostatic ion trap ("Benner trap") is used to store and detect single gaseous polymer ions generated by positive and negative polarity in an electrospray ionization source. The trapped ions are then fragmented due to the sequential absorption of multiple infrared photons produced from a continuous-wave CO2 laser. Several fragmentation pathways having distinct signatures are observed. Highly charged parent ions characteristically adopt a distinctive "stair-case" pattern (assigned to the "fission" process) whereas low charge species take on a "funnel like" shape (assigned to the "evaporation" process). Also, the log-log plot of the dissociation rate constants as a function of laser intensity between PAMPS positive and negative ions is significantly different.

19.
Chemphyschem ; 19(2): 165-168, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29105296

RESUMO

Increasing fluorescence quantum yields of ligand-protected gold nanoclusters has attracted wide research interest. The strategy consisting in using bulky counterions has been found to dramatically enhance the fluorescence. In this Communication, we push forward this concept to the nonlinear optical regime. We show that by an appropriate choice of bulky counterions and of solvent, a 30-fold increase in two-photon excited fluorescence (TPEF) signal at ≈600 nm for gold nanoclusters can be obtained. This would correspond to a TPEF cross-section in the range of 0.1 to 1 GM.

20.
J Am Soc Mass Spectrom ; 29(2): 270-283, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28980177

RESUMO

Mass spectrometry-based methods have made significant progress in characterizing post-translational modifications in peptides and proteins; however, certain aspects regarding fragmentation methods must still be improved. A good technique is expected to provide excellent sequence information, locate PTM sites, and retain the labile PTM groups. To address these issues, we investigate 10.6 µm IRMPD, 213 nm UVPD, and combined UV and IR photodissociation, known as HiLoPD (high-low photodissociation), for phospho-, sulfo-, and glyco-peptide cations. IRMPD shows excellent backbone fragmentation and produces equal numbers of N- and C-terminal ions. The results reveal that 213 nm UVPD and HiLoPD methods can provide diverse backbone fragmentation producing a/x, b/y, and c/z ions with excellent sequence coverage, locate PTM sites, and offer reasonable retention efficiency for phospho- and glyco-peptides. Excellent sequence coverage is achieved for sulfo-peptides and the position of the SO3 group can be pinpointed; however, widespread SO3 losses are detected irrespective of the methods used herein. Based on the overall performance achieved, we believe that 213 nm UVPD and HiLoPD can serve as alternative options to collision activation and electron transfer dissociations for phospho- and glyco-proteomics. Graphical Abstract ᅟ.


Assuntos
Glicopeptídeos/química , Peptídeos/química , Fosfopeptídeos/química , Processamento de Proteína Pós-Traducional , Enxofre/análise , Sequência de Aminoácidos , Raios Infravermelhos , Espectrometria de Massas/métodos , Fotólise , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA