Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 85(1): 224-233, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31760753

RESUMO

Three hole-transporting materials (HTMs) were prepared following a straightforward synthetic route by cross-linking arylamine-based ligands with a simple thieno[3,2-b]thiophene (TbT) core. The novel HTMs were fully characterized with standard techniques to gain insight into their optical and electrochemical properties and were incorporated in solution-processed mesoporous (FAPbI3)0.85(MAPbBr3)0.15 perovskite-based solar cells. The similar molecular structure of the synthesized HTMs was leveraged to investigate the role that the bridging units between the conjugated TbT core and the peripheral arylamine units plays on their properties and thereby on the photovoltaic response. A remarkable power conversion efficiency exceeding 18% was achieved for one of the TbT derivatives, which was slightly higher than the value measured for the benchmark spiro-OMeTAD.

2.
J Phys Chem Lett ; 10(24): 7678-7683, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31755716

RESUMO

Molecular nanomagnets hold great promise for spintronics and quantum technologies, provided that their spin memory can be preserved above liquid-nitrogen temperatures. In the past few years, the magnetic hysteresis records observed for two related dysprosocenium-type complexes have highlighted the potential of molecular engineering to decouple vibrational excitations from spin states and thereby enhance magnetic memory. Herein, we study the spin-vibrational coupling in [(CpiPr5)Dy(Cp*)]+ (CpiPr5 = pentaisopropylcyclopentadienyl, Cp* = pentamethylcyclopentadienyl), which currently holds the hysteresis record (80 K), by means of a computationally affordable methodology that combines first-principles electronic structure calculations with a phenomenological ligand field model. Our analysis is in good agreement with the previously reported state-of-the-art ab initio calculations, with the advantage of drastically reducing the computation time. We then apply the proposed methodology to three alternative dysprosocenium-type complexes, extracting physical insights that demonstrate the usefulness of this strategy to efficiently engineer and screen magnetic molecules with the potential of retaining spin information at higher temperatures.

3.
Phys Chem Chem Phys ; 21(22): 11670-11675, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31125037

RESUMO

A new series of fullerene receptors based on exTTF macrocycles with alkyl ether chains of increasing length is reported. The novel macrocyclic receptors are able to favourably interact with fullerene C60 through a synergistic combination of π-π, CHπ and nπ noncovalent interactions. We identify that the highest affinity towards C60 recognition is achieved for the host with the tightest fit; that is, the smallest receptor with a cavity large enough to host the buckyball inside (log Ka = 5.2 in chlorobenzene at 298 K). However, besides this expected observation, theoretical calculations evidence that the most stable self-assembling configuration corresponds for all the receptors to an outside-ring binding mode, in which the C60 guest is out of the cavity of the receptor. The higher stability of this configuration results from the smaller deformation energy it implies for the receptor, and allows to explain the experimental trends in the association constants.

4.
J Am Chem Soc ; 141(18): 7463-7472, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30983341

RESUMO

A complete series of experimental and theoretical investigations on the supramolecular polymerization of chiral (1 and 2) and achiral (3) oligo(phenylene ethynylene) tricarboxamides (OPE-TAs) is reported. The performance of seargents-and-soldiers (SaS) and majority rules (MR) experiments has allowed deriving a full set of thermodynamic parameters, including the helix reversal penalty (HRP) and the mismatch penalty (MMP). The results described illustrate the influence exerted by the number of stereogenic centers per monomeric unit and the temperature on the chiral amplification phenomenon. While the HRP decreases upon decreasing the number of chiral side chains, the MMP follows an opposite trend. The experimental trend observed in MR experiments contrasts with that reported for benzenetricarboxamides (BTAs), for which the chiral amplification ability increases by lowering the number of stereogenic centers or increasing the temperature. Theoretical calculations predict that the rotational angle between adjacent monomeric units in the stack (ca. 18°) gradually decreases when decreasing the number of branched chiral side chains and leads to higher MMP values, in good accord with the experimental trend. The reduction of the rotational angle gives rise to less efficient H-bonding interactions between the peripheral amide functional groups and is suggested to provoke a decrease of the HRP as experimentally observed. In BTAs, increasing the number of stereogenic centers per monomeric unit results in a negligible change of the rotation angle between adjacent units (ca. 65°), and, consequently, the steric bulk increases with the number of chiral side chains, leading to higher MMP values. The data presented herein contribute to shed light on the parameters controlling the transfer and amplification of chirality processes in supramolecular polymers, highlighting the enormous influence exerted by the size of the self-assembling unit on the final helical outcome.

5.
Chemistry ; 24(12): 2826-2831, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29336510

RESUMO

A detailed investigation of the hierarchy of asymmetry operating in the self-assembly of achiral (1) and chiral ((S)-2 and (R)-3) 1,3,5-triphenylbenzenetricarboxamides (TPBAs) is reported. The aggregation of these TPBAs is conditioned by the point chirality at the peripheral side chains for (S)-2 and (R)-3. An efficient helix-to-helix interaction that goes further in the organization of fibrillar bundles is experimentally detected and theoretically supported only for the achiral TPBA 1. The effective interdigitation of the achiral aliphatic side chains produces a social self-sorting to form preferentially heterochiral macromolecular aggregates.

6.
Molecules ; 23(1)2018 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-29316675

RESUMO

Understanding how molecular systems self-assemble to form well-organized superstructures governed by noncovalent interactions is essential in the field of supramolecular chemistry. In the nanoscience context, the self-assembly of different carbon-based nanoforms (fullerenes, carbon nanotubes and graphene) with, in general, electron-donor molecular systems, has received increasing attention as a means of generating potential candidates for technological applications. In these carbon-based systems, a deep characterization of the supramolecular organization is crucial to establish an intimate relation between supramolecular structure and functionality. Detailed structural information on the self-assembly of these carbon-based nanoforms is however not always accessible from experimental techniques. In this regard, quantum chemistry has demonstrated to be key to gain a deep insight into the supramolecular organization of molecular systems of high interest. In this review, we intend to highlight the fundamental role that quantum-chemical calculations can play to understand the supramolecular self-assembly of carbon-based nanoforms through a limited selection of supramolecular assemblies involving fullerene, fullerene fragments, nanotubes and graphene with several electron-rich π-conjugated systems.


Assuntos
Fulerenos/química , Nanotubos de Carbono/química , Algoritmos , Modelos Químicos , Polimerização , Teoria Quântica , Propriedades de Superfície
7.
J Phys Chem A ; 122(4): 1124-1137, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29266944

RESUMO

Buckybowls have risen as appealing fullerene fragment derivatives. Their intrinsic curvature has been exploited in the generation of host-guest supramolecular assemblies, not only through concave-convex complementarity but also through less-known concave-concave staggered arrangements. Whereas the stabilization of bowl-in-bowl dispositions has been ascribed to efficient π-π forces together with favorable dipole-dipole interactions, a detailed analysis on the forces guiding the formation of the staggered arrangements is missing so far. Herein, we present a thorough theoretical characterization of bowl-in-bowl vs staggered hemifullerene-based homodimers and heterodimers with the electron-donor truxTTF molecule, as test cases, under the density functional theory and by means of chemical bonding techniques. Our results clearly reveal strong and localized noncovalent signatures, together with an enhanced orbital interaction, associated with CH-π and sulfur-mediated interactions governing the staggered formation. Bending the fullerene fragment is demonstrated to favor the stabilization in both homo- and heterodimers, in good accord with the depletion in the π-electron density calculated upon increasing the buckybowl curvature. The optimal buckybowl curvature for the highest interaction energy is, however, dependent on the type of supramolecular assembly (bowl-in-bowl vs staggered) and the concave region to which hemifullerene approaches truxTTF. Interestingly, two regimes are found as a function of buckybowl curvature for hemifullerene homodimers: bowl-in-bowl dispositions are calculated more stable at low curvatures whereas staggered dimers prevail for highly curved buckybowls. Our results highlight the potential of discrete CH-π and sulfur-mediated interactions to generate unconventional staggered supramolecular arrangements toward the development of a new and unexplored host-guest chemistry.

8.
Angew Chem Int Ed Engl ; 56(51): 16272-16276, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29083516

RESUMO

A proof-of-concept related to the redox-control of the binding/releasing process in a host-guest system is achieved by designing a neutral and robust Pt-based redox-active metallacage involving two extended-tetrathiafulvalene (exTTF) ligands. When neutral, the cage is able to bind a planar polyaromatic guest (coronene). Remarkably, the chemical or electrochemical oxidation of the host-guest complex leads to the reversible expulsion of the guest outside the cavity, which is assigned to a drastic change of the host-guest interaction mode, illustrating the key role of counteranions along the exchange process. The reversible process is supported by various experimental data (1 H NMR spectroscopy, ESI-FTICR, and spectroelectrochemistry) as well as by in-depth theoretical calculations performed at the density functional theory (DFT) level.

9.
Chem Commun (Camb) ; 53(92): 12402-12405, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29082988

RESUMO

Graphene nanobuds were prepared via the non-covalent anchoring of C60-based molecules endowed with one or three pyrene units, respectively. TGA, FTIR, UV-Vis and TEM investigations confirmed the formation of nanohybrids. For the two molecular derivatives, striking differences were determined in their interaction with graphene or carbon surfaces by Raman, cyclic voltammetry and molecular mechanics calculations, revealing the important role of pyrene adsorption in modulating the electronic properties of the nanohybrids.

10.
J Comput Chem ; 38(21): 1869-1878, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28558123

RESUMO

In this work, we present scaled variants of the DLPNO-CCSD(T) method, dubbed as (LS)DLPNO-CCSD(T) and (NS)DLPNO-CCSD(T), to obtain accurate interaction energies in supramolecular complexes governed by noncovalent interactions. The novel scaled schemes are based on the linear combination of the DLPNO-CCSD(T) correlation energies calculated with the standard (LoosePNO and NormalPNO) and modified (Loose2PNO and Normal2PNO) DLPNO-CCSD(T) accuracy levels. The scaled DLPNO-CCSD(T) variants provide nearly TightPNO accuracy, which is essential for the quantification of weak noncovalent interactions, with a noticeable saving in computational cost. Importantly, the accuracy of the proposed schemes is preserved irrespective of the nature and strength of the supramolecular interaction. The (LS)DLPNO-CCSD(T) and (NS)DLPNO-CCSD(T) protocols have been used to study in depth the role of the CH-π versus π-π interactions in the supramolecular complex formed by the electron-donor truxene-tetrathiafulvalene (truxTTF) and the electron-acceptor hemifullerene (C30 H12 ). (NS)DLPNO-CCSD(T)/CBS calculations clearly reveal the higher stability of staggered (dominated by CH-π interactions) versus bowl-in-bowl (dominated by π-π interactions) arrangements in the truxTTF•C30 H12 heterodimer. Hemifullerene and similar carbon-based buckybowls are therefore expected to self-assemble with donor compounds in a richer way other than the typical concave-convex π-π arrangement found in fullerene-based aggregates. © 2017 Wiley Periodicals, Inc.

11.
J Am Chem Soc ; 138(47): 15359-15367, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27640915

RESUMO

Two new conjugated porphyrin-based systems (dimers 3 and 4) endowed with suitable crown ethers have been synthesized as receptors for a fullerene-ammonium salt derivative (1). Association constants in solution have been determined by UV-vis titration experiments in CH2Cl2 at room temperature. The designed hosts are able to associate up to two fullerene-based guest molecules and present association constants as high as ∼5 × 108 M-1. Calculation of the allosteric cooperative factor α for supramolecular complexes [3·12] and [4·12] showed a negative cooperative effect in both cases. The interactions accounting for the formation of the associates are based, first, on the complementary ammonium-crown ether interaction and, second, on the π-π interactions between the porphyrin rings and the C60 moieties. Theoretical calculations have evidenced a significant decrease of the electron density in the porphyrin dimers 3 and 4 upon complexation of the first C60 molecule, in good agreement with the negative cooperativity found in these systems. This negative effect is partially compensated by the stabilizing C60-C60 interactions that take place in the more stable syn-disposition of [4·12].

12.
Chemphyschem ; 17(23): 3881-3890, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27595419

RESUMO

A high-level ab initio protocol to compute accurate electron affinities and half-wave reduction potentials is presented and applied for a series of electron-acceptor compounds with potential interest in organic electronics and redox flow batteries. The comprehensive comparison between the theoretical and experimental electron affinities not only proves the reliability of the theoretical G3(MP2) approach employed but also calls into question certain experimental measurements, which need to be revised. By using the thermodynamic cycle for the one-electron attachment reaction A+e- →A- , theoretical estimates for the first half-wave reduction potential have been computed along the series of electron-acceptor systems investigated, with maximum deviations from experiment of only 0.2 V. The precise inspection of the terms contributing to the half-wave reduction potential shows that the difference in the free energy of solvation between the neutral and the anionic species (ΔΔGsolv ) plays a crucial role in accurately estimating the electron-acceptor properties in solution, and thus it cannot be considered constant even in a family of related compounds. This term, which can be used to explain the occasional lack of correlation between electron affinities and reduction potentials, is rationalized by the (de)localization of the additional electron involved in the reduction process along the π-conjugated chemical structure.

13.
Chem Commun (Camb) ; 52(42): 6907-10, 2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27142262

RESUMO

The cooperative supramolecular polymerization of 1 and 2 yields P- or M-type helical aggregates depending on the absolute configuration (S or R) of the stereogenic centres attached to the side chains. The connectivity of the amide group does not affect the handedness of the helical aggregates, but determines a larger cooperativity for retroamides 1.

14.
J Chem Theory Comput ; 11(3): 932-9, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26579747

RESUMO

In this work, we present a thorough assessment of the performance of some representative double-hybrid density functionals (revPBE0-DH-NL and B2PLYP-NL) as well as their parent hybrid and GGA counterparts, in combination with the most modern version of the nonlocal (NL) van der Waals correction to describe very large weakly interacting molecular systems dominated by noncovalent interactions. Prior to the assessment, an accurate and homogeneous set of reference interaction energies was computed for the supramolecular complexes constituting the L7 and S12L data sets by using the novel, precise, and efficient DLPNO-CCSD(T) method at the complete basis set limit (CBS). The correction of the basis set superposition error and the inclusion of the deformation energies (for the S12L set) have been crucial for obtaining precise DLPNO-CCSD(T)/CBS interaction energies. Among the density functionals evaluated, the double-hybrid revPBE0-DH-NL and B2PLYP-NL with the three-body dispersion correction provide remarkably accurate association energies very close to the chemical accuracy. Overall, the NL van der Waals approach combined with proper density functionals can be seen as an accurate and affordable computational tool for the modeling of large weakly bonded supramolecular systems.


Assuntos
Substâncias Macromoleculares/química , Teoria Quântica , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Modelos Moleculares
15.
J Phys Chem Lett ; 6(8): 1375-84, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-26263138

RESUMO

We report the process of singlet exciton fission with high-yield upon photoexcitation of a quinoidal thiophene molecule. Efficient ultrafast triplet photogeneration and its yield are determined by photoinduced triplet-triplet absorption, flash photolysis triplet lifetime measurements, as well as by femtosecond time-resolved transient absorption and fluorescence methods. These experiments show that optically excited quinoidal bithiophene molecule undergoes ultrafast formation of the triplet-like state with the lifetime ∼57 µs. CASPT2 and RAS-SF calculations have been performed to support the experimental findings. To date, high singlet fission rates have been reported for crystalline and polycrystalline materials, whereas for covalently linked dimers and small oligomers it was found to be relatively small. In this contribution, we show an unprecedented quantum yield of intramolecular singlet exciton fission of ∼180% for a quinoidal bithiophene system.

16.
J Chem Phys ; 142(16): 164107, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25933752

RESUMO

In this paper, we present a diabatization scheme to compute the excitonic couplings between an arbitrary number of states in molecular pairs. The method is based on an algebraic procedure to find the diabatic states with a desired property as close as possible to that of some reference states. In common with other diabatization schemes, this method captures the physics of the important short-range contributions (exchange, overlap, and charge-transfer mediated terms) but it becomes particularly suitable in presence of more than two states of interest. The method is formulated to be usable with any level of electronic structure calculations and to diabatize different types of states by selecting different molecular properties. These features make the diabatization scheme presented here especially appropriate in the context of organic crystals, where several excitons localized on the same molecular pair may be found close in energy. In this paper, the method is validated on the tetracene crystal dimer, a well characterized case where the charge transfer (CT) states are closer in energy to the Frenkel excitons (FE). The test system was studied as a function of an external electric field (to explore the effect of changing the relative energy of the CT excited state) and as a function of different intermolecular distances (to probe the strength of the coupling between FE and CT states). Additionally, we illustrate how the approximation can be used to include the environment polarization effect.

17.
J Chem Phys ; 142(18): 184105, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25978881

RESUMO

We propose an expression of the hopping rate between localized states in semiconducting disordered polymers that contain the most used rates in the literature as special cases. We stress that these rates cannot be obtained directly from electron transfer rate theories as it is not possible to define diabatic localized states if the localization is caused by disorder, as in most polymers, rather than nuclear polarization effects. After defining the separate classes of accepting and inducing nuclear modes in the system, we obtain a general expression of the hopping rate. We show that, under the appropriate limits, this expression reduces to (i) a single-phonon rate expression or (ii) the Miller-Abrahams rate or (iii) a multi-phonon expression. The description of these limits from a more general expression is useful to interpolate between them, to validate the assumptions of each limiting case, and to define the simplest rate expression that still captures the main features of the charge transport. When the rate expression is fed with a range of realistic parameters the deviation from the Miller-Abrahams rate is large or extremely large, especially for hopping toward lower energy states, due to the energy gap law.

18.
Angew Chem Int Ed Engl ; 54(8): 2543-7, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25597927

RESUMO

A combination of spectroscopy (UV/Vis absorption, emission, and circular dichroism), microscopy (AFM and TEM), and computational studies reveal the formation of non-centrosymmetric homochiral columnar subphthalocyanine assemblies. These assemblies form through a cooperative supramolecular polymerization process driven by hydrogen-bonding between amide groups, π-π stacking, and dipolar interactions between axial B-F bonds.

19.
Phys Rev Lett ; 114(2): 026402, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25635554

RESUMO

We show that the excitonic coupling in molecular crystals undergoes a very large fluctuation at room temperature as a result of the combined thermal motions of the nuclei. This observation dramatically affects the description of exciton transport in organic crystals and any other phenomenon (like singlet fission or exciton dissociation) that originates from an exciton in a molecular crystal or thin film. This unexpected result is due to the predominance of the short-range excitonic coupling mechanisms (exchange, overlap, and charge-transfer mediated) over the Coulombic excitonic coupling for molecules in van der Waals contact. To quantify this effect we develop a procedure to evaluate accurately the short-range excitonic coupling (via a diabatization scheme) along a molecular dynamics trajectory of the representative molecular crystals of anthracene and tetracene.

20.
Chem Sci ; 6(8): 4426-4432, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142697

RESUMO

A series of exTTF-(crown ether)2 receptors, designed to host C60, has been prepared. The size of the crown ether and the nature of the heteroatoms have been systematically changed to fine tune the association constants. Electrochemical measurements and transient absorption spectroscopy assisted in corroborating charge transfer in the ground state and in the excited state, leading to the formation of radical ion pairs featuring lifetimes in the range from 12 to 21 ps. To rationalize the nature of the exTTF-(crown ether)2·C60 stabilizing interactions, theoretical calculations have been carried out, suggesting a synergetic interplay of donor-acceptor, π-π, n-π and CH···π interactions, which is the basis for the affinity of our novel receptors towards C60.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA