Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811260

RESUMO

DNA methylation, which is modulated by both genetic factors and environmental exposures, may offer a unique opportunity to discover novel biomarkers of disease-related brain phenotypes, even when measured in other tissues than brain, such as blood. A few studies of small sample sizes have revealed associations between blood DNA methylation and neuropsychopathology, however, large-scale epigenome-wide association studies (EWAS) are needed to investigate the utility of DNA methylation profiling as a peripheral marker for the brain. Here, in an analysis of eleven international cohorts, totalling 3337 individuals, we report epigenome-wide meta-analyses of blood DNA methylation with volumes of the hippocampus, thalamus and nucleus accumbens (NAcc)-three subcortical regions selected for their associations with disease and heritability and volumetric variability. Analyses of individual CpGs revealed genome-wide significant associations with hippocampal volume at two loci. No significant associations were found for analyses of thalamus and nucleus accumbens volumes. Cluster-based analyses revealed additional differentially methylated regions (DMRs) associated with hippocampal volume. DNA methylation at these loci affected expression of proximal genes involved in learning and memory, stem cell maintenance and differentiation, fatty acid metabolism and type-2 diabetes. These DNA methylation marks, their interaction with genetic variants and their impact on gene expression offer new insights into the relationship between epigenetic variation and brain structure and may provide the basis for biomarker discovery in neurodegeneration and neuropsychiatric conditions.

2.
Nat Genet ; 51(11): 1624-1636, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31636452

RESUMO

Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.

3.
JAMA Psychiatry ; : 1-11, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31665216

RESUMO

Importance: Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.5% to 1.0% of the population, making 15q11.2 BP1-BP2 the site of the most prevalent known pathogenic copy number variation (CNV). It is unknown to what extent this CNV influences brain structure and affects cognitive abilities. Objective: To determine the association of the 15q11.2 BP1-BP2 deletion and duplication CNVs with cortical and subcortical brain morphology and cognitive task performance. Design, Setting, and Participants: In this genetic association study, T1-weighted brain magnetic resonance imaging were combined with genetic data from the ENIGMA-CNV consortium and the UK Biobank, with a replication cohort from Iceland. In total, 203 deletion carriers, 45 247 noncarriers, and 306 duplication carriers were included. Data were collected from August 2015 to April 2019, and data were analyzed from September 2018 to September 2019. Main Outcomes and Measures: The associations of the CNV with global and regional measures of surface area and cortical thickness as well as subcortical volumes were investigated, correcting for age, age2, sex, scanner, and intracranial volume. Additionally, measures of cognitive ability were analyzed in the full UK Biobank cohort. Results: Of 45 756 included individuals, the mean (SD) age was 55.8 (18.3) years, and 23 754 (51.9%) were female. Compared with noncarriers, deletion carriers had a lower surface area (Cohen d = -0.41; SE, 0.08; P = 4.9 × 10-8), thicker cortex (Cohen d = 0.36; SE, 0.07; P = 1.3 × 10-7), and a smaller nucleus accumbens (Cohen d = -0.27; SE, 0.07; P = 7.3 × 10-5). There was also a significant negative dose response on cortical thickness (ß = -0.24; SE, 0.05; P = 6.8 × 10-7). Regional cortical analyses showed a localization of the effects to the frontal, cingulate, and parietal lobes. Further, cognitive ability was lower for deletion carriers compared with noncarriers on 5 of 7 tasks. Conclusions and Relevance: These findings, from the largest CNV neuroimaging study to date, provide evidence that 15q11.2 BP1-BP2 structural variation is associated with brain morphology and cognition, with deletion carriers being particularly affected. The pattern of results fits with known molecular functions of genes in the 15q11.2 BP1-BP2 region and suggests involvement of these genes in neuronal plasticity. These neurobiological effects likely contribute to the association of this CNV with neurodevelopmental disorders.

4.
Genes (Basel) ; 10(3)2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889929

RESUMO

Studies investigating exceptionally long-lived (ELL) individuals, including genetic studies, have linked cardiovascular-related pathways, particularly lipid and cholesterol homeostasis, with longevity. This study explored the genetic profiles of ELL individuals (cases: n = 294, 95⁻106 years; controls: n = 1105, 55⁻65 years) by assessing their polygenic risk scores (PRS) based on a genome wide association study (GWAS) threshold of p < 5 × 10-5. PRS were constructed using GWAS summary data from two exceptional longevity (EL) analyses and eight cardiovascular-related risk factors (lipids) and disease (myocardial infarction, coronary artery disease, stroke) analyses. A higher genetic risk for exceptional longevity (EL) was significantly associated with longevity in our sample (odds ratio (OR) = 1.19⁻1.20, p = 0.00804 and 0.00758, respectively). Two cardiovascular health PRS were nominally significant with longevity (HDL cholesterol, triglycerides), with higher PRS associated with EL, but these relationships did not survive correction for multiple testing. In conclusion, ELL individuals did not have significantly lower polygenic risk for the majority of the investigated cardiovascular health traits. Future work in larger cohorts is required to further explore the role of cardiovascular-related genetic variants in EL.

5.
Mol Psychiatry ; 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705424

RESUMO

Prior to and following the publication of this article the authors noted that the complete list of authors was not included in the main article and was only present in Supplementary Table 1. The author list in the original article has now been updated to include all authors, and Supplementary Table 1 has been removed. All other supplementary files have now been updated accordingly. Furthermore, in Table 1 of this Article, the replication cohort for the row Close relative in data set, n (%) was incorrect. All values have now been corrected to 0(0%). The publishers would like to apologise for this error and the inconvenience it may have caused.

6.
Nat Commun ; 10(1): 416, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679435

RESUMO

DNA replication timing is known to facilitate the establishment of the epigenome, however, the intimate connection between replication timing and changes to the genome and epigenome in cancer remain largely uncharacterised. Here, we perform Repli-Seq and integrated epigenome analyses and demonstrate that genomic regions that undergo long-range epigenetic deregulation in prostate cancer also show concordant differences in replication timing. A subset of altered replication timing domains are conserved across cancers from different tissue origins. Notably, late-replicating regions in cancer cells display a loss of DNA methylation, and a switch in heterochromatin features from H3K9me3-marked constitutive to H3K27me3-marked facultative heterochromatin. Finally, analysis of 214 prostate and 35 breast cancer genomes reveal that late-replicating regions are prone to cis and early-replication to trans chromosomal rearrangements. Together, our data suggests that the nature of chromosomal rearrangement in cancer is related to the spatial and temporal positioning and altered epigenetic states of early-replicating compared to late-replicating loci.


Assuntos
Aberrações Cromossômicas , Período de Replicação do DNA/fisiologia , Epigênese Genética/fisiologia , Neoplasias/genética , Neoplasias da Mama , Linhagem Celular Tumoral , Metilação de DNA , Replicação do DNA , Desoxirribonuclease I/análise , Epigenômica , Feminino , Regulação Neoplásica da Expressão Gênica , Genoma , Genômica , Heterocromatina , Humanos , Masculino , Neoplasias da Próstata , Sequenciamento Completo do Genoma
7.
Mol Psychiatry ; 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30283035

RESUMO

Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (ß = -0.71 to -1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (ß = -0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10-6, 1.7 × 10-9, 3.5 × 10-12 and 1.0 × 10-4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.

8.
Nat Commun ; 9(1): 3945, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258056

RESUMO

The volume of the lateral ventricles (LV) increases with age and their abnormal enlargement is a key feature of several neurological and psychiatric diseases. Although lateral ventricular volume is heritable, a comprehensive investigation of its genetic determinants is lacking. In this meta-analysis of genome-wide association studies of 23,533 healthy middle-aged to elderly individuals from 26 population-based cohorts, we identify 7 genetic loci associated with LV volume. These loci map to chromosomes 3q28, 7p22.3, 10p12.31, 11q23.1, 12q23.3, 16q24.2, and 22q13.1 and implicate pathways related to tau pathology, S1P signaling, and cytoskeleton organization. We also report a significant genetic overlap between the thalamus and LV volumes (ρgenetic = -0.59, p-value = 3.14 × 10-6), suggesting that these brain structures may share a common biology. These genetic associations of LV volume provide insights into brain morphology.


Assuntos
Genoma Humano , Ventrículos Laterais/anatomia & histologia , Idoso , Estudo de Associação Genômica Ampla , Humanos , Pessoa de Meia-Idade , Tamanho do Órgão/genética
9.
Neuroimage Clin ; 19: 14-21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30034997

RESUMO

Emerging evidence from lesion-symptom mapping (LSM) studies suggested that regional white matter lesions (WML) on strategic white matter (WM) fiber tracts are significantly associated with specific cognitive domains, independent of global WML burden. However, previous LSM investigations were mostly carried out in disease cohorts, with little evidence from community-based older individuals, making findings difficult to generalize. Moreover, most LSM studies applied a threshold to the probabilistic atlas, leading to the loss of information and threshold-dependent findings. Furthermore, it is still unclear whether associations between regional WML and cognition are independent of global grey matter (GM) and WM volumes, which have also been linked to cognition. In the current study, we undertook a region of interest (ROI) LSM study to examine the relationship between regional WML on strategic WM tracts and cognitive performance in a large community-based cohort of older individuals (N = 461; 70-90 years). WML were extracted using a publicly available pipeline, UBO Detector (https://cheba.unsw.edu.au/group/neuroimaging-pipeline). Mapping of WML to the Johns Hopkins University WM atlas was undertaken using an automated TOolbox for Probabilistic MApping of Lesions (TOPMAL), which we introduce here, and is implemented in UBO Detector. The results show that different patterns of brain structural volumes in the ageing brain were associated with different cognitive domains. Regional WML were associated with processing speed, executive function, and global cognition, independent of total GM, WM and WML volumes. Moreover, regional WML explained more variance in executive function, compared to total GM, WM and WML volumes. The current study highlights the importance of studying regional WML in age-related cognitive decline.


Assuntos
Envelhecimento , Transtornos Cognitivos/patologia , Cognição/fisiologia , Disfunção Cognitiva/patologia , Substância Branca/patologia , Idoso , Idoso de 80 Anos ou mais , Transtornos Cognitivos/fisiopatologia , Estudos de Coortes , Imagem de Tensor de Difusão/métodos , Feminino , Substância Cinzenta/patologia , Humanos , Imagem por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas Mielinizadas/patologia , Testes Neuropsicológicos , Substância Branca/fisiopatologia
10.
Mech Ageing Dev ; 175: 24-34, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29890178

RESUMO

BACKGROUND: Many factors contribute to exceptional longevity, with genetics playing a significant role. However, to date, genetic studies examining exceptional longevity have been inconclusive. This comprehensive review seeks to determine the genetic variants associated with exceptional longevity by undertaking meta-analyses. METHODS: Meta-analyses of genetic polymorphisms previously associated with exceptional longevity (85+) were undertaken. For each variant, meta-analyses were performed if there were data from at least three independent studies available, including two unpublished additional cohorts. RESULTS: Five polymorphisms, ACE rs4340, APOE ε2/3/4, FOXO3A rs2802292, KLOTHO KL-VS and IL6 rs1800795 were significantly associated with exceptional longevity, with the pooled effect sizes (odds ratios) ranging from 0.42 (APOE ε4) to 1.45 (FOXO3A males). CONCLUSION: In general, the observed modest effect sizes of the significant variants suggest many genes of small influence play a role in exceptional longevity, which is consistent with results for other polygenic traits. Our results also suggest that genes related to cardiovascular health may be implicated in exceptional longevity. Future studies should examine the roles of gender and ethnicity and carefully consider study design, including the selection of appropriate controls.


Assuntos
Envelhecimento Saudável/genética , Longevidade/genética , Polimorfismo Genético , Fatores Etários , Idoso de 80 Anos ou mais , Feminino , Genótipo , Hereditariedade , Humanos , Masculino , Linhagem , Fenótipo
11.
Front Genet ; 9: 97, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29628937

RESUMO

Blood levels of growth differentiation factor-15 (GDF-15), also known as macrophage inhibitory cytokine-1 (MIC-1), have been associated with various pathological processes and diseases, including cardiovascular disease and cancer. Prior studies suggest genetic factors play a role in regulating blood MIC-1/GDF-15 concentration. In the current study, we conducted the largest genome-wide association study (GWAS) to date using a sample of ∼5,400 community-based Caucasian participants, to determine the genetic variants associated with MIC-1/GDF-15 blood concentration. Conditional and joint (COJO), gene-based association, and gene-set enrichment analyses were also carried out to identify novel loci, genes, and pathways. Consistent with prior results, a locus on chromosome 19, which includes nine single nucleotide polymorphisms (SNPs) (top SNP, rs888663, p = 1.690 × 10-35), was significantly associated with blood MIC-1/GDF-15 concentration, and explained 21.47% of its variance. COJO analysis showed evidence for two independent signals within this locus. Gene-based analysis confirmed the chromosome 19 locus association and in addition, a putative locus on chromosome 1. Gene-set enrichment analyses showed that the"COPI-mediated anterograde transport" gene-set was associated with MIC-1/GDF15 blood concentration with marginal significance after FDR correction (p = 0.067). In conclusion, a locus on chromosome 19 was associated with MIC-1/GDF-15 blood concentration with genome-wide significance, with evidence for a new locus (chromosome 1). Future studies using independent cohorts are needed to confirm the observed associations especially for the chromosomes 1 locus, and to further investigate and identify the causal SNPs that contribute to MIC-1/GDF-15 levels.

12.
Genome Res ; 28(5): 625-638, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29650553

RESUMO

The growth and progression of solid tumors involves dynamic cross-talk between cancer epithelium and the surrounding microenvironment. To date, molecular profiling has largely been restricted to the epithelial component of tumors; therefore, features underpinning the persistent protumorigenic phenotype of the tumor microenvironment are unknown. Using whole-genome bisulfite sequencing, we show for the first time that cancer-associated fibroblasts (CAFs) from localized prostate cancer display remarkably distinct and enduring genome-wide changes in DNA methylation, significantly at enhancers and promoters, compared to nonmalignant prostate fibroblasts (NPFs). Differentially methylated regions associated with changes in gene expression have cancer-related functions and accurately distinguish CAFs from NPFs. Remarkably, a subset of changes is shared with prostate cancer epithelial cells, revealing the new concept of tumor-specific epigenome modifications in the tumor and its microenvironment. The distinct methylome of CAFs provides a novel epigenetic hallmark of the cancer microenvironment and promises new biomarkers to improve interpretation of diagnostic samples.


Assuntos
Metilação de DNA , Epigenômica/métodos , Neoplasias da Próstata/genética , Microambiente Tumoral/genética , Fibroblastos Associados a Câncer/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Humanos , Masculino , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/patologia , Sequenciamento Completo do Genoma/métodos
13.
Int J Epidemiol ; 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29518222

RESUMO

Background: Investigating the genetic and environmental causes of variation in genome-wide average DNA methylation (GWAM), a global methylation measure from the HumanMethylation450 array, might give a better understanding of genetic and environmental influences on methylation. Methods: We measured GWAM for 2299 individuals aged 0 to 90 years from seven twin and/or family studies. We estimated familial correlations, modelled correlations with cohabitation history and fitted variance components models for GWAM. Results: The correlation in GWAM for twin pairs was ∼0.8 at birth, decreased with age during adolescence and was constant at ∼0.4 throughout adulthood, with no evidence that twin pair correlations differed by zygosity. Non-twin first-degree relatives were correlated, from 0.17 [95% confidence interval (CI): 0.05-0.30] to 0.28 (95% CI: 0.08-0.48), except for middle-aged siblings (0.01, 95% CI: -0.10-0.12), and the correlation increased with time living together and decreased with time living apart. Spouse pairs were correlated in all studies, from 0.23 (95% CI: 0.3-0.43) to 0.31 (95% CI: 0.05-0.52), and the correlation increased with time living together. The variance explained by environmental factors shared by twins alone was 90% (95% CI: 74-95%) at birth, decreased in early life and plateaued at 28% (95% CI: 17-39%) in middle age and beyond. There was a cohabitation-related environmental component of variance. Conclusions: GWAM is determined in utero by prenatal environmental factors, the effects of which persist throughout life. The variation of GWAM is also influenced by environmental factors shared by family members, as well as by individual-specific environmental factors.

14.
Nat Commun ; 8(1): 1346, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116202

RESUMO

Acetylation of the histone variant H2A.Z (H2A.Zac) occurs at active promoters and is associated with oncogene activation in prostate cancer, but its role in enhancer function is still poorly understood. Here we show that H2A.Zac containing nucleosomes are commonly redistributed to neo-enhancers in cancer resulting in a concomitant gain of chromatin accessibility and ectopic gene expression. Notably incorporation of acetylated H2A.Z nucleosomes is a pre-requisite for activation of Androgen receptor (AR) associated enhancers. H2A.Zac nucleosome occupancy is rapidly remodeled to flank the AR sites to initiate the formation of nucleosome-free regions and the production of AR-enhancer RNAs upon androgen treatment. Remarkably higher levels of global H2A.Zac correlate with poorer prognosis. Altogether these data demonstrate the novel contribution of H2A.Zac in activation of newly formed enhancers in prostate cancer.


Assuntos
Elementos Facilitadores Genéticos/genética , Histonas/metabolismo , Neoplasias da Próstata/genética , Acetilação , Cromatina/genética , Cromatina/metabolismo , Intervalo Livre de Doença , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Humanos , Masculino , Nucleossomos/genética , Nucleossomos/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/mortalidade , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
15.
J Proteome Res ; 16(7): 2359-2369, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28580786

RESUMO

Tandem mass spectrometry is one of the most popular techniques for quantitation of proteomes. There exists a large variety of options in each stage of data preprocessing that impact the bias and variance of the summarized protein-level values. Using a newly released data set satisfying a replicated Latin squares design, a diverse set of performance metrics has been developed and implemented in a web-based application, Quantitative Performance Evaluator for Proteomics (QPEP). QPEP has the flexibility to allow users to apply their own method to preprocess this data set and share the results, allowing direct and straightforward comparison of new methodologies. Application of these new metrics to three case studies highlights that (i) the summarization of peptides to proteins is robust to the choice of peptide summary used, (ii) the differences between iTRAQ labels are stronger than the differences between experimental runs, and (iii) the commercial software ProteinPilot performs equivalently well at between-sample normalization to more complicated methods developed by academics. Importantly, finding (ii) underscores the benefits of using the principles of randomization and blocking to avoid the experimental measurements being confounded by technical factors. Data are available via ProteomeXchange with identifier PXD003608.


Assuntos
Peptídeos/análise , Proteoma/análise , Proteômica/estatística & dados numéricos , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Software , Espectrometria de Massas em Tandem/normas , Benchmarking , Internet , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/química
16.
Epigenomics ; 9(5): 689-700, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28470125

RESUMO

AIM: To examine the relationships between two epigenetic clocks, aging and exceptional longevity. MATERIALS & METHODS: Participants were from three adult cohorts with blood DNA methylation data (Illumina 450 K, n = 275, 34-103 years). Epigenetic age (DNAmage) and age acceleration measures were calculated using the Hannum and Horvath epigenetic clocks. RESULTS: Across all cohorts, DNAmage was correlated with chronological age. In the long-lived cohort (Sydney Centenarian Study; 95+, n = 23), DNAmage was lower than chronological age for both clocks. Mean Sydney Centenarian Study Hannum age acceleration was negative, while the converse was observed for the Horvath model. CONCLUSION: Long-lived individuals have a young epigenetic age compared with their chronological age.


Assuntos
Metilação de DNA , Epigênese Genética , Longevidade/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Ilhas de CpG , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Nat Commun ; 8: 13624, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098162

RESUMO

The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg=-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.


Assuntos
Hipocampo/crescimento & desenvolvimento , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Criança , Estudos de Coortes , Dipeptidil Peptidase 4/genética , Feminino , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Glicoproteínas/genética , Humanos , Masculino , Metionina Sulfóxido Redutases/genética , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Tamanho do Órgão , Proteínas Serina-Treonina Quinases/genética , Adulto Jovem
18.
Brain Imaging Behav ; 11(5): 1497-1514, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27738994

RESUMO

The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders.


Assuntos
Envelhecimento/patologia , Encéfalo/diagnóstico por imagem , Lateralidade Funcional , Caracteres Sexuais , Adolescente , Adulto , Idoso , Envelhecimento/genética , Encéfalo/anatomia & histologia , Feminino , Lateralidade Funcional/genética , Humanos , Imagem por Ressonância Magnética , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Tamanho do Órgão , Característica Quantitativa Herdável , Adulto Jovem
19.
Nat Neurosci ; 19(12): 1569-1582, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27694991

RESUMO

Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.


Assuntos
Cognição/fisiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Grupo com Ancestrais do Continente Europeu , Loci Gênicos/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Proteína Oncogênica v-akt/genética , Doença de Parkinson/genética , Fenótipo , Fosfatidilinositol 3-Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA