Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Aquat Toxicol ; 235: 105816, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33838495

RESUMO

Omics approaches are continuously providing new clues on the mechanisms of action of contaminants in species of environmental relevance, contributing to the emergence of molecular ecotoxicology. Co-expression network approaches represent a suitable methodological framework for studying the rich content of omics datasets. This study aimed to find evidence of key pathways and proteins related to the testicular toxicity in the sentinel crustacean species Gammarus fossarum exposed to endocrine disruptors using a weighted protein co-expression network analysis. From a shotgun proteomics dataset of male gonads of G. fossarum organisms exposed to cadmium (Cd), pyriproxyfen (Pyr) and methoxyfenozide (Met) in laboratory conditions, four distinct modules were identified as significantly correlated to contaminants' exposure. Protein set enrichment analysis identified modules involved in cytoskeleton organization and oxidative stress response associated with the Cd exposure. The module associated with Pyr exposure was associated with endoplasmic reticulum stress (ER) response, and the module correlated with Met exposure was characterized by a significant proportion of amphipod-restricted proteins whose functions are still not characterized. Our results show that co-expression networks are efficient and adapted tools to identify new potential mode of actions from environmental sentinel species, such as G. fossarum, using a proteogenomic approach, even without an annotated genome.

2.
Sci Total Environ ; 771: 144565, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33736145

RESUMO

Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.


Assuntos
Ecotoxicologia , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Humanos , Invertebrados , Reprodutibilidade dos Testes , Células-Tronco , Poluentes Químicos da Água/toxicidade
3.
Microorganisms ; 8(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255667

RESUMO

The pools of nuclear reactor facilities constitute harsh environments for life, bathed with ionizing radiation, filled with demineralized water and containing toxic radioactive elements. The very few studies published to date have explored water pools used to store spent nuclear fuels. Due to access restrictions and strong handling constraints related to the high radioactivity level, nothing is presently known about life in water pools that directly cool nuclear cores. In this work, we investigated the microbial communities in the cooling pool of the French Osiris nuclear reactor using direct meta-omics approaches, namely, DNA metabarcoding and proteotyping based on 16S ribosomal RNA gene sequencing and on peptide analysis, respectively. We identified 25 genera in the highly radioactive core water supply during operation with radionuclide activity higher than 3 × 109 Bq/m3. The prevailing genera Variovorax and Sphingomonas at operation were supplanted by Methylobacterium, Asanoa, and Streptomyces during shutdown. Variovorax might use dihydrogen produced by water radiolysis as an energy source.

4.
Microorganisms ; 8(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260855

RESUMO

Several bacteria are able to degrade the major industrial solvent dichloromethane (DCM) by using the conserved dehalogenase DcmA, the only system for DCM degradation characterised at the sequence level so far. Using differential proteomics, we rapidly identified key determinants of DCM degradation for Hyphomicrobium sp. MC8b, an unsequenced facultative methylotrophic DCM-degrading strain. For this, we designed a pan-proteomics database comprising the annotated genome sequences of 13 distinct Hyphomicrobium strains. Compared to growth with methanol, growth with DCM induces drastic changes in the proteome of strain MC8b. Dichloromethane dehalogenase DcmA was detected by differential pan-proteomics, but only with poor sequence coverage, suggesting atypical characteristics of the DCM dehalogenation system in this strain. More peptides were assigned to DcmA by error-tolerant search, warranting subsequent sequencing of the genome of strain MC8b, which revealed a highly divergent set of dcm genes in this strain. This suggests that the dcm enzymatic system is less strongly conserved than previously believed, and that substantial molecular evolution of dcm genes has occurred beyond their horizontal transfer in the bacterial domain. Our study showed the power of pan-proteomics for quick characterization of new strains belonging to branches of the Tree of Life that are densely genome-sequenced.

5.
Genomics ; 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33279651

RESUMO

A new strain belonging to the genus Kocuria, designed PT10, was isolated from irradiated roots of the xerophyte Panicum turgidum. Isolate PT10 is a Gram-positive, coccoid, aerobic and ionizing-radiation (IR)-resistant actinobacterium. PT10 has shown an ability to survive under extreme conditions, such as gamma irradiation, desiccation and high concentration of hydrogen peroxide. Phenotypic, chemotaxonomic and comparative genome analyses support the assignment of strain PT10 (LMG 31102 = DSM 108617) as Kocuria rhizophila. The complete genome sequence of PT10 consists of one chromosome (2,656,287 bps), with a 70.7% G + C content and comprises 2481 protein-coding sequences. A total of 1487 proteins were identified by LC-MS/MS profiling. In silico analyses revealed that the proteome of the oxidation-tolerant PT10 possesses several features explaining its IR-resistant phenotype and many adaptive pathways implicated in response to environmental pressures - desiccation, cold, reactive oxygen species and other stressors.

6.
Tree Physiol ; 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33215189

RESUMO

Growing water restrictions associated with climate changes constitute daunting challenges to crop performance. This study unveils the impacts of moderate (MWD) or severe (SWD) water deficit, and their interaction with air [CO2], on the photosynthetic apparatus of Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu. Seven year-old potted plants grown under 380 (aCO2) or 700 µL L-1 (eCO2) [CO2] gradually reached predawn water potentials between -1.6 to -2.1 MPa (MWD), and below -3.5 MPa (SWD). Under drought, stomata closure was chiefly related to ABA rise. Increasing drought severity progressively affected gas exchange and fluorescence parameters in both genotypes, with non-stomatal limitations becoming gradually dominating, especially regarding the photochemical and biochemical components of CL153 SWD plants. In contrast, Icatu plants were highly tolerant to SWD, with minor, if any, negative impacts on the potential photosynthetic functioning and components (e.g., Amax, Fv/Fm, electron carriers, photosystems (PSs) and RuBisCO activities). Besides, drought-stressed Icatu plants displayed increased abundance of a large set of proteins associated with the photosynthetic apparatus (photosystems, light harvesting complexes, cyclic electron flow, RuBisCO activase) regardless of [CO2]. Single eCO2 did not promote stomatal and photosynthetic down-regulation in both genotypes. Instead, eCO2 increased photosynthetic performance, moderately reinforced photochemical (PSs activity, electron carriers) and biochemical (RuBisCO, Ru5PK) components, whereas photoprotective mechanisms and protein abundance remained mostly unaffected. In both genotypes, under MWD, eCO2 superimposition delayed stress severity and promoted photosynthetic functioning with lower energy dissipation and PSII impacts, whereas stomatal closure was decoupled from increases in ABA. In SWD plants most impacts on the photosynthetic performance were reduced by eCO2, especially in the moderately drought affected CL153 genotype, although maintaining RuBisCO as the most sensitive component, deserving special breeder's attention to improve coffee sustainability under future climate scenarios.

8.
Proteomics ; : e2000198, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33236484

RESUMO

Proteomics offers a wide collection of methodologies to study biological systems at the finest granularity. Faced with COVID-19, the most worrying pandemic in a century, proteomics researchers have made significant progress in understanding how the causative virus hijacks the host's cellular machinery and multiplies exponentially, how the disease can be diagnosed and how it develops, as well as its severity predicted. Numerous cellular targets of potential interest for the development of new antiviral drugs have been documented. Here, we present the most striking results obtained in the proteomics field over this first semester of the pandemic. The molecular machinery of SARS-CoV-2 is much more complex than initially believed, as many post-translational modifications can occur, leading to a myriad of proteoforms and a broad heterogeneity of viral particles. The interplay of protein-protein interactions, protein abundances, and post-translational modifications has yet to be fully documented to provide a full picture of this intriguing but lethal biological threat. Proteomics has the potential to provide rapid detection of the SARS-CoV-2 virus by mass spectrometry proteotyping, and to further increase our knowledge of severe respiratory syndrome COVID-19 and its long-term health consequences. This article is protected by copyright. All rights reserved.

9.
J Proteomics ; : 104044, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33161166

RESUMO

Thermococcus gammatolerans EJ3 is an extremophile archaeon which was revealed as one of the most radioresistant organisms known on Earth, withstanding up to 30 kGy gamma-ray radiations. While its theoretical proteome is rather small, T. gammatolerans may enhance its toolbox by post-translational modification of its proteins. Here, we explored its extent of Nε-acetylation of lysines. For this, we immunopurified with two acetylated-lysine antibodies the acetylated peptides resulting from a proteolysis of soluble proteins with trypsin. The comparison of acetylated proteomes of two archaea highlights some common acetylation patterns but only 4 out of 26 orthologous proteins found to be acetylated in both species, are acetylated on the same lysine site. We evidenced that histone B is acetylated in T. gammatolerans at least at two different sites (K27 and K36), and a peptide common at the C-terminus of histones A and B is also acetylated. We verified that acetylation of histones is a common trait among Thermococcales after recording data on Thermococcus kodakaraensis histones and identifying three acetylated sites. This discovery reinforces the strong evolutionary link between Archaea and Eukaryotes and should be an incentive for further investigation on the extent and role of acetylation of histones in Archaea. SIGNIFICANCE: Acetylation is an important post-translational modification of proteins that has been extensively described in Eukaryotes, and more recently in Bacteria. Here, we report for the first time ever that histones in Archaea are also modified by acetylation after a systematic survey of acetylated peptides in Thermococcus gammatolerans. Structural models of histones A and B indicates that acetylation of the identified modified residues may play an important role in histone assembly and/or interaction with DNA. The in-depth protein acetylome landscape in T. gammatolerans includes at least 181 unique protein sequences, some of them being modified on numerous residues. Proteins involved in metabolic processes, information storage and processing mechanisms are over-represented categories in this dataset, highlighting the ancient role of this protein post-translational modification in primitive cells.

10.
Microorganisms ; 8(10)2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33020444

RESUMO

The microbial diversity encompassed by the environmental biosphere is largely unexplored, although it represents an extensive source of new knowledge and potentially of novel enzymatic catalysts for biotechnological applications. To determine the taxonomy of microorganisms, proteotyping by tandem mass spectrometry has proved its efficiency. Its latest extension, phylopeptidomics, adds a biomass quantitation perspective for mixtures of microorganisms. Here, we present an application of phylopeptidomics to rapidly and sensitively screen microorganisms sampled from an industrial environment, i.e., a pool where radioactive material is stored. The power of this methodology is demonstrated through the identification of both prokaryotes and eukaryotes, whether as pure isolates or present as mixtures or consortia. In this study, we established accurate taxonomical identification of environmental prokaryotes belonging to the Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria phyla, as well as eukaryotes from the Ascomycota phylum. The results presented illustrate the potential of tandem mass spectrometry proteotyping, in particular phylopeptidomics, to screen for and rapidly identify microorganisms.

11.
Toxins (Basel) ; 12(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036317

RESUMO

Cellular proteomes and exoproteomes are dynamic, allowing pathogens to respond to environmental conditions to sustain growth and virulence. Bacillus cereus is an important food-borne pathogen causing intoxication via emetic toxin and/or multiple protein exotoxins. Here, we compared the dynamics of the cellular proteome and exoproteome of emetic B. cereus cells grown at low (16 °C) and high (30 °C) temperature. Tandem mass spectrometry (MS/MS)-based shotgun proteomics analysis identified 2063 cellular proteins and 900 extracellular proteins. Hierarchical clustering following principal component analysis indicated that in B. cereus the abundance of a subset of these proteins-including cold-stress responders, and exotoxins non-hemolytic enterotoxin (NHE) and hemolysin I (cereolysin O (CLO))-decreased at low temperature, and that this subset governs the dynamics of the cellular proteome. NHE, and to a lesser extent CLO, also contributed significantly to exoproteome dynamics; with decreased abundances in the low-temperature exoproteome, especially in late growth stages. Our data therefore indicate that B. cereus may reduce its production of secreted protein toxins to maintain appropriate proteome dynamics, perhaps using catabolite repression to conserve energy for growth in cold-stress conditions, at the expense of virulence.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33085150

RESUMO

OBJECTIVES: To evaluate the rate of procedural success and long-term outcomes of the PK Papyrus (PKP) covered stent (CS). BACKGROUND: CS are essential in the treatment of coronary artery perforation (CAP). They have also been used to treat coronary artery aneurysms. Limited evidence is available on clinical outcomes with the PKP. METHODS: This was a multicenter, observational, retrospective, and prospective study. Consecutive patients undergoing intentional PKP implantation in 22 centers in France were included. The primary endpoint was the rate of procedural success. Secondary endpoints included rates of death, myocardial infarction (MI), target lesion revascularization (TLR), in-stent restenosis (ISR), and stent thrombosis (ST). RESULTS: Data from 130 patients were analyzed (mean age 72.5 ± 10.5 years; 71% men). The main indication for PKP was CAP, in 84 patients (65%). Delivery success was achieved in 95% and procedural success in 91%. During the in-hospital stay, 15 patients died (12%) and 7 (5%) presented with ST. Data from 127 patients were available at 19.2 ± 12.8 month follow-up. Thirty-three patients died (26%), 15 (12%) had an MI and 21 (17%) presented with TLR. TLR was due to ISR in 12 patients (9%), 10 had definite ST (8%) and 1 patient for stent under-expansion. CONCLUSIONS: The principal indication for PKP was CAP. PKP had high rates of delivery and procedural success. At long-term follow-up, there was a high rate of TLR, mainly due to ISR and ST. These results are consistent with previously reported data in these clinical settings.

15.
Anal Bioanal Chem ; 412(26): 7333-7347, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32808052

RESUMO

A highly multiplexed liquid chromatography mass spectrometry-multiple reaction monitoring (MRM)-based assay has been developed for evaluating 107 candidate immune biomarkers in both hemocytes and plasma of the zebra mussel Dreissena polymorpha. The Scout-MRM strategy was employed for the first time, shortening the implementation of a targeted MRM bottom-up proteomics assay using selected immune protein-related peptides identified by shotgun discovery proteogenomics. This strategy relies on spiking scout peptides during the discovery phase and using them to build and deploy the MRM targeted proteomics method. It proved to be highly relevant, since about 90% of the targeted peptides and proteins were monitored and rapidly measured in both hemocyte and plasma samples. The sample preparation protocol was optimized by evaluating the digestion efficiency of tryptic peptides over time. The accuracy and precision of 50 stable isotope-labeled peptides were evaluated for use as internal standards. Finally, the specificity of the transitions was thoroughly assessed to ensure the reliable measurement of protein biomarkers. Several analytical and biological validation criteria were evaluated across hemocytes and plasma samples exposed ex vivo to biological contaminants, resulting in the validation of two Scout-MRM assays for the relative quantitation of 85 and 89 proteins in hemocytes and plasma, respectively. Graphical abstract.

16.
Environ Microbiol ; 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32815215

RESUMO

Bacillus cereus is a ubiquitous endospore-forming bacterium, which mainly affects humans as a food-borne pathogen. Bacillus cereus can contaminate groundwater used to irrigate food crops. Here, we examined the ability of the emetic strain B. cereus F4810/72 to survive abiotic conditions encountered in groundwater. Our results showed that vegetative B. cereus cells rapidly evolved in a mixed population composed of endospores and asporogenic variants bearing spo0A mutations. One asporogenic variant, VAR-F48, was isolated and characterized. VAR-F48 can survive in sterilized groundwater over a long period in a vegetative form and has a competitive advantage compared to its parental strain. Proteomics analysis allowed us to quantify changes to cellular and exoproteins after 24 and 72 h incubation in groundwater, for VAR-F48 compared to its parental strain. The results revealed a significant re-routing of the metabolism in the absence of Spo0A. We concluded that VAR-F48 maximizes its energy use to deal with oligotrophy, and the emergence of spo0A-mutated variants may contribute to the persistence of emetic B. cereus in natural oligotrophic environments.

17.
Front Plant Sci ; 11: 1049, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733525

RESUMO

This study unveils the single and combined drought and heat impacts on the photosynthetic performance of Coffea arabica cv. Icatu and C. canephora cv. Conilon Clone 153 (CL153). Well-watered (WW) potted plants were gradually submitted to severe water deficit (SWD) along 20 days under adequate temperature (25/20°C, day/night), and thereafter exposed to a gradual temperature rise up to 42/30°C, followed by a 14-day water and temperature recovery. Single drought affected all gas exchanges (including Amax ) and most fluorescence parameters in both genotypes. However, Icatu maintained Fv/Fm and RuBisCO activity, and reinforced electron transport rates, carrier contents, and proton gradient regulation (PGR5) and chloroplast NADH dehydrogenase-like (NDH) complex proteins abundance. This suggested negligible non-stomatal limitations of photosynthesis that were accompanied by a triggering of protective cyclic electron transport (CEF) involving both photosystems (PSs). These findings contrasted with declines in RuBisCO and PSs activities, and cytochromes (b559 , f, b563 ) contents in CL153. Remarkable heat tolerance in potential photosynthetic functioning was detected in WW plants of both genotypes (up to 37/28°C or 39/30°C), likely associated with CEF in Icatu. Yet, at 42/30°C the tolerance limit was exceeded. Reduced Amax and increased Ci values reflected non-stomatal limitations of photosynthesis, agreeing with impairments in energy capture (F0 rise), PSII photochemical efficiency, and RuBisCO and Ru5PK activities. In contrast to PSs activities and electron carrier contents, enzyme activities were highly heat sensitive. Until 37/28°C, stresses interaction was largely absent, and drought played the major role in constraining photosynthesis functioning. Harsher conditions (SWD, 42/30°C) exacerbated impairments to PSs, enzymes, and electron carriers, but uncontrolled energy dissipation was mitigated by photoprotective mechanisms. Most parameters recovered fully between 4 and 14 days after stress relief in both genotypes, although some aftereffects persisted in SWD plants. Icatu was more drought tolerant, with WW and SWD plants usually showing a faster and/or greater recovery than CL153. Heat affected both genotypes mostly at 42/30°C, especially in SWD and Icatu plants. Overall, photochemical components were highly tolerant to heat and to stress interaction in contrast to enzymes that deserve special attention by breeding programs to increase coffee sustainability in climate change scenarios.

18.
J Proteome Res ; 19(11): 4407-4416, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32697082

RESUMO

Rapid but yet sensitive, specific, and high-throughput detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical samples is key to diagnose infected people and to better control the spread of the virus. Alternative methodologies to PCR and immunodiagnostics that would not require specific reagents are worthy to investigate not only for fighting the COVID-19 pandemic but also to detect other emergent pathogenic threats. Here, we propose the use of tandem mass spectrometry to detect SARS-CoV-2 marker peptides in nasopharyngeal swabs. We documented that the signal from the microbiota present in such samples is low and can be overlooked when interpreting shotgun proteomic data acquired on a restricted window of the peptidome landscape. In this proof-of-concept study, simili nasopharyngeal swabs spiked with different quantities of purified SARS-CoV-2 viral material were used to develop a nanoLC-MS/MS acquisition method, which was then successfully applied on COVID-19 clinical samples. We argue that peptides ADETQALPQR and GFYAQGSR from the nucleocapsid protein are of utmost interest as their signal is intense and their elution can be obtained within a 3 min window in the tested conditions. These results pave the way for the development of time-efficient viral diagnostic tests based on mass spectrometry.


Assuntos
Betacoronavirus/química , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus , Nasofaringe/virologia , Pandemias , Pneumonia Viral , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Humanos , Proteínas do Nucleocapsídeo/química , Fosfoproteínas , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia
19.
Sci Signal ; 13(639)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636307

RESUMO

Bone morphogenetic protein 1 (BMP-1) is an important metalloproteinase that synchronizes growth factor activation with extracellular matrix assembly during morphogenesis and tissue repair. The mechanisms by which BMP-1 exerts these effects are highly context dependent. Because BMP-1 overexpression induces marked phenotypic changes in two human cell lines (HT1080 and 293-EBNA cells), we investigated how BMP-1 simultaneously affects cell-matrix interactions and growth factor activity in these cells. Increasing BMP-1 led to a loss of cell adhesion that depended on the matricellular glycoprotein thrombospondin-1 (TSP-1). BMP-1 cleaved TSP-1 between the VWFC/procollagen-like domain and the type 1 repeats that mediate several key TSP-1 functions. This cleavage induced the release of TSP-1 C-terminal domains from the extracellular matrix and abolished its previously described multisite cooperative interactions with heparan sulfate proteoglycans and CD36 on HT1080 cells. In addition, BMP-1-dependent proteolysis potentiated the TSP-1-mediated activation of latent transforming growth factor-ß (TGF-ß), leading to increased signaling through the canonical SMAD pathway. In primary human corneal stromal cells (keratocytes), endogenous BMP-1 cleaved TSP-1, and the addition of exogenous BMP-1 enhanced cleavage, but this had no substantial effect on cell adhesion. Instead, processed TSP-1 promoted the differentiation of keratocytes into myofibroblasts and stimulated production of the myofibroblast marker α-SMA, consistent with the presence of processed TSP-1 in human corneal scars. Our results indicate that BMP-1 can both trigger the disruption of cell adhesion and stimulate TGF-ß signaling in TSP-1-rich microenvironments, which has important potential consequences for wound healing and tumor progression.

20.
Environ Microbiol ; 22(9): 3838-3862, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32656915

RESUMO

Minerals and rocks represent essential reservoirs of nutritive elements for the long-lasting functioning of forest ecosystems developed on nutrient-poor soils. While the presence of effective mineral weathering bacteria was evidenced in the rhizosphere of different plants, the molecular mechanisms involved remain uncharacterized. To fill this gap, we combined transcriptomic, proteomics, geo-chemical and physiological analyses to decipher the potential molecular mechanisms explaining the mineral weathering effectiveness of strain PML1(12) of Caballeronia mineralivorans. Considering the early-stage of the interaction between mineral and bacteria, we identified the genes and proteins differentially expressed when: (i) the environment is depleted of certain essential nutrients (i.e., Mg and Fe), (ii) a mineral is added and (iii) the carbon source (i.e., glucose vs mannitol) differs. The integration of these data demonstrates that strain PML1(12) is capable of (i) mobilizing iron through the production of a non-ribosomal peptide synthetase-independent siderophore, (ii) inducing chemotaxis and motility in response to nutrient availability and (iii) strongly acidifying its environment in the presence of glucose using a suite of GMC oxidoreductases to weather mineral. These results provide new insights into the molecular mechanisms involved in mineral weathering and their regulation and highlight the complex sequence of events triggered by bacteria to weather minerals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...