Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
1.
Eur Respir J ; 54(1)2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31073081

RESUMO

Previous reports link differential DNA methylation (DNAme) to environmental exposures that are associated with lung function. Direct evidence on lung function DNAme is, however, limited. We undertook an agnostic epigenome-wide association study (EWAS) on pre-bronchodilation lung function and its change in adults.In a discovery-replication EWAS design, DNAme in blood and spirometry were measured twice, 6-15 years apart, in the same participants of three adult population-based discovery cohorts (n=2043). Associated DNAme markers (p<5×10-7) were tested in seven replication cohorts (adult: n=3327; childhood: n=420). Technical bias-adjusted residuals of a regression of the normalised absolute ß-values on control probe-derived principle components were regressed on level and change of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and their ratio (FEV1/FVC) in the covariate-adjusted discovery EWAS. Inverse-variance-weighted meta-analyses were performed on results from discovery and replication samples in all participants and never-smokers.EWAS signals were enriched for smoking-related DNAme. We replicated 57 lung function DNAme markers in adult, but not childhood samples, all previously associated with smoking. Markers not previously associated with smoking failed replication. cg05575921 (AHRR (aryl hydrocarbon receptor repressor)) showed the statistically most significant association with cross-sectional lung function (FEV1/FVC: pdiscovery=3.96×10-21 and pcombined=7.22×10-50). A score combining 10 DNAme markers previously reported to mediate the effect of smoking on lung function was associated with lung function (FEV1/FVC: p=2.65×10-20).Our results reveal that lung function-associated methylation signals in adults are predominantly smoking related, and possibly of clinical utility in identifying poor lung function and accelerated decline. Larger studies with more repeat time-points are needed to identify lung function DNAme in never-smokers and in children.

2.
Thorax ; 74(7): 633-642, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30936389

RESUMO

INTRODUCTION: Males have a higher prevalence of asthma in childhood, whereas females have a higher prevalence in adolescence and adulthood. The 'adolescent switch' observed between sexes during puberty has been hypothesised to be due to fluctuating sex hormones. Robust evidence of the involvement of sex hormones in asthma could lead to development of therapeutic interventions. METHODS: We combine observational evidence using longitudinal data on sex hormone-binding globulin (SHBG), total and bioavailable testosterone and asthma from a subset of males (n=512) in the Avon Longitudinal Study of Parents and Children, and genetic evidence of SHBG and asthma using two-sample Mendelian randomisation (MR), a method of causal inference. We meta-analysed two-sample MR results across two large data sets, the Trans-National Asthma Genetics Consortium genome-wide association study of asthma and UK Biobank (over 460 000 individuals combined). RESULTS: Observational evidence indicated weak evidence of a protective effect of increased circulating testosterone on asthma in males in adolescence, but no strong pattern of association with SHBG. Genetic evidence using two-sample MR indicated a protective effect of increased SHBG, with an OR for asthma of 0.86 (95% CI 0.74 to 1.00) for the inverse-variance weighted approach and an OR of 0.83 (95% CI 0.72 to 0.96) for the weighted median estimator, per unit increase in natural log SHBG. A sex-stratified sensitivity analysis suggested the protective effect of SHBG was mostly evident in females. CONCLUSION: We report the first suggestive evidence of a protective effect of genetically elevated SHBG on asthma, which may provide a biological explanation behind the observed asthma sex discordance. Further work is required to disentangle the downstream effects of SHBG on asthma and the molecular pathways involved.

3.
Epigenomics ; 11(2): 133-145, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30638414

RESUMO

AIM: To determine if nonsyndromic cleft lip with or without cleft palate (nsCL/P) genetic risk variants influence liability to nsCL/P through gene regulation pathways, such as those involving DNA methylation. MATERIALS & METHODS: nsCL/P genetic summary data and methylation data from four studies were used in conjunction with Mendelian randomization and joint likelihood mapping to investigate potential mediation of nsCL/P genetic variants. RESULTS & CONCLUSION: Evidence was found at VAX1 (10q25.3), LOC146880 (17q23.3) and NTN1 (17p13.1), that liability to nsCL/P and variation in DNA methylation might be driven by the same genetic variant, suggesting that genetic variation at these loci may increase liability to nsCL/P by influencing DNA methylation. Follow-up analyses using different tissues and gene expression data provided further insight into possible biological mechanisms.

4.
J Allergy Clin Immunol ; 143(6): 2062-2074, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30579849

RESUMO

BACKGROUND: Epigenetic mechanisms, including methylation, can contribute to childhood asthma. Identifying DNA methylation profiles in asthmatic patients can inform disease pathogenesis. OBJECTIVE: We sought to identify differential DNA methylation in newborns and children related to childhood asthma. METHODS: Within the Pregnancy And Childhood Epigenetics consortium, we performed epigenome-wide meta-analyses of school-age asthma in relation to CpG methylation (Illumina450K) in blood measured either in newborns, in prospective analyses, or cross-sectionally in school-aged children. We also identified differentially methylated regions. RESULTS: In newborns (8 cohorts, 668 cases), 9 CpGs (and 35 regions) were differentially methylated (epigenome-wide significance, false discovery rate < 0.05) in relation to asthma development. In a cross-sectional meta-analysis of asthma and methylation in children (9 cohorts, 631 cases), we identified 179 CpGs (false discovery rate < 0.05) and 36 differentially methylated regions. In replication studies of methylation in other tissues, most of the 179 CpGs discovered in blood replicated, despite smaller sample sizes, in studies of nasal respiratory epithelium or eosinophils. Pathway analyses highlighted enrichment for asthma-relevant immune processes and overlap in pathways enriched both in newborns and children. Gene expression correlated with methylation at most loci. Functional annotation supports a regulatory effect on gene expression at many asthma-associated CpGs. Several implicated genes are targets for approved or experimental drugs, including IL5RA and KCNH2. CONCLUSION: Novel loci differentially methylated in newborns represent potential biomarkers of risk of asthma by school age. Cross-sectional associations in children can reflect both risk for and effects of disease. Asthma-related differential methylation in blood in children was substantially replicated in eosinophils and respiratory epithelium.

5.
BMC Genet ; 19(1): 113, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30547757

RESUMO

BACKGROUND: Levels of sex hormone-binding globulin (SHBG) and the androgen testosterone have been associated with risk of diseases throughout the lifecourse. Although both SHBG and testosterone have been shown to be highly heritable, only a fraction of that heritability has been explained by genetic studies. Epigenetic modifications such as DNA methylation may explain some of the missing heritability and could potentially inform biological knowledge of endocrine disease mechanisms involved in development of later life disease. Using data from the Avon Longitudinal Study of Parents and Children (ALSPAC), we explored cross-sectional associations of SHBG, total testosterone and bioavailable testosterone in childhood (males only) and adolescence (both males and females) with genome-wide DNA methylation. We also report associations of a SHBG polymorphism (rs12150660) with DNA methylation, which leads to differential levels of SHBG in carriers, as a genetic proxy of circulating SHBG levels. RESULTS: We identified several novel sites and genomic regions where levels of SHBG, total testosterone, and bioavailable testosterone were associated with DNA methylation, including one region associated with total testosterone in males (annotated to the KLHL31 gene) in both childhood and adolescence and a second region associated with bioavailable testosterone (annotated to the CMYA5 gene) at both time-points. We also identified one region where both SHBG and bioavailable testosterone in males in childhood (annotated to the ZNF718 gene) was associated with DNA methylation. CONCLUSION: Our findings have important implications in the understanding of the biological processes of SHBG and testosterone, with the potential for future work to determine the molecular mechanisms that could underpin these associations.


Assuntos
Metilação de DNA , Globulina de Ligação a Hormônio Sexual/metabolismo , Testosterona/metabolismo , Adolescente , Criança , Epigenômica , Feminino , Genótipo , Humanos , Modelos Lineares , Estudos Longitudinais , Masculino , Polimorfismo de Nucleotídeo Único , Globulina de Ligação a Hormônio Sexual/análise , Globulina de Ligação a Hormônio Sexual/genética , Testosterona/análise
6.
Respir Res ; 19(1): 156, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30134983

RESUMO

BACKGROUND: The pathophysiological role of SERPINA1 in respiratory health may be more strongly determined by the regulation of its expression than by common genetic variants. A family based study of predominantly smoking adults found methylation at two Cytosine-phosphate-Guanine sites (CpGs) in SERPINA1 gene to be associated with chronic obstructive pulmonary disease risk. The objective of this study was to confirm the association of lung function with SERPINA1 methylation in general population samples by testing a comprehensive set of CpGs in the SERPINA gene cluster. We considered lung function level and decline in adult smokers from three European population-based cohorts and lung function level and growth in tobacco-smoke exposed children from a birth cohort. METHODS: DNA methylation using Illumina Infinium Human Methylation 450 k and EPIC beadchips and lung function were measured at two time points in 1076 SAPALDIA, ECRHS and NFBC adult cohort participants and 259 ALSPAC children. Associations of methylation at 119 CpG sites in the SERPINA gene cluster (PP4R4-SERPINA13P) with lung functions and circulating alpha-1-antitripsin (AAT) were assessed using multivariable cross-sectional and longitudinal regression models. RESULTS: Methylation at cg08257009 in the SERPINA gene cluster, located 32 kb downstream of SERPINA1, not annotated to a gene, was associated with FEV1/FVC at the Bonferroni corrected level in adults, but not in children. None of the methylation signals in the SERPINA1 gene showed associations with lung function after correcting for multiple testing. CONCLUSIONS: The results do not support a role of SERPINA1 gene methylation as determinant of lung function across the life course in the tobacco smoke exposed general population exposed.

7.
Epigenomics ; 10(1): 27-42, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29172695

RESUMO

AIM: Alcohol consumption during pregnancy is sometimes associated with adverse outcomes in offspring, potentially mediated by epigenetic modifications. We aimed to investigate genome-wide DNA methylation in cord blood of newborns exposed to alcohol in utero. MATERIALS & METHODS: We meta-analyzed information from six population-based birth cohorts within the Pregnancy and Childhood Epigenetics consortium. RESULTS: We found no strong evidence of association at either individual CpGs or across larger regions of the genome. CONCLUSION: Our findings suggest no association between maternal alcohol consumption and offspring cord blood DNA methylation. This is in stark contrast to the multiple strong associations previous studies have found for maternal smoking, which is similarly socially patterned. However, it is possible that a combination of a larger sample size, higher doses, different timings of exposure, exploration of a different tissue and a more global assessment of genomic DNA methylation might show evidence of association.


Assuntos
Consumo de Bebidas Alcoólicas/epidemiologia , Metilação de DNA , Sangue Fetal/metabolismo , Exposição Materna , Troca Materno-Fetal , Adulto , Estudos de Coortes , Feminino , Humanos , Países Baixos/epidemiologia , Noruega/epidemiologia , Gravidez , Reino Unido/epidemiologia , Estados Unidos/epidemiologia , Adulto Jovem
8.
Clin Epigenetics ; 9: 112, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046734

RESUMO

BACKGROUND: Asthma heritability has only been partially explained by genetic variants and is known to be sensitive to environmental factors, implicating epigenetic modifications such as DNA methylation in its pathogenesis. METHODS: Using data collected in the Avon Longitudinal Study of Parents and Children (ALSPAC), we assessed associations of asthma and wheeze with DNA methylation at 7.5 and 16.5 years, at over 450,000 CpG sites in DNA from the peripheral blood of approx. 1000 participants. We used Mendelian randomization (MR), a method of causal inference that uses genetic variants as instrumental variables, to infer the direction of association between DNA methylation and asthma. RESULTS: We identified 302 CpGs associated with current asthma status (FDR-adjusted P value < 0.05) and 445 with current wheeze status at 7.5 years, with substantial overlap between the two. Genes annotated to the 302 associated CpGs were enriched for pathways related to movement of cellular/subcellular components, locomotion, interleukin-4 production and eosinophil migration. All associations attenuated when adjusted for eosinophil and neutrophil cell count estimates. At 16.5 years, two sites were associated with current asthma after adjustment for cell counts. The CpGs mapped to the AP2A2 and IL5RA genes, with a - 2.32 [95% CI - 1.47, - 3.18] and - 2.49 [95% CI - 1.56, - 3.43] difference in percentage methylation in asthma cases respectively. Two-sample bi-directional MR indicated a causal effect of asthma on DNA methylation at several CpG sites at 7.5 years. However, associations did not persist after adjustment for multiple testing. There was no evidence of a causal effect of asthma on DNA methylation at either of the two CpG sites at 16.5 years. CONCLUSION: The majority of observed associations are driven by higher eosinophil cell counts in asthma cases, acting as an intermediate phenotype, with important implications for future studies of DNA methylation in atopic diseases.


Assuntos
Asma/genética , Metilação de DNA , Epigenômica/métodos , Estudo de Associação Genômica Ampla/métodos , Sons Respiratórios/genética , Complexo 2 de Proteínas Adaptadoras/genética , Subunidades alfa do Complexo de Proteínas Adaptadoras/genética , Adolescente , Asma/imunologia , Contagem de Células Sanguíneas , Criança , Ilhas de CpG , Eosinófilos/citologia , Feminino , Predisposição Genética para Doença , Humanos , Subunidade alfa de Receptor de Interleucina-5/genética , Estudos Longitudinais , Masculino , Neutrófilos/citologia , Sons Respiratórios/imunologia
9.
PLoS One ; 12(4): e0176293, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28441402

RESUMO

Sex discordance in asthma prevalence has been previously reported, with higher prevalence in males before puberty, and in females after puberty; the adolescent "switch". However, cross-sectional studies have suggested a narrowing of this discordance in recent decades. We used a combination of cross-sectional and longitudinal modelling to examine sex differences in asthma, wheeze and longitudinal wheezing phenotypes in two UK birth cohorts, the Avon Longitudinal Study of Parents and Children (ALSPAC; born 1991-92 with data from age 0-18 years) and the Millennium Cohort Study (MCS; born 2000-02 with data from age 3-10 years). We derived measures of asthma and wheeze from questionnaires completed by mothers and cohort children. Previously-derived ALSPAC wheezing phenotype models were applied to MCS. Males had a higher prevalence of asthma at 10.7 years in ALSPAC (OR 1.45 95%CI: 1.26, 1.66 n = 7778 for current asthma) and MCS (OR 1.42 95%CI: 1.29, 1.56 n = 6726 for asthma ever) compared to females, decreasing in ALSPAC after puberty (OR 0.94 95%CI: 0.79, 1.11 n = 5023 for current asthma at 16.5 years). In longitudinal models using restricted cubic splines, males had a clear excess for asthma in the last 12 months and wheeze in the last 12 months up until 16.5 years of age in ALSPAC. Males had an increased risk of all derived longitudinal wheezing phenotypes in MCS when compared to never wheeze and no evidence of being at lower risk of late wheeze when compared to early wheeze. By comparing data in two large, contemporary cohorts we have shown the persistence of sex discordance in childhood asthma, with no evidence that the sex discordance is narrowing in recent cohorts.


Assuntos
Asma/epidemiologia , Sons Respiratórios/fisiopatologia , Adolescente , Asma/fisiopatologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Prevalência , Fatores Sexuais , Maturidade Sexual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA