Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
J Neuroinflammation ; 18(1): 103, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931093

RESUMO

BACKGROUND: Our understanding of the relationship between plasma and cerebrospinal fluid (CSF) remains limited, which poses an obstacle to the identification of blood-based markers of neuroinflammatory disorders. To better understand the relationship between peripheral and central nervous system (CNS) markers of inflammation before and after surgery, we aimed to examine whether surgery compromises the blood-brain barrier (BBB), evaluate postoperative changes in inflammatory markers, and assess the correlations between plasma and CSF levels of inflammation. METHODS: We examined the Role of Inflammation after Surgery for Elders (RISE) study of adults aged ≥ 65 who underwent elective hip or knee surgery under spinal anesthesia who had plasma and CSF samples collected at baseline and postoperative 1 month (PO1MO) (n = 29). Plasma and CSF levels of three inflammatory markers previously identified as increasing after surgery were measured using enzyme-linked immunosorbent assay: interleukin-6 (IL-6), C-reactive protein (CRP), and chitinase 3-like protein (also known as YKL-40). The integrity of the BBB was computed as the ratio of CSF/plasma albumin levels (Qalb). Mean Qalb and levels of inflammation were compared between baseline and PO1MO. Spearman correlation coefficients were used to determine the correlation between biofluids. RESULTS: Mean Qalb did not change between baseline and PO1MO. Mean plasma and CSF levels of CRP and plasma levels of YKL-40 and IL-6 were higher on PO1MO relative to baseline, with a disproportionally higher increase in CRP CSF levels relative to plasma levels (CRP tripled in CSF vs. increased 10% in plasma). Significant plasma-CSF correlations for CRP (baseline r = 0.70 and PO1MO r = 0.89, p < .01 for both) and IL-6 (PO1MO r = 0.48, p < .01) were observed, with higher correlations on PO1MO compared with baseline. CONCLUSIONS: In this elective surgical sample of older adults, BBB integrity was similar between baseline and PO1MO, plasma-CSF correlations were observed for CRP and IL-6, plasma levels of all three markers (CRP, IL-6, and YKL-40) increased from PREOP to PO1MO, and CSF levels of only CRP increased between the two time points. Our identification of potential promising plasma markers of inflammation in the CNS may facilitate the early identification of patients at greatest risk for neuroinflammation and its associated adverse cognitive outcomes.

2.
Acta Neuropathol Commun ; 9(1): 71, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33858515

RESUMO

Insulin is an important hormone for brain function, and alterations in insulin metabolism may be associated with neuropathology. We examined associations of molecular markers of brain insulin signaling with cerebrovascular disease. Participants were enrolled in the Religious Orders Study (ROS), an ongoing epidemiologic community-based, clinical-pathologic study of aging from across the United States. Using cross-sectional analyses, we studied a subset of ROS: 150 persons with or without diabetes, matched 1:1 by sex on age-at-death and education. We used ELISA, immunohistochemistry, and ex vivo stimulation with insulin, to document insulin signaling in postmortem midfrontal gyrus cortex tissue. Postmortem neuropathologic data identified cerebrovascular disease including brain infarcts, classified by number (as none for the reference; one; and more than one), size (gross and microscopic infarcts), and brain region/location (cortical and subcortical). Cerebral vessel pathologies were assessed, including severity of atherosclerosis, arteriolosclerosis, and amyloid angiopathy. In separate regression analyses, greater AKT1 phosphorylation at T308 following ex vivo stimulation with insulin (OR = 1.916; estimate = 0.650; p = 0.007) and greater pS616IRS1 immunolabeling in neuronal cytoplasm (OR = 1.610; estimate = 0.476; p = 0.013), were each associated with a higher number of brain infarcts. Secondary analyses showed consistent results for gross infarcts and microinfarcts separately, but no other association including by infarct location (cortical or subcortical). AKT S473 phosphorylation following insulin stimulation was associated with less amyloid angiopathy severity, but not with other vessel pathology including atherosclerosis and arteriolosclerosis. In summary, insulin resistance in the human brain, even among persons without diabetes, is associated with cerebrovascular disease and especially infarcts. The underlying pathophysiologic mechanisms need further elucidation. Because brain infarcts are known to be associated with lower cognitive function and dementia, these data are relevant to better understanding the link between brain metabolism and brain function.

3.
Brain Behav ; 11(4): e02048, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33704916

RESUMO

OBJECTIVE: To identify circular RNAs as candidates for differential expression in the middle temporal (MT) cortex in a well-characterized cohort with contrasting Alzheimer disease (AD) pathology and cognition. Top screen candidates were assessed for proof of circularity and then quantified by qPCR in a larger number of samples. METHODS: An initial RNA sequencing screen was performed on n = 20 frozen human tissue samples. Filters were applied to select candidate circular RNAs for further investigation. Frozen human tissue samples were selected for global AD pathology burden and global cognition scores (n = 100). Linear and divergent primers were used to assess circularity using RNaseR digestion. RT-qPCR was performed to quantify relative hsa_circ_0131235 abundance. RESULTS: Eleven circular RNAs were selected for further investigation. Four candidates produced circular RNA primers with appropriate efficiencies for qPCR. RNaseR treatment and analysis by both basic PCR and qPCR confirmed hsa_circ_0131235 circularity. There was a significant main effect of AD pathology on hsa_circ_0131235 expression. CONCLUSIONS: Elevated hsa_circ_0131235 expression in the MT cortex was significantly associated with AD pathology.

4.
Trials ; 21(1): 1016, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308285

RESUMO

BACKGROUND: The conventional clinical trial design in Alzheimer's disease (AD) and AD-related disorders (ADRDs) is the parallel-group randomized controlled trial. However, in heterogeneous disorders like AD/ADRDs, this design requires large sample sizes to detect meaningful effects in an "average" patient. They are very costly and, despite many attempts, have not yielded new treatments for many years. An alternative, the multi-crossover, randomized control trial (MCRCT) is a design in which each patient serves as their own control across successive, randomized blocks of active treatment and placebo. This design overcomes many limitations of parallel-group trials, yielding an unbiased assessment of treatment effect at the individual level ("N-of-1") regardless of unique patient characteristics. The goal of the present study is to pilot a MCRCT of a potential symptomatic treatment, methylphenidate, for mild-stage AD/ADRDs, testing feasibility and compliance of participants in this design and efficacy of the drug using both standard and novel outcome measures suited for this design. METHODS: Ten participants with mild cognitive impairment or mild-stage dementia due to AD/ADRDs will undergo a 4-week lead-in period followed by three, month-long treatment blocks (2 weeks of treatment with methylphenidate, 2 weeks placebo in random order). This trial will be conducted entirely virtually with an optional in-person screening visit. The primary outcome of interest is feasibility as measured by compliance and retention, with secondary and exploratory outcomes including cognition as measured by neuropsychological assessment at the end of each treatment period and daily brain games played throughout the study, actigraphy, and neuropsychiatric and functional assessments. DISCUSSION: This pilot study will gauge the feasibility of conducting a virtual MCRCT for symptomatic treatment in early AD/ADRD. It will also compare home-based daily brain games with standard neuropsychological measures within a clinical trial for AD/ADRD. Particular attention will be paid to compliance, tolerability of drug and participation, learning effects, trends and stability of daily measures across blocks, medication carryover effects, and correlations between standard and brief daily assessments. These data will provide guidance for more efficient trial design and the use of potentially more robust, ecological outcome measures in AD/ADRD research. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03811847 . Registered on 21 January 2019.

5.
Front Neurol ; 11: 575953, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041998

RESUMO

Alzheimer's Disease (AD) is associated with neuropathological changes, including aggregation of tau neurofibrillary tangles (NFTs) and amyloid-beta plaques. Mounting evidence indicates that vascular dysfunction also plays a key role in the pathogenesis and progression of AD, in part through endothelial dysfunction. Based on findings in animal models that tau pathology induces vascular abnormalities and cellular senescence, we hypothesized that tau pathology in the human AD brain leads to vascular senescence. To explore this hypothesis, we isolated intact microvessels from the dorsolateral prefrontal cortex (PFC, BA9) from 16 subjects with advanced Braak stages (Braak V/VI, B3) and 12 control subjects (Braak 0/I/II, B1), and quantified expression of 42 genes associated with senescence, cell adhesion, and various endothelial cell functions. Genes associated with endothelial senescence and leukocyte adhesion, including SERPINE1 (PAI-1), CXCL8 (IL8), CXCL1, CXCL2, ICAM-2, and TIE1, were significantly upregulated in B3 microvessels after adjusting for sex and cerebrovascular pathology. In particular, the senescence-associated secretory phenotype genes SERPINE1 and CXCL8 were upregulated by more than 2-fold in B3 microvessels after adjusting for sex, cerebrovascular pathology, and age at death. Protein quantification data from longitudinal plasma samples for a subset of 13 (n = 9 B3, n = 4 B1) subjects showed no significant differences in plasma senescence or adhesion-associated protein levels, suggesting that these changes were not associated with systemic vascular alterations. Future investigations of senescence biomarkers in both the peripheral and cortical vasculature could further elucidate links between tau pathology and vascular changes in human AD.

6.
Mov Disord ; 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32975318

RESUMO

BACKGROUND: X-linked dystonia-parkinsonism is a rare neurological disease endemic to the Philippines. Dystonic symptoms appear in males at the mean age of 40 years and progress to parkinsonism with degenerative pathology in the striatum. A retrotransposon inserted in intron 32 of the TAF1 gene leads to alternative splicing in the region and a reduction of the full-length mRNA transcript. OBJECTIVES: The objective of this study was to discover cell-based and biofluid-based biomarkers for X-linked dystonia-parkinsonism. METHODS: RNA from patient-derived neural progenitor cells and their secreted extracellular vesicles were used to screen for dysregulation of TAF1 expression. Droplet-digital polymerase chain reaction was used to quantify the expression of TAF1 mRNA fragments 5' and 3' to the retrotransposon insertion and the disease-specific splice variant TAF1-32i in whole-blood RNA. Plasma levels of neurofilament light chain were measured using single-molecule array. RESULTS: In neural progenitor cells and their extracellular vesicles, we confirmed that the TAF1-3'/5' ratio was lower in patient samples, whereas TAF1-32i expression is higher relative to controls. In whole-blood RNA, both TAF1-3'/5' ratio and TAF1-32i expression can differentiate patient (n = 44) from control samples (n = 18) with high accuracy. Neurofilament light chain plasma levels were significantly elevated in patients (n = 43) compared with both carriers (n = 16) and controls (n = 21), with area under the curve of 0.79. CONCLUSIONS: TAF1 dysregulation in blood serves as a disease-specific biomarker that could be used as a readout for monitoring therapies targeting TAF1 splicing. Neurofilament light chain could be used in monitoring neurodegeneration and disease progression in patients. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC. on behalf of International Parkinson and Movement Disorder Society.

7.
Ann Neurol ; 88(5): 984-994, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32881052

RESUMO

OBJECTIVE: To examine the association of the plasma neuroaxonal injury markers neurofilament light (NfL), total tau, glial fibrillary acid protein, and ubiquitin carboxyl-terminal hydrolase L1 with delirium, delirium severity, and cognitive performance. METHODS: Delirium case-no delirium control (n = 108) pairs were matched by age, sex, surgery type, cognition, and vascular comorbidities. Biomarkers were measured in plasma collected preoperatively (PREOP), and 2 days (POD2) and 30 days postoperatively (PO1MO) using Simoa technology (Quanterix, Lexington, MA). The Confusion Assessment Method (CAM) and CAM-S (Severity) were used to measure delirium and delirium severity, respectively. Cognitive function was measured with General Cognitive Performance (GCP) scores. RESULTS: Delirium cases had higher NfL on POD2 and PO1MO (median matched pair difference = 16.2pg/ml and 13.6pg/ml, respectively; p < 0.05). Patients with PREOP and POD2 NfL in the highest quartile (Q4) had increased risk for incident delirium (adjusted odds ratio [OR] = 3.7 [95% confidence interval (CI) = 1.1-12.6] and 4.6 [95% CI = 1.2-18.2], respectively) and experienced more severe delirium, with sum CAM-S scores 7.8 points (95% CI = 1.6-14.0) and 9.3 points higher (95% CI = 3.2-15.5). At PO1MO, delirium cases had continued high NfL (adjusted OR = 9.7, 95% CI = 2.3-41.4), and those with Q4 NfL values showed a -2.3 point decline in GCP score (-2.3 points, 95% CI = -4.7 to -0.9). INTERPRETATION: Patients with the highest PREOP or POD2 NfL levels were more likely to develop delirium. Elevated NfL at PO1MO was associated with delirium and greater cognitive decline. These findings suggest NfL may be useful as a predictive biomarker for delirium risk and long-term cognitive decline, and once confirmed would provide pathophysiological evidence for neuroaxonal injury following delirium. ANN NEUROL 2020;88:984-994.

8.
Neuroimage Clin ; 27: 102346, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32712451

RESUMO

Major surgery is associated with a systemic inflammatory cascade that is thought, in some cases, to contribute to transient and/or sustained cognitive decline, possibly through neuroinflammatory mechanisms. However, the relationship between surgery, peripheral and central nervous system inflammation, and post-operative cognitive outcomes remains unclear in humans, primarily owing to limitations of in vivo biomarkers of neuroinflammation which vary in sensitivity, specificity, validity, and reliability. In the present study, [11C]PBR28 positron emission tomography, cerebrospinal fluid (CSF), and blood plasma biomarkers of inflammation were assessed pre-operatively and 1-month post-operatively in a cohort of patients (N = 36; 30 females; ≥70 years old) undergoing major orthopedic surgery under spinal anesthesia. Delirium incidence and severity were evaluated daily during hospitalization. Whole-brain voxel-wise and regions-of-interest analyses were performed to determine the magnitude and spatial extent of changes in [11C]PBR28 uptake following surgery. Results demonstrated that, compared with pre-operative baseline, [11C]PBR28 binding in the brain was globally downregulated at 1 month following major orthopedic surgery, possibly suggesting downregulation of the immune system of the brain. No significant relationship was identified between post-operative delirium and [11C]PBR28 binding, possibly due to a small number (n = 6) of delirium cases in the sample. Additionally, no significant relationships were identified between [11C]PBR28 binding and CSF/plasma biomarkers of inflammation. Collectively, these results contribute to the literature by demonstrating in a sizeable sample the effect of major surgery on neuroimmune activation and preliminary evidence identifying no apparent associations between [11C]PBR28 binding and fluid inflammatory markers or post-operative delirium.

9.
Ann Neurol ; 88(3): 513-525, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32557841

RESUMO

OBJECTIVE: To examine associations of molecular markers of brain insulin signaling with Alzheimer disease (AD) and cognition among older persons with or without diabetes. METHODS: This clinical-pathologic study was derived from a community-based cohort study, the Religious Orders Study. We studied 150 individuals (mean age at death =87 years, 48% women): 75 with and 75 without diabetes (matched by sex on age at death and education). Using enzyme-linked immunosorbent assay, immunohistochemistry, and ex vivo stimulation of brain tissue with insulin, we assessed insulin signaling in the postmortem middle frontal gyrus cortex. Postmortem data documented AD neuropathology. Clinical evaluations documented cognitive function proximate to death, based on 17 neuropsychological tests. In adjusted regression analyses, we examined associations of brain insulin signaling with diabetes, AD, and level of cognition. RESULTS: Brain insulin receptor substrate-1 (IRS1) phosphorylation (pS307 IRS1/total IRS1) and serine/threonine-protein kinase (AKT) phosphorylation (pT308 AKT1/total AKT1) were similar in persons with or without diabetes. AKT phosphorylation was associated with the global AD pathology score (p = 0.001). In contrast, IRS1 phosphorylation was not associated with AD (p = 0.536). No other associations of insulin signaling were found with the global AD score, including when using the ex vivo brain insulin stimulation method. In secondary analyses, normalized pT308 AKT1 was positively correlated with both the amyloid burden and tau tangle density, and no other associations of brain insulin signaling with neuropathology were observed. Moreover, normalized pT308 AKT1 was associated with a lower level of global cognitive function (estimate = -0.212, standard error = 0.097; p = 0.031). INTERPRETATION: Brain AKT phosphorylation, a critical node in the signaling of insulin and other growth factors, is associated with AD neuropathology and lower cognitive function. ANN NEUROL 2020;88:513-525.

10.
Am J Geriatr Psychiatry ; 28(9): 913-920, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32507686

RESUMO

Advances in treating and preventing Alzheimer disease and other neurocognitive disorders of aging arise from rigorous preclinical and clinical research, with randomized controlled treatment trials as the last and definitive test. The COVID-19 pandemic has greatly disrupted ongoing interventional studies and researchers are scrambling to find ways to safely continue this critical work amidst rapidly shifting guidelines from sponsors, institutions, and state and federal guidelines. Here the authors describe novel approaches and work-flow adaptations to study visits, drug delivery and interim and endpoint safety and outcomes assessments to avoid sacrificing years of preparation and substantial financial investments, to work in the best interest of participants and their caregivers, and to continue on the path toward discovering disease-modifying treatments for the millions of individuals impacted by major neurocognitive disorders.


Assuntos
Ensaios Clínicos como Assunto/métodos , Ensaios Clínicos como Assunto/normas , Infecções por Coronavirus/prevenção & controle , Transtornos Neurocognitivos/tratamento farmacológico , Transtornos Neurocognitivos/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Betacoronavirus , Guias como Assunto , Humanos
11.
BMC Med ; 18(1): 140, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32552681

RESUMO

BACKGROUND: Prion disease is neurodegenerative disease that is typically fatal within months of first symptoms. Clinical trials in this rapidly declining symptomatic patient population have proven challenging. Individuals at high lifetime risk for genetic prion disease can be identified decades before symptom onset and provide an opportunity for early therapeutic intervention. However, randomizing pre-symptomatic carriers to a clinical endpoint is not numerically feasible. We therefore launched a cohort study in pre-symptomatic genetic prion disease mutation carriers and controls with the goal of evaluating biomarker endpoints that may enable informative trials in this population. METHODS: We collected cerebrospinal fluid (CSF) and blood from pre-symptomatic individuals with prion protein gene (PRNP) mutations (N = 27) and matched controls (N = 16), in a cohort study at Massachusetts General Hospital. We quantified total prion protein (PrP) and real-time quaking-induced conversion (RT-QuIC) prion seeding activity in CSF and neuronal damage markers total tau (T-tau) and neurofilament light chain (NfL) in CSF and plasma. We compared these markers cross-sectionally, evaluated short-term test-retest reliability over 2-4 months, and conducted a pilot longitudinal study over 10-20 months. RESULTS: CSF PrP levels were stable on test-retest with a mean coefficient of variation of 7% for both over 2-4 months in N = 29 participants and over 10-20 months in N = 10 participants. RT-QuIC was negative in 22/23 mutation carriers. The sole individual with positive RT-QuIC seeding activity at two study visits had steady CSF PrP levels and slightly increased tau and NfL concentrations compared with the others, though still within the normal range, and remained asymptomatic 1 year later. T-tau and NfL showed no significant differences between mutation carriers and controls in either CSF or plasma. CONCLUSIONS: CSF PrP will be interpretable as a pharmacodynamic readout for PrP-lowering therapeutics in pre-symptomatic individuals and may serve as an informative surrogate biomarker in this population. In contrast, markers of prion seeding activity and neuronal damage do not reliably cross-sectionally distinguish mutation carriers from controls. Thus, as PrP-lowering therapeutics for prion disease advance, "secondary prevention" based on prodromal pathology may prove challenging; instead, "primary prevention" trials appear to offer a tractable paradigm for trials in pre-symptomatic individuals.

12.
Alzheimers Dement ; 16(3): 572-580, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31761478

RESUMO

INTRODUCTION: Apolipoprotein E (APOE) status may modify the risk of postoperative delirium conferred by inflammation. METHODS: We tested whether APOE modifies the established association between C-reactive protein (CRP) and delirium incidence, severity, and duration in 553 noncardiac surgical patients aged 70 and older. High postoperative plasma CRP (≥234.12 mg/L) was defined by the highest sample-based quartile. Delirium was determined using the Confusion Assessment Method and chart review, and severity was determined by the Confusion Assessment Method-Severity score. RESULTS: APOE ε4 carrier prevalence was 19%, and postoperative delirium occurred in 24%. The relationship between CRP and delirium incidence, severity, and duration differed by ε4 status. Among ε4 carriers, there was a strong relationship between high CRP (vs. low CRP) and delirium incidence (relative risk [95% confidence interval], 3.0 [1.4-6.7]); however, no significant association was observed among non-ε4 carriers (relative risk [95% CI], 1.2 [0.8-1.7]). DISCUSSION: Our findings raise the possibility that APOE ε4 carrier status may modify the relationship between postoperative day 2 CRP levels and postoperative delirium.


Assuntos
Apolipoproteínas E/genética , Proteína C-Reativa/análise , Delírio , Epistasia Genética , Complicações Pós-Operatórias , Idoso , Idoso de 80 Anos ou mais , Alelos , Apolipoproteína E4 , Delírio/epidemiologia , Delírio/etiologia , Feminino , Genótipo , Humanos
14.
Alzheimers Dement (Amst) ; 11: 752-762, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31737775

RESUMO

Introduction: The Role of Inflammation after Surgery for Elders study correlates novel inflammatory markers measured in blood, cerebrospinal fluid (CSF) assays, and [11C]-PBR28 positron-emission tomography imaging. Methods: This study involved a prospective cohort design with patients who underwent elective hip and knee arthroplasty under spinal anesthesia. Sixty-five adults participated with their family members. Inflammatory biomarker assays were measured preoperatively on day 1 and postoperatively at one month. Results: On average, participants were 75 years old, and 72% were female. 54% underwent total knee arthroplasty, and 46% underwent total hip arthroplasty. The mean Modified Mini-Mental State (3MS) Examination score was 89.3; four patients (6%) scored ≤77 points. Plasma assays were completed in 63 (97%) participants, cerebrospinal fluid assays in 61 (94%), and PET imaging in 44 (68%). Discussion: This complex study presents an innovative effort to correlate peripheral and central inflammatory biomarkers before and after major surgery in older adults. Strengths include collecting concurrent blood, cerebrospinal fluid, and positron-emission tomography with detailed clinical characterization of delirium, cognition, and functional status.

15.
Neurobiol Aging ; 84: 119-130, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31539648

RESUMO

Aberrant insulin and adipokine signaling has been implicated in cognitive decline associated with both type 2 diabetes mellitus and neurodegenerative diseases. We established methods that reliably measure insulin, adiponectin and leptin signaling, and their crosstalk, in thawed postmortem mid-frontal cortical tissue from cognitively normal older subjects with a short postmortem interval. Insulin-evoked insulin receptor (IR) activation increases activated, tyrosine-phosphorylated IRß on tyrosine residues 960, 1150, and 1151, insulin receptor substrate-1 recruitment to IRß and phosphorylated RAC-α-serine/threonine-protein kinase. Adiponectin augments, but leptin inhibits, insulin signaling. Adiponectin activates adiponectin receptors to induce APPL1 binding to adiponectin receptor 1 and 2 and T-cadherin and downstream adenosine monophosphate-dependent protein kinase phosphorylation. Insulin inhibited adiponectin-induced signaling. In addition, leptin-induced leptin receptor (OB-R) signaling promotes Janus kinase 2 recruitment to OB-R and Janus kinase 2 and downstream signal transducer and activator of transcription 3 phosphorylation. Insulin enhanced leptin signaling. These data demonstrate insulin and adipokine signaling interactions in human brain. Future studies can use these methods to examine insulin, adiponectin, and leptin metabolic dysregulation in aging and disease states, such as type 2 diabetes and Alzheimer's disease-related dementias.


Assuntos
Adipocinas/metabolismo , Encéfalo/patologia , Insulina/metabolismo , Transdução de Sinais , Envelhecimento/metabolismo , Encéfalo/metabolismo , Humanos , Leptina/metabolismo , Mudanças Depois da Morte
16.
JCI Insight ; 52019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31211691

RESUMO

BACKGROUND: There is growing evidence to suggest that the brain is an important target for insulin action, and that states of insulin resistance may extend to the CNS with detrimental effects on cognitive functioning. Although the effect of systemic insulin resistance on peripheral organs is well-studied, the degree to which insulin impacts brain function in vivo remains unclear. METHODS: This randomized, single-blinded, 2-way-crossover, sham-controlled, pilot study determined the effects of hyperinsulinemia on fMRI brain activation during a 2-back working memory task in 9 healthy older adults (aged 57-79 years). Each participant underwent two clamp procedures (an insulin infusion and a saline placebo infusion, with normoglycemia maintained during both conditions), to examine the effects of hyperinsulinemia on task performance and associated blood-oxygen-level dependent (BOLD) signal using fMRI. RESULTS: Hyperinsulinemia (compared to saline control) was associated with an increase in both the spatial extent and relative strength of task-related BOLD signal during the 2-back task. Further, the degree of increased task-related activation in select brain regions correlated with greater systemic insulin sensitivity, as well as decreased reaction times and performance accuracy between experimental conditions. CONCLUSION: Together, these findings provide evidence of insulin action in the CNS among older adults during periods of sustained cognitive demand, with the greatest effects noted for individuals with highest systemic insulin sensitivity. FUNDING: This work was funded by the National Institutes of Health (5R21AG051958, 2016).


Assuntos
Hiperinsulinismo/diagnóstico por imagem , Imagem por Ressonância Magnética/métodos , Neuroimagem/métodos , Idoso , Glicemia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Humanos , Insulina , Resistência à Insulina , Masculino , Memória de Curto Prazo , Pessoa de Meia-Idade , Oxigênio/sangue , Projetos Piloto , Método Simples-Cego
17.
Proc Natl Acad Sci U S A ; 116(16): 7793-7798, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30936307

RESUMO

Reduction of native prion protein (PrP) levels in the brain is an attractive strategy for the treatment or prevention of human prion disease. Clinical development of any PrP-reducing therapeutic will require an appropriate pharmacodynamic biomarker: a practical and robust method for quantifying PrP, and reliably demonstrating its reduction in the central nervous system (CNS) of a living patient. Here we evaluate the potential of ELISA-based quantification of human PrP in human cerebrospinal fluid (CSF) to serve as a biomarker for PrP-reducing therapeutics. We show that CSF PrP is highly sensitive to plastic adsorption during handling and storage, but its loss can be minimized by the addition of detergent. We find that blood contamination does not affect CSF PrP levels, and that CSF PrP and hemoglobin are uncorrelated, together suggesting that CSF PrP is CNS derived, supporting its relevance for monitoring the tissue of interest and in keeping with high PrP abundance in brain relative to blood. In a cohort with controlled sample handling, CSF PrP exhibits good within-subject test-retest reliability (mean coefficient of variation, 13% in samples collected 8-11 wk apart), a sufficiently stable baseline to allow therapeutically meaningful reductions in brain PrP to be readily detected in CSF. Together, these findings supply a method for monitoring the effect of a PrP-reducing drug in the CNS, and will facilitate development of prion disease therapeutics with this mechanism of action.


Assuntos
Desenvolvimento de Medicamentos/métodos , Doenças Priônicas/tratamento farmacológico , Proteínas Priônicas/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Encéfalo/metabolismo , Química Encefálica , Ensaio de Imunoadsorção Enzimática , Humanos , Doenças Priônicas/sangue , Doenças Priônicas/líquido cefalorraquidiano , Doenças Priônicas/diagnóstico , Proteínas Priônicas/sangue , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Alzheimers Res Ther ; 10(1): 98, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30253800

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by neuropathologic changes involving beta-amyloid (Aß), tau, neuronal loss, and other associated biological events. While levels of cerebrospinal fluid (CSF) Aß and tau peptides have enhanced the antemortem detection of AD-specific changes, these two markers poorly reflect the severity of cognitive and functional deficits in people with altered Aß and tau levels. While multiple previous studies identified non-Aß, non-tau proteins as candidate neurodegenerative markers to inform the A/T/N biomarker scheme of AD, few have advanced beyond association with clinical AD diagnosis. Here we analyzed nine promising neurodegenerative markers in a three-centered cohort using independent assays to identify candidates most likely to complement Aß and tau in the A/T/N framework. METHODS: CSF samples from 125 subjects recruited at the three centers were exchanged such that each of the nine previously identified biomarkers can be measured at one of the three centers. Subjects were classified according to cognitive status and CSF AD biomarker profiles as having normal cognition and normal CSF (n = 31), normal cognition and CSF consistent with AD (n = 13), mild cognitive impairment and normal CSF (n = 13), mild cognitive impairment with CSF consistent with AD (n = 23), AD dementia (n = 32; CSF consistent with AD), and other non-AD dementia (n = 13; CSF not consistent with AD). RESULTS: Three biomarkers were identified to differ among the AD stages, including neurofilament light chain (NfL; p < 0.001), fatty acid binding protein 3 (Fabp3; p < 0.001), and interleukin (IL)-10 (p = 0.033). Increased NfL levels were most strongly associated with the dementia stage of AD, but increased Fabp3 levels were more sensitive to milder AD stages and correlated with both CSF tau markers. IL-10 levels did not correlate with tau biomarkers, but were associated with rates of longitudinal cognitive decline in mild cognitive impairment due to AD (p = 0.006). Prefreezing centrifugation did not influence measured CSF biomarker levels. CONCLUSION: CSF proteins associated with AD clinical stages and progression can complement Aß and tau markers to inform neurodegeneration. A validated panel inclusive of multiple biomarker features (etiology, stage, progression) can improve AD phenotyping along the A/T/N framework.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Idoso , Biomarcadores/líquido cefalorraquidiano , Estudos de Coortes , Progressão da Doença , Proteína 3 Ligante de Ácido Graxo/líquido cefalorraquidiano , Feminino , Humanos , Interleucina-10/líquido cefalorraquidiano , Masculino , Pessoa de Meia-Idade , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
19.
Proteomes ; 6(3)2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30200280

RESUMO

Neurodegenerative dementias are highly complex disorders driven by vicious cycles of intersecting pathophysiologies. While most can be definitively diagnosed by the presence of disease-specific pathology in the brain at postmortem examination, clinical disease presentations often involve substantially overlapping cognitive, behavioral, and functional impairment profiles that hamper accurate diagnosis of the specific disease. As global demographics shift towards an aging population in developed countries, clinicians need more sensitive and specific diagnostic tools to appropriately diagnose, monitor, and treat neurodegenerative conditions. This review is intended as an overview of how modern proteomic techniques (liquid chromatography mass spectrometry (LC-MS/MS) and advanced capture-based technologies) may contribute to the discovery and establishment of better biofluid biomarkers for neurodegenerative disease, and the limitations of these techniques. The review highlights some of the more interesting technical innovations and common themes in the field but is not intended to be an exhaustive systematic review of studies to date. Finally, we discuss clear reporting principles that should be integrated into all studies going forward to ensure data is presented in sufficient detail to allow meaningful comparisons across studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...