Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361547

RESUMO

Essential oils of aromatic plants represent an alternative to classical pest control with synthetic chemicals. They are especially promising for the alternative control of stored product pest insects. Here, we tested behavioral and electrophysiological responses of the stored product pest Tribolium confusum, to the essential oil of a Brazilian indigenous plant, Varronia globosa, collected in the Caatinga ecosystem. We analyzed the essential oil by GC-MS, tested the effects of the entire oil and its major components on the behavior of individual beetles in a four-way olfactometer, and investigated responses to these stimuli in electroantennogram recordings (EAG). We could identify 25 constituents in the essential oil of V. globosa, with anethole, caryophyllene and spathulenole as main components. The oil and its main component anethole had repellent effects already at low doses, whereas caryophyllene had only a repellent effect at a high dose. In addition, the essential oil abolished the attractive effect of the T. confusum aggregation pheromone. EAG recordings revealed dose-dependent responses to the individual components and increasing responses to the blend and even more to the entire oil. Our study reveals the potential of anethole and the essential oil of V. globosa in the management of stored product pests.


Assuntos
Antenas de Artrópodes/fisiologia , Comportamento Animal/efeitos dos fármacos , Repelentes de Insetos , Magnoliopsida/química , Óleos Voláteis , Tribolium/fisiologia , Animais , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia
2.
Insects ; 12(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670203

RESUMO

Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids such as clothianidin. The residual accumulation of low concentrations of these insecticides can have positive effects on target pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction and olfactory synaptic transmission is cholinergic, neonicotinoid residues could indeed modify chemical communication. We recently showed that treatments with low doses of clothianidin could induce hormetic effects on behavioral and neuronal sex pheromone responses in the male moth, Agrotis ipsilon. In this study, we used high-throughput RNAseq and proteomic analyses from brains of A. ipsilon males that were intoxicated with a low dose of clothianidin to investigate the molecular mechanisms leading to the observed hormetic effect. Our results showed that clothianidin induced significant changes in transcript levels and protein quantity in the brain of treated moths: 1229 genes and 49 proteins were differentially expressed upon clothianidin exposure. In particular, our analyses highlighted a regulation in numerous enzymes as a possible detoxification response to the insecticide and also numerous changes in neuronal processes, which could act as a form of acclimatization to the insecticide-contaminated environment, both leading to enhanced neuronal and behavioral responses to sex pheromone.

3.
Cell Tissue Res ; 383(1): 149-164, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33275182

RESUMO

Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.

4.
Insects ; 11(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339188

RESUMO

Dragonflies are hemimetabolous insects, switching from an aquatic life style as nymphs to aerial life as adults, confronted to different environmental cues. How sensory structures on the antennae and the brain regions processing the incoming information are adapted to the reception of fundamentally different sensory cues has not been investigated in hemimetabolous insects. Here we describe the antennal sensilla, the general brain structure, and the antennal sensory pathways in the last six nymphal instars of Libellula depressa, in comparison with earlier published data from adults, using scanning electron microscopy, and antennal receptor neuron and antennal lobe output neuron mass-tracing with tetramethylrhodamin. Brain structure was visualized with an anti-synapsin antibody. Differently from adults, the nymphal antennal flagellum harbors many mechanoreceptive sensilla, one olfactory, and two thermo-hygroreceptive sensilla at all investigated instars. The nymphal brain is very similar to the adult brain throughout development, despite the considerable differences in antennal sensilla and habitat. Like in adults, nymphal brains contain mushroom bodies lacking calyces and small aglomerular antennal lobes. Antennal fibers innervate the antennal lobe similar to adult brains and the gnathal ganglion more prominently than in adults. Similar brain structures are thus used in L. depressa nymphs and adults to process diverging sensory information.

5.
Curr Opin Insect Sci ; 42: 1-7, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32485594

RESUMO

Insect intraspecific olfactory communication occurs in a complex sensory environment. Here we present recent results on how the olfactory system extracts specific information from a sensory background, and integrates it with complementary information to improve odor source localization. Recent advances on mechanisms of olfactory mixture processing, multi-modal integration, as well as plasticity of sensory processing are reviewed. Significant progress in the understanding of neural coding and molecular bases of olfaction reinforce our perception of the tremendous adaptability of insects to a changing environment. However several reports demonstrate that anthropogenic environmental perturbations interfere with insect olfactory communication and might as a consequence significantly alter the functioning of ecosystems and agroecosystems.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32335729

RESUMO

Mate finding in most moths is based on male perception of a female-emitted pheromone whose species specificity resides in component chemistry and proportions. Components are individually detected by specialized olfactory receptor neurons (ORNs) projecting into the macroglomerular complex (MGC) of the male brain. We asked how robust ratio recognition is when challenged by a plant volatile background. To test this, we investigated the perception of the pheromone blend in Agrotis ipsilon, a moth species whose females produce a blend of Z7-dodecenyl acetate (Z7-12:Ac), Z9-tetradecenyl acetate (Z9-14:Ac), and Z11-hexadecenyl acetate in a 4:1:4 ratio optimally attractive for males. First, we recorded the responses of specialist ORNs for Z7 and Z9 and showed that heptanal, a flower volatile, activated Z7 but not Z9 neurons. Then, we recorded intracellularly the responses of MGC neurons to various ratios and showed that heptanal altered ratio responses of pheromone-sensitive neurons. Finally, we analyzed the behavior of males in a wind tunnel and showed that their innate preference for the 4:1:4 blend was shifted in the presence of heptanal. Pheromone ratio recognition may thus be altered by background odorants. Therefore, the olfactory environment might be a selective force for the evolution of pheromone communication systems.

8.
Arthropod Struct Dev ; 52: 100883, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31568972

RESUMO

Many aphid species reproduce parthenogenetically throughout most of the year, with individuals having identical genomes. Nevertheless, aphid clones display a marked polyphenism with associated behavioural differences. Pea aphids (Acyrthosiphon pisum), when crowded, produce winged individuals, which have a larger dispersal range than wingless individuals. We examined here if brain structures linked to primary sensory processing and high-order motor control change in size as a function of wing polyphenism. Using micro-computing tomography (micro-CT) scans and immunocytochemical staining with anti-synapsin antibody, we reconstructed primary visual (optic lobes) and olfactory (antennal lobes) neuropils, together with the central body of winged and wingless parthenogenetic females of A. pisum for volume measurements. Absolute neuropil volumes were generally bigger in anti-synapsin labelled brains compared to micro-CT scans. This is potentially due to differences in rearing conditions of the used aphids. Independent of the method used, however, winged females consistently had larger antennal lobes and optic lobes than wingless females in spite of a larger overall body size of wingless compared to winged females. The volume of the central body, on the other hand was not significantly different between the two morphs. The larger primary sensory centres in winged aphids might thus provide the neuronal substrate for processing different environmental information due to the increased mobility during flight.


Assuntos
Afídeos/anatomia & histologia , Afídeos/fisiologia , Voo Animal , Animais , Encéfalo/anatomia & histologia , Feminino , Tamanho do Órgão
9.
Insects ; 10(5)2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31058845

RESUMO

Early experience of olfactory stimuli associated with their host-plant complex (HPC) is an important driver of parasitoid foraging choices, notably leading to host fidelity. Mechanisms involved, such as peripheral or central modulation, and the impact of a complex olfactory environment are unknown. Using olfactometer assays, we compared HPC preference of Aphidius ervi Haliday (Hymenoptera:Braconidae) females originating from two different HPCs, either with the other HPC in close vicinity (complex environment) or without (simple environment). We also investigated antennal responses to volatiles differentially emitted by the two respective HPCs. In a simple environment, HPC of origin had an influence on olfactory choice, but the preferences observed were asymmetric according to parasitoid origin. Electroantennographic recordings revealed significant sensitivity differences for some of the tested individual volatiles, which are emitted differentially by the two HPCs. Besides, presence of an alternative HPC during early stages modified subsequent parasitoid preferences. We discuss how increased olfactory complexity could influence parasitoid host foraging and biological control in diversified cropping systems.

10.
Front Plant Sci ; 9: 1795, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619387

RESUMO

Acibenzolar-S-methyl (ASM) is a chemical compound, which is able to induce resistance in several model and non-model plants, but the end-players of this induced defense remain ill-defined. Here, we test the hypothesis that treatment with ASM can protect apple (Malus × domestica) against the rosy apple aphid (Dysaphis plantaginea) and investigate the defense molecules potentially involved in resistance. We measured aphid life traits and performed behavioral assays to study the effect of ASM on plant resistance against the aphid, and then combined transcriptomic, bioinformatics, metabolic and biochemical analyses to identify the plant compounds involved in resistance. Plants treated with ASM negatively affected several life traits of the aphid and modified its feeding and host seeking behaviors. ASM treatment elicited up-regulation of terpene synthase genes in apple and led to the emission of (E,E)-α-farnesene, a sesquiterpene that was repellent to the aphid. Several genes encoding amaranthin-like lectins were also strongly up-regulated upon treatment and the corresponding proteins accumulated in leaves, petioles and stems. Our results link the production of specific apple proteins and metabolites to the antibiosis and antixenosis effects observed against Dysaphis plantaginea, providing insight into the mechanisms underlying ASM-induced herbivore resistance.

11.
Front Physiol ; 8: 79, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28239358

RESUMO

Recognition of intra-specific olfactory signals within a complex environment of plant-related volatiles is crucial for reproduction in male moths. Sex pheromone information is detected by specific olfactory receptor neurons (Phe-ORNs), highly abundant on the male antenna. The information is then transmitted to the pheromone processing macroglomerular complex (MGC) within the primary olfactory center, the antennal lobe, where it is processed by local interneurons and projection neurons. Ultimately a behavioral response, orientation toward the pheromone source, is elicited. Volatile plant compounds (VPCs) are detected by other functional types of olfactory receptor neurons (ORNs) projecting in another area of the antennal lobe. However, Phe-ORNs also respond to some VPCs. Female-produced sex pheromones are emitted within a rich environment of VPCs, some of which have been shown to interfere with the detection and processing of sex pheromone information. As interference between the different odor sources might depend on the spatial and temporal features of the two types of stimuli, we investigated here behavioral and neuronal responses to a brief sex pheromone blend pulse in a VPC background as compared to a control background in the male noctuid moth Agrotis ipsilon. We observed male orientation behavior in a wind tunnel and recorded responses of Phe-ORNs and MGC neurons to a brief sex pheromone pulse within a background of individual VPCs. We also recorded the global input signal to the MGC using in vivo calcium imaging with the same stimulation protocol. We found that VPCs eliciting a response in Phe-ORNs and MGC neurons masked responses to the pheromone and decreased the contrast between background odor and the sex pheromone at both levels, whereas α-pinene did not interfere with first order processing. The calcium signal produced in response to a VPC background was tonic, lasting longer than the VPC stimulus duration, and masked entirely the pheromone response. One percent heptanal and linalool, in addition to the masking effect, caused a clear delay in responses of MGC neurons to the sex pheromone. Upwind flight toward the pheromone in a wind tunnel was also delayed but otherwise not altered by different doses of heptanal.

12.
PLoS One ; 11(11): e0167469, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27902778

RESUMO

Neonicotinoid insecticides are widely used to protect plants against pest insects, and insecticide residues remaining in the environment affect both target and non-target organisms. Whereas low doses of neonicotinoids have been shown to disturb the behaviour of pollinating insects, recent studies have revealed that a low dose of the neonicotinoid clothianidin can improve behavioural and neuronal sex pheromone responses in a pest insect, the male moth Agrotis ipsilon, and thus potentially improve reproduction. As male moth behaviour depends also on its physiological state and previous experience with sensory signals, we wondered if insecticide effects would be dependent on plasticity of olfactory-guided behaviour. We investigated, using wind tunnel experiments, whether a brief pre-exposure to the sex pheromone could enhance the behavioural response to this important signal in the moth A. ipsilon at different ages (sexually immature and mature males) and after different delays (2 h and 24 h), and if the insecticide clothianidin would interfere with age effects or the potential pre-exposure-effects. Brief pre-exposure to the pheromone induced an age-independent significant increase of sex pheromone responses 24 h later, whereas sex pheromone responses did not increase significantly 2 h after exposure. However, response delays were significantly shorter compared to naïve males already two hours after exposure. Oral treatment with clothianidin increased sex pheromone responses in sexually mature males, confirming previous results, but did not influence responses in young immature males. Males treated with clothianidin after pre-exposure at day 4 responded significantly more to the sex pheromone at day 5 than males treated with clothianidin only and than males pre-exposed only, revealing an additive effect of experience and the insecticide. Plasticity of sensory systems has thus to be taken into account when investigating the effects of sublethal doses of insecticides on behaviour.


Assuntos
Guanidinas/farmacologia , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Controle Biológico de Vetores/métodos , Atrativos Sexuais/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Sinergismo Farmacológico , Masculino , Neonicotinoides , Fatores de Tempo
13.
Annu Rev Entomol ; 61: 317-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26982441

RESUMO

In insects, olfaction plays a crucial role in many behavioral contexts, such as locating food, sexual partners, and oviposition sites. To successfully perform such behaviors, insects must respond to chemical stimuli at the right moment. Insects modulate their olfactory system according to their physiological state upon interaction with their environment. Here, we review the plasticity of behavioral responses to different odor types according to age, feeding state, circadian rhythm, and mating status. We also summarize what is known about the underlying neural and endocrinological mechanisms, from peripheral detection to central nervous integration, and cover neuromodulation from the molecular to the behavioral level. We describe forms of olfactory plasticity that have contributed to the evolutionary success of insects and have provided them with remarkable tools to adapt to their ever-changing environment.


Assuntos
Plasticidade Celular , Insetos/fisiologia , Plasticidade Neuronal , Percepção Olfatória , Olfato , Animais
14.
Proc Biol Sci ; 283(1824)2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26842577

RESUMO

Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids, leaving residues in the environment. There is now evidence that low doses of insecticides can have positive effects on pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction, and olfactory synaptic transmission is cholinergic, neonicotinoid residues could modify chemical communication. We recently showed that treatments with different sublethal doses of clothianidin could either enhance or decrease behavioural sex pheromone responses in the male moth, Agrotis ipsilon. We investigated now effects of the behaviourally active clothianidin doses on the sensitivity of the peripheral and central olfactory system. We show with extracellular recordings that both tested clothianidin doses do not influence pheromone responses in olfactory receptor neurons. Similarly, in vivo optical imaging does not reveal any changes in glomerular response intensities to the sex pheromone after clothianidin treatments. The sensitivity of intracellularly recorded antennal lobe output neurons, however, is upregulated by a lethal dose 20 times and downregulated by a dose 10 times lower than the lethal dose 0. This correlates with the changes of behavioural responses after clothianidin treatment and suggests the antennal lobe as neural substrate involved in clothianidin-induced behavioural changes.


Assuntos
Guanidinas/farmacologia , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Atrativos Sexuais/metabolismo , Tiazóis/farmacologia , Animais , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/fisiologia , Relação Dose-Resposta a Droga , Masculino , Mariposas/fisiologia , Neonicotinoides , Neurônios Receptores Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/fisiologia , Comportamento Sexual Animal/efeitos dos fármacos
16.
Cell Tissue Res ; 364(1): 59-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26463049

RESUMO

Experience modifies behaviour in animals so that they adapt to their environment. In male noctuid moths, Spodoptera littoralis, brief pre-exposure to various behaviourally relevant sensory signals modifies subsequent behaviour towards the same or different sensory modalities. Correlated with a behavioural increase in responses of male moths to the female-emitted sex pheromone after pre-exposure to olfactory, acoustic or gustatory stimuli, an increase in sensitivity of olfactory neurons within the primary olfactory centre, the antennal lobe, is found for olfactory and acoustic stimuli, but not for gustatory stimuli. Here, we investigated whether anatomical changes occurring in the antennal lobes and in the mushroom bodies (the secondary olfactory centres) possibly correlated with the changes observed in behaviour and in olfactory neuron physiology. Our results showed that significant volume changes occurred in glomeruli (olfactory units) responsive to sex pheromone following exposure to both pheromone and predator sounds. The volume of the mushroom body input region (calyx) also increased significantly after pheromone and predator sound treatment. However, we found no changes in the volume of antennal lobe glomeruli or of the mushroom body calyx after pre-exposure to sucrose. These findings show a relationship of antennal lobe sensitivity changes to the pheromone with changes in the volume of the related glomeruli and the output area of antennal lobe projection neurons elicited by sensory cues causing a behavioural change. Behavioural changes observed after sucrose pre-exposure must originate from changes in higher integration centres in the brain.


Assuntos
Gânglios Sensitivos/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Spodoptera/metabolismo , Animais , Feminino , Gânglios Sensitivos/citologia , Masculino , Corpos Pedunculados/citologia , Neurônios Receptores Olfatórios/citologia , Spodoptera/citologia
17.
Biosystems ; 136: 46-58, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26126723

RESUMO

The antennal lobe (AL) of the Noctuid moth Agrotis ipsilon has emerged as an excellent model for studying olfactory processing and its plasticity in the central nervous system. Odor-evoked responses of AL neurons and input-to-output transformations involved in pheromone processing are well characterized in this species. However, the intrinsic electrical properties responsible of the firing of AL neurons are poorly known. To this end, patch-clamp recordings in current- and voltage-clamp mode from neurons located in the two main clusters of cell bodies in the ALs were combined with intracellular staining on A. ipsilon males. Staining indicated that the lateral cluster (LC) is composed of 85% of local neurons (LNs) and 15% of projection neurons (PNs). The medial cluster (MC) contains only PNs. Action potentials were readily recorded from the soma in LNs and PNs located in the LC but not from PNs in the MC where recordings showed small or no action potentials. In the LC, the spontaneous activity of about 20% of the LNs presented irregular bursts while being more regular in PNs. We also identified a small population of LNs lacking voltage-gated Na(+) currents and generating spikelets. We focused on the firing properties of LNs since in about 60% of LNs, but not in PNs, action potentials were followed by depolarizing afterpotentials (DAPs). These DAPs could generate a second action potential, so that the activity was composed of action potential doublets. DAPs depended on voltage, Ca(2+)-channels and possibly on Ca(2+)-activated non-specific cationic channels. During steady state current injection, DAPs occurred after each action potential and did not require high-frequency firing. The amplitude of DAPs increased when the interspike interval was small, typically within bursts, likely arising from a Ca(2+) build up. DAPs were more often found in bursting than in non-bursting LNs but do not support bursting activity. DAPs and spike doublets also occurred during odor-evoked activity suggesting that they can mediate olfactory integration in the AL.


Assuntos
Potenciais de Ação/fisiologia , Antenas de Artrópodes/fisiologia , Mariposas/fisiologia , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Modelos Neurológicos
18.
Biosystems ; 136: 35-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26116090

RESUMO

Insects communicating with pheromones are confronted with an olfactory environment featuring a diversity of volatile organic compounds from plant origin. These volatiles constitute a rich and fluctuant background from which the information carried by the pheromone signal must be extracted. Thus, the pheromone receptor neurons must encode into spike trains the quality, intensity and temporal characteristics of the signal that are determinant to the recognition and localization of a conspecific female. We recorded and analyzed the responses of the pheromone olfactory receptor neurons of male moths to sex pheromone in different odor background conditions. We show that in spite of the narrow chemical tuning of the pheromone receptor neurons, the sensory input can be altered by odorant background.


Assuntos
Potenciais de Ação/fisiologia , Mariposas/fisiologia , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Atrativos Sexuais/fisiologia , Olfato/fisiologia , Animais , Armazenamento e Recuperação da Informação/métodos , Mascaramento Perceptivo/fisiologia , Sensilas/fisiologia
19.
Front Physiol ; 6: 148, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029117

RESUMO

Male moths rely on olfactory cues to find females for reproduction. Males also use volatile plant compounds (VPCs) to find food sources and might use host-plant odor cues to identify the habitat of calling females. Both the sex pheromone released by conspecific females and VPCs trigger well-described oriented flight behavior toward the odor source. Whereas detection and central processing of pheromones and VPCs have been thought for a long time to be highly separated from each other, recent studies have shown that interactions of both types of odors occur already early at the periphery of the olfactory pathway. Here we show that detection and early processing of VPCs and pheromone can overlap between the two sub-systems. Using complementary approaches, i.e., single-sensillum recording of olfactory receptor neurons, in vivo calcium imaging in the antennal lobe, intracellular recordings of neurons in the macroglomerular complex (MGC) and flight tracking in a wind tunnel, we show that some plant odorants alone, such as heptanal, activate the pheromone-specific pathway in male Agrotis ipsilon at peripheral and central levels. To our knowledge, this is the first report of a plant odorant with no chemical similarity to the molecular structure of the pheromone, acting as a partial agonist of a moth sex pheromone.

20.
PLoS Comput Biol ; 10(12): e1003975, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474026

RESUMO

In the olfactory system of male moths, a specialized subset of neurons detects and processes the main component of the sex pheromone emitted by females. It is composed of several thousand first-order olfactory receptor neurons (ORNs), all expressing the same pheromone receptor, that contact synaptically a few tens of second-order projection neurons (PNs) within a single restricted brain area. The functional simplicity of this system makes it a favorable model for studying the factors that contribute to its exquisite sensitivity and speed. Sensory information--primarily the identity and intensity of the stimulus--is encoded as the firing rate of the action potentials, and possibly as the latency of the neuron response. We found that over all their dynamic range, PNs respond with a shorter latency and a higher firing rate than most ORNs. Modelling showed that the increased sensitivity of PNs can be explained by the ORN-to-PN convergent architecture alone, whereas their faster response also requires cell-to-cell heterogeneity of the ORN population. So, far from being detrimental to signal detection, the ORN heterogeneity is exploited by PNs, and results in two different schemes of population coding based either on the response of a few extreme neurons (latency) or on the average response of many (firing rate). Moreover, ORN-to-PN transformations are linear for latency and nonlinear for firing rate, suggesting that latency could be involved in concentration-invariant coding of the pheromone blend and that sensitivity at low concentrations is achieved at the expense of precise encoding at high concentrations.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Animais , Biologia Computacional , Masculino , Mariposas/fisiologia , Neurônios Receptores Olfatórios/metabolismo , Feromônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...