Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Infect Genet Evol ; 91: 104795, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33667723

RESUMO

Mycoplasma pneumoniae is the prevalent cause of acquired respiratory infections around the globe. A multi-epitope vaccine (MEV) must be developed to combat infections of M. pneumoniae because there is no specific disease-modifying treatment or vaccination is present. The objective of this research is to design a vaccine that targets M. pneumoniae top five highly antigenic proteins using a combination of immunological techniques and molecular docking. T-cell (HTL & CTL), B-cell, and IFN-γ of target proteins were forecasted and highly conservative epitopes were chosen for further study. For designing of final vaccine, 4LBL, 7CTL, and 5HTL epitopes were joined by linkers of KK, AAY, and GPGPG. The N-end of the vaccine was linked to an adjuvant (Cholera enterotoxin subunit B) with a linker named EAAAK to enhance immunogenicity. After the addition of adjuvants and linkers, the size of the construct was 395 amino acids. The epitopes of IFN-γ and B-cells illustrate that the model construct is optimized for cell-mediated immune or humoral responses. To ensure that the final design is safer and immunogenic, properties like non-allergens, antigenicity, and various physicochemical properties were evaluated. Molecular docking of the vaccine with the toll-like receptor 4 (TLR4) was conducted to check the compatibility of the vaccine with the receptor. Besides, in-silico cloning was utilized for validation of the credibility and proper expression of the vaccine. Furthermore, to confirm that the multi-epitope vaccine created is protective and immunogenic, this research requires experimental validation.

2.
J Biomol Struct Dyn ; : 1-25, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33764266

RESUMO

Berberis lyceum and Fumaria indica are two Pakistani indigenous herbal medicines used to treat liver infections, including hepatitis C virus (HCV). This study aimed to evaluate the cytotoxicity, and antioxidant activity of these plant extracts and computationally screen their selected phytoconstituents as HCV NS5A inhibitors. The viability of HepG2 cells was assessed 24 h and 48 h post-treatment using colorimetric and dye exclusion methods. Antioxidant properties were examined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH), reducing power, and total antioxidant capacity assays. Seventeen known phytochemicals identified from each plant were docked into the active binding site of HCV NS5A protein. The top hit ligands were analyzed for their druglikeness properties and the indices of absorption, distribution, metabolism, elimination, and toxicity (ADMET). The results showed that both plant extracts were non-toxic (CC50 > 200 µg/ml). The IC50 values of DPPH-radical scavenging activity were 51.02 ± 0.94 and 62.91 ± 1.85 µg/ml for B. lyceum and F. indica, respectively. They also exhibited reducing power and total antioxidant capacity.The phytochemicals were identified as potent HCV NS5A inhibitors with good druglikeness and ADMET properties. Six of the docked phytochemicals exhibited higher binding scores (-17.9 to -19.2 kcal/mol) with HCV NS5A protein than the standard drug, daclatasvir (-17.2 kcal/mol). Molecular dynamics (MD) simulation confirmed the stability of two compounds, berbamine and paprafumine at 100 ns with active site of HCV NS5A protein. The identified compounds through molecular docking and MD simulation could have potential as HCV NS5A inhibitor after further validation. Communicated by Ramaswamy H. Sarma.

3.
Biomed Mater ; 16(4): 042003, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33686970

RESUMO

Advanced biomaterials are increasingly used for numerous medical applications from the delivery of cancer-targeted therapeutics to the treatment of cardiovascular diseases. The issues of foreign body reactions induced by biomaterials must be controlled for preventing treatment failure. Therefore, it is important to assess the biocompatibility and cytotoxicity of biomaterials on cell culture systems before proceeding to in vivo studies in animal models and subsequent clinical trials. Direct use of biomaterials on animals create technical challenges and ethical issues and therefore, the use of non-animal models such as stem cell cultures could be useful for determination of their safety. However, failure to recapitulate the complex in vivo microenvironment have largely restricted stem cell cultures for testing the cytotoxicity of biomaterials. Nevertheless, properties of stem cells such as their self-renewal and ability to differentiate into various cell lineages make them an ideal candidate for in vitro screening studies. Furthermore, the application of stem cells in biomaterials screening studies may overcome the challenges associated with the inability to develop a complex heterogeneous tissue using primary cells. Currently, embryonic stem cells, adult stem cells, and induced pluripotent stem cells are being used as in vitro preliminary biomaterials testing models with demonstrated advantages over mature primary cell or cell line based in vitro models. This review discusses the status and future directions of in vitro stem cell-based cultures and their derivatives such as spheroids and organoids for the screening of their safety before their application to animal models and human in translational research.

4.
Crit Rev Eukaryot Gene Expr ; 31(1): 79-92, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639058

RESUMO

Diabetic cardiomyopathy is characterized as abnormal function and structure of myocardium associated with diabetes irrespective of other cardiac risk factors like hypertension or coronary artery disease (CAD). The pathogenesis of DCM was not well understood in the past due to its complexity but it has been discovered recently. Various factors are found to be associated with the onset of DCM including impaired calcium handling, remodeling of extracellular matrix (ECM), increased oxidative stress, altered metabolism, mitochondrial dysfunction, and endothelial dysfunction. Micro-RNAs (miRNAs) are also found to be of great importance in the pathogenesis of DCM. Different miRNAs like miR-126, miR-24, miR-1, miR-155, miR-499, and miR-199a are found to be associated with different types of heart diseases like CAD and myocardial infarction. Studies have shown that the miRNA plays a crucial role in the development of DCM and it was found that the expression levels of different miRNAs differ in patients as compared to healthy individuals. This review focuses on the pathogenesis of DCM and various factors involved in the onset of diabetic car-diomyopathy. Moreover, the probable role of miRNA in the pathogenesis of DCM is also discussed.

5.
Crit Rev Ther Drug Carrier Syst ; 38(2): 75-102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639068

RESUMO

Viral infections such as AIDS, hepatitis, herpes keratitis, and herpes labialis became resistant to drugs and it is difficult to design vaccine. In current era drug-resistant viruses are now treated by nanoparticles (NPs) and this field is known as nanobiotechnology that relates nanoscience with the biological system. NPs due to their antiviral activity are used in the treatment of viral diseases. The advantages of using the NP is its specific target action and increase the efficiency of treatment with minimum side effects. Liposomes, quantum dots, polymeric NPs, solid lipid NPs, silver NPs, gold NPs, and magnetic NPs are used to treat viral infections. NP-based therapeutics have completely replaced the usage of drugs and vaccines for viral diseases treatment. Nano vaccines have been investigated for the delivery of drugs; biomaterials-based NPs are in development to be formulated into nano vaccines. But there are limitations in the manufacturing and stabilization of NPs in the body. This review focuses on the antiviral activity of several NPs, its uptake by different viruses for viral disease treatment, nano vaccines, and the limitation of the NPs as nanotherapeutics.

6.
PLoS One ; 16(2): e0245072, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33534822

RESUMO

Middle East respiratory syndrome (MERS-COV), first identified in Saudi Arabia, was caused by a novel strain of coronavirus. Outbreaks were recorded from different regions of the world, especially South Korea and the Middle East, and were correlated with a 35% mortality rate. MERS-COV is a single-stranded, positive RNA virus that reaches the host by binding to the receptor of dipeptidyl-peptides. Because of the unavailability of the vaccine available for the protection from MERS-COV infection, the rapid case detection, isolation, infection prevention has been recommended to combat MERS-COV infection. So, vaccines for the treatment of MERS-COV infection need to be developed urgently. A possible antiviral mechanism for preventing MERS-CoV infection has been considered to be MERS-CoV vaccines that elicit unique T-cell responses. In the present study, we incorporated both molecular docking and immunoinformatic approach to introduce a multiepitope vaccine (MEP) against MERS-CoV by selecting 15 conserved epitopes from seven viral proteins such as three structural proteins (envelope, membrane, and nucleoprotein) and four non-structural proteins (ORF1a, ORF8, ORF3, ORF4a). The epitopes, which were examined for non-homologous to host and antigenicity, were selected on the basis of conservation between T-cell, B-cell, and IFN-γ epitopes. The selected epitopes were then connected to the adjuvant (ß-defensin) at the N-terminal through an AAY linker to increase the immunogenic potential. Structural modelling and physiochemical characteristic were applied to the vaccine construct developed. Afterwards the structure has been successfully docked with antigenic receptor, Toll-like receptor 3 (TLR-3) and in-silico cloning ensures that its expression efficiency is legitimate. Nonetheless the MEP presented needs tests to verify its safety and immunogenic profile.


Assuntos
Epitopos/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Proteoma , Vacinas Virais/imunologia , Sequência de Aminoácidos , Sítios de Ligação , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Desenho de Fármacos , Epitopos/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Vacinas de Subunidades/química , Vacinas de Subunidades/imunologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/imunologia , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/imunologia , Vacinas Virais/química
7.
Biomed Mater ; 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33592587

RESUMO

Advanced biomaterials have produced a significant impact on healthcare by improving the quality of life of people with disabilities. Biomaterials are immensely used in tissue engineering, wound healing applications, and delivery of cancer targeted therapeutics. Biocompatibility and cytotoxicity screening of biomaterials on cell culture systems is the first step before their in vivo testing in animal models and subsequent clinical trials. Direct use of biomaterials on animals may create technical challenges as well as ethical concerns. In order to avoid the ethical concerns of animal use, many non-animal models such as stem cell cultures are being developed and utilized for testing their safety. However, due to several limitations including the inability to recapitulate the complex in vivo microenvironment, the application of stem cell cultures is limited. However, properties of stem cells such as their self-renewal and ability to differentiate into various cell lineages like hepatocytes, cardiomyocytes, and neural cells make them an ideal candidates for in vitro screening studies. Furthermore, the application of stem cells may overcome the challenges associated with the inability to develop a complex heterogeneous tissue using primary cells. Currently, Embryonic Stem Cells (ESCs), Adult Stem Cells (ASCs), and Induced Pluripotent Stem Cells (iPSCs) are being used as in vitro preliminary biomaterials testing models with demonstrated advantages over mature primary cell or cell line based in vitro models. This review discusses the current status and future directions of in vitro stem cell-based cultures and their derivatives such as spheroids and organoids for the screening of their safety before their application to animal models and human in translational research.

8.
Future Microbiol ; 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33412931

RESUMO

Aim: Due to the increased level of vancomycin resistance in Enterococci species, an aggressive treatment involving targeted antibiotics is required to manage this frequently occurring infection. Materials & methods: Here, subtractive proteomics and reverse vaccinology approaches were employed to identify potential target and for the prediction of B cell and T cell epitopes against vancomycin-resistant Enterococcus faecalis (VRE V583). Results: The results exhibited the presence of 73 out of 805 non-homologous protein sequences in the proteome which can be employed as unique targets to develop the novel drugs and vaccine to counter the deadly infections caused by this microbe. Conclusion: The identified novel target in VRE V583 will equip our knowledge to design effective vaccine against probable protease EEP proteins.

9.
Artigo em Inglês | MEDLINE | ID: mdl-33371844

RESUMO

BACKGROUND: Hepatitis C Virus (HCV) is one of the serious health issues affecting one-third of the world's population. The high variations of the HCV genome are ascribed to quick replication by NS5B Polymerase and are thus the most attractive target for developing anti-HCV agents. OBJECTIVE: The current study aimed to discover novel phytochemicals that harbor the potential of NS5B polymerase inhibition. METHOD: In this computational study, a molecular docking approach was used to screen phytochemicals with the best binding and spatial affinity with NS5B at the Palm I region. The top-ranked compounds were then subjected to in-silico pharmacokinetic and toxicological study. RESULTS AND CONCLUSION: The virtual screening provided seven 'hit compounds' including Betanin, 3,5'- dihydroxythalifaboramine, Diarctigenin, 6'-desmethylthalifaboramine, Cephalotaxine, 5alpha-O-(3'-dimethylamino-3'- phenylpropionyl) taxinine M and IsoTetrandrine with minimum binding score compared to the reference drug, Sofosbuvir (-14.7 kcal/mol). The absorption, distribution, metabolism, excretion, and toxicity (ADMET) and thorough toxicological analysis revealed a favorable and the safety profile of these compounds. The study would demonstrate the phytochemicals identified might serve as potential antiviral compounds that can potentially an alternative approach for amelioration of HCV.

10.
PLoS One ; 15(12): e0244176, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33351863

RESUMO

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory coronavirus 2 (SARS-COV-2) is a significant threat to global health security. Till date, no completely effective drug or vaccine is available to cure COVID-19. Therefore, an effective vaccine against SARS-COV-2 is crucially needed. This study was conducted to design an effective multiepitope based vaccine (MEV) against SARS-COV-2. Seven highly antigenic proteins of SARS-COV-2 were selected as targets and different epitopes (B-cell and T-cell) were predicted. Highly antigenic and overlapping epitopes were shortlisted. Selected epitopes indicated significant interactions with the HLA-binding alleles and 99.93% coverage of the world's population. Hence, 505 amino acids long MEV was designed by connecting 16 MHC class I and eleven MHC class II epitopes with suitable linkers and adjuvant. MEV construct was non-allergenic, antigenic, stable and flexible. Furthermore, molecular docking followed by molecular dynamics (MD) simulation analyses, demonstrated a stable and strong binding affinity of MEV with human pathogenic toll-like receptors (TLR), TLR3 and TLR8. Finally, MEV codons were optimized for its in silico cloning into Escherichia coli K-12 system, to ensure its increased expression. Designed MEV in present study could be a potential candidate for further vaccine production process against COVID-19. However, to ensure its safety and immunogenic profile, the proposed MEV needs to be experimentally validated.


Assuntos
/imunologia , /imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Sequência de Aminoácidos/genética , /virologia , /uso terapêutico , Biologia Computacional , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas do Envelope Viral/imunologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-33123212

RESUMO

Depression and anxiety are the most common disorders among all age groups. Several antidepressant drugs including benzodiazepine, antidepressant tricyclics, azapirone, noradrenaline reuptake inhibitors, serotonin selective reuptake inhibitors, serotonin, noradrenaline reuptake inhibitors, and monoamine oxidase inhibitors have been used to treat these psychiatric disorders. However, these antidepressants are generally synthetic agents and can cause a wide range of side effects. The potential efficacy of plant-derived alkaloids has been reviewed against various neurodegenerative diseases including Alzheimer's disease, Huntington disease, Parkinson's disease, schizophrenia, and epilepsy. However, data correlating the indole alkaloids and antidepressant activity are limited. Natural products, especially plants and the marine environment, are rich sources of potential new drugs. Plants possess a variety of indole alkaloids, and compounds that have an indole moiety are related to serotonin, which is a neurotransmitter that regulates brain function and cognition, which in turn alleviates anxiety, and ensures a good mood and happiness. The present review is a summary of the bioactive compounds from plants and marine sources that contain the indole moiety, which can serve as potent antidepressants. The prospects of naturally occurring as well as synthetic indole alkaloids for the amelioration of anxiety and depression-related disorders, structure-activity relationship, and their therapeutic prospects have been discussed.

12.
PLoS One ; 15(9): e0239748, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32976546

RESUMO

Significant number out of 2.2 billion vision impairments in the world can be attributed to genetics. The current study is aimed to decipher the genetic basis of Leber congenital Amaurosis (LCA), Anterior Segment dysgenesis (ASD), and Retinitis Pigmentosa (RP), segregating in four large consanguineous Pakistani families. The exome sequencing followed by segregation analysis via Sanger sequencing revealed the LCA phenotypes segregating in families GCUF01 and GCUF04 can be attributed to c.465G>T (p.(Gln155His)) missense and novel c.139_140delinsA p.(Pro47Trhfster38) frameshift variant of AIPL1 and GUCY2D, respectively. The c.1843A>T (p.(Lys615*) truncating allele of MERTK is homozygous in all the affected individuals, presumably suffering with RP, of the GCUF02 family. Meanwhile, co-segregation of the ASD phenotype and the c.289A>G (p.(Ile97Val)) variant of FOXE3 was found in the GCUF06 family. All the identified variants were either absent or present in very low frequencies in the control databases. Our in-silico analyses and 3D molecular modeling support the deleterious impact of these variants on the encoded proteins. Variants identified in MERTK, GUCY2D, and FOXE3 were categorized as "pathogenic" or "likely pathogenic", while the missense variant found in AIPL1 was deemed to have "uncertain significance" based upon the variant pathogenicity guidelines from the American College of Medical Genetics and Genomics (ACMG). This paper highlights the genetic diversity of vision disorders in the Pakistani population and reports the identification of four novel mutations in families who segregate clinically heterogeneous eye diseases. Our results give insight into the genotype-phenotype correlations of AIPL1, FOXE3, MERTK, and GUCY2D variants.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Oftalmopatias/genética , Fatores de Transcrição Forkhead/genética , Guanilato Ciclase/genética , Mutação , Receptores de Superfície Celular/genética , c-Mer Tirosina Quinase/genética , Adolescente , Adulto , Idoso , Criança , Oftalmopatias/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Paquistão , Linhagem , Fenótipo
13.
J Transl Med ; 18(1): 349, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928224

RESUMO

BACKGROUND: Omega-3 fatty acids (Ω-3 PUFAs) may help to improve health status in polycystic ovarian syndrome (PCOS) by reducing numerous metabolic disorders (insulin sensitivity, hyperinsulinemia, lipid profile, obesity and inflammation). To evaluate the current objective, 16 weeks (6 weeks of adjustment period followed by 10 weeks of collection period) research trial was planned to check the impact of different sources of Ω-3 PUFAs (synthetic Ω-3, flaxseed and fish oil) on nutrient digestibility, weight gain, productive (lipid profile, glucose and insulin), reproductive profile (progesterone, follicle stimulating hormone (FSH), estrogen, luteinizing hormone (LH) and prolactin) and histological study of ovarian tissues in Wistar female rats. METHODS: Forty-five rats of 130 ± 10 g weight were divided into 5 groups, each having 9 rats: NC (negative control without PCOS), PC (positive control with PCOS), SO (synthetic omega-3 containing ALA, EPA and DHA), FO (flaxseed oil) and F (fish oil) fed at 300 mg/kg/orally/daily of these sources were added in the basal diets while PC and NC received only the basal diet. Food and water were offered ad libitum. PCOS was induced in the rats fed of PC, SO, FO and F diets group by single intramuscular injection of estradiol-valerate (4 mg/rat/IM). Body weight and blood glucose was recorded weekly. At 16th week of trial, blood samples were collected for lipid and hormonal analysis. Ovarian tissues were removed for pathological evaluation. Digestibility was measured by total collection method. RESULTS: Cholesterol, triglycerides and low-density lipoproteins were reduced in SO, FO and F groups when compared with rats of PC group. However, increasing trend of high-density lipoprotein (HDL) was found in same groups. The highest HDL (36.83 ± 0.72 mg/dL) was observed in rats fed F diet. In case of a hormonal profile, testosterone, LH and insulin levels showed a significant reduction after treatments. Blood glucose results showed significantly reducing trend in all the rats fed with Ω-3 PUFAs sources than PC from 5 to 10th week of trial. However, similar trend was noticed in rat's body weight at the end of 6th week. In ovarian morphology, different stages of follicles were observed in groups fed SO, FO and F diets. Nutrient digestibility in PCOS induced rats was remained non-significant. CONCLUSIONS: The three sources of Ω-3 PUFAs had effective role in improving lipid and hormonal profile, reducing blood glucose, weight gain and histopathological damages in PCOS rats. However, fish oil source might be an innovative approach to cure PCOS via reducing the weight and metabolic anomalies due to EPA and DHA.

14.
Infect Drug Resist ; 13: 2855-2862, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32884309

RESUMO

Introduction: The aminoglycosides are widely used for the therapeutic management of infections caused by gram-negative bacteria, including the Acinetobacter baumannii strains. However, the resistance to the members of the aminoglycoside family, such as amikacin, gentamicin, and tobramycin, is increasingly being common among the clinical isolates. Purpose: This study aimed to investigate the presence of 16SrRNA methylases and aminoglycoside modifying enzymes (AMEs) genes among aminoglycoside resistant A. baumannii isolates and to study the genetic diversity of the clinical population of A. baumannii in local hospitals. Material and Methods: The 143 A. baumannii clinical strains were analyzed for antimicrobial susceptibility, genetic screening for enzymes conferring aminoglycosides resistance followed by the multilocus sequence typing. Results: The 133/143 (93%) isolates were non-susceptible to at least one of the tested aminoglycosides, including amikacin, gentamicin, and tobramycin. The MIC distribution has shown that 87.486.7% strains were resistant to amikacin and gentamicin, respectively. The aphA6, aadB, aacC1, and aphA1 were found in 74.1%, 59.4%, 16.1%, and 11.2% isolates, respectively, whereas the armA was found in 28% of the strains having a higher MIC value (MIC; ≥256µg/mL). The MLST data have shown that the ST589 and ST2 were the most common STs and corresponded to 51 (35.7%) and 38 (26.6%) isolates, respectively, and few of the isolates corresponding to these STs were found to harbor the armA gene with a variable genotypic profile for AMEs. Discussion: The study has reported the incidence of various enzymes conferring aminoglycoside resistance among the A. baumannii clones for the first time from Pakistan. The findings suggest the possibility of transmission of aminoglycoside resistance determinants through the lateral gene transfer as well as clonal dissemination.

15.
Infect Dis Poverty ; 9(1): 132, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938504

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) linked with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause severe illness and life-threatening pneumonia in humans. The current COVID-19 pandemic demands an effective vaccine to acquire protection against the infection. Therefore, the present study was aimed to design a multiepitope-based subunit vaccine (MESV) against COVID-19. METHODS: Structural proteins (Surface glycoprotein, Envelope protein, and Membrane glycoprotein) of SARS-CoV-2 are responsible for its prime functions. Sequences of proteins were downloaded from GenBank and several immunoinformatics coupled with computational approaches were employed to forecast B- and T- cell epitopes from the SARS-CoV-2 highly antigenic structural proteins to design an effective MESV. RESULTS: Predicted epitopes suggested high antigenicity, conserveness, substantial interactions with the human leukocyte antigen (HLA) binding alleles, and collective global population coverage of 88.40%. Taken together, 276 amino acids long MESV was designed by connecting 3 cytotoxic T lymphocytes (CTL), 6 helper T lymphocyte (HTL) and 4 B-cell epitopes with suitable adjuvant and linkers. The MESV construct was non-allergenic, stable, and highly antigenic. Molecular docking showed a stable and high binding affinity of MESV with human pathogenic toll-like receptors-3 (TLR3). Furthermore, in silico immune simulation revealed significant immunogenic response of MESV. Finally, MEV codons were optimized for its in silico cloning into the Escherichia coli K-12 system, to ensure its increased expression. CONCLUSION: The MESV developed in this study is capable of generating immune response against COVID-19. Therefore, if designed MESV further investigated experimentally, it would be an effective vaccine candidate against SARS-CoV-2 to control and prevent COVID-19.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Humanos , Imunogenicidade da Vacina/imunologia , Simulação de Acoplamento Molecular , Pneumonia Viral/imunologia , Análise de Sequência de Proteína , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Vacinas de Subunidades/química , Vacinas de Subunidades/genética , Vacinas de Subunidades/imunologia , Vacinologia/métodos , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Vacinas Virais/química , Vacinas Virais/genética
16.
Pak J Pharm Sci ; 33(2(Supplementary)): 847-854, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32863261

RESUMO

Pyrazoline and benzimidazoles derivatives have been widely studied due to their potential applications in the medicinal field. In this research project, we have hybridized these two heterocyclic systems in the same molecule. A new series of compounds, 2-((3,5-diaryl-4,5-dihydro-1H-pyrazol-1-yl)methyl)-1H-benzo[d]imidazole (5a-i) were synthesized through a multistep reaction. In the first step, chalcones 3a-i were prepared by coupling of various acetophenones and benzaldehydes under alkaline conditions. These chalcones were cyclized with hydrazine hydrate to form a series of pyrazolines which were finally coupled with 2-chloromethyl-1H-benzimidazole to get a new series of titled hybrid molecules. The structures of these compounds were elucidated by spectral (1H NMR and 13C NMR) analysis. The anti-diabetic potential of these compounds was studied by screening them for their α-glucosidase inhibition activity. The SAR was established through molecular docking analysis. Compound 5d appeared as effective inhibitor with IC50 = 50.06µM as compared to reference drug (acarbose) having IC50 = 58.8µM.

17.
J Biomed Inform ; 108: 103498, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32621883

RESUMO

Hepatitis C Virus (HCV) infection is a major cause of chronic liver disease, hepatocellular carcinoma, and the single most common indication for liver transplantation. HCV vaccines eliciting specific T-cell responses, have been considered as potent method to prevent HCV infection. Despite several reports on progress of vaccine, these vaccine failed in mediating clinical relevance activity against HCV in humans. In this study we integrated both immunoinformatic and molecular docking approach to present a multiepitope vaccine against HCV by designating 17 conserved epitopes from eight viral proteins such as Core protein, E1, E2, NS2, NS34A, NS4B, NS5A, and NS5B. The epitopes were prioritized based on conservation among epitopes of T cell, B cell and IFN-γ that were then scanned for non-homologous to host and antigenicity. The prioritized epitopes were then linked together by AAY linker and adjuvant (ß-defensin) were attached at N-terminal to enhance immunogenic potential. The construct thus formed were subjected to structural modeling and physiochemical characteristics. The modeled structure were successfully docked to antigenic receptor TLR-3 and In-silico cloning confers the authenticity of its expression efficiency. However, the proposed construct need to be validate experimentally to ensure its safety and immunogenic profile.

18.
Vaccines (Basel) ; 8(2)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521680

RESUMO

Respiratory syncytial virus (RSV) is primarily associated with respiratory disorders globally. Despite the availability of information, there is still no competitive vaccine available for RSV. Therefore, the present study has been designed to develop a multiepitope-based subunit vaccine (MEV) using a reverse vaccinology approach to curb RSV infections. Briefly, two highly antigenic and conserved proteins of RSV (glycoprotein and fusion protein) were selected and potential epitopes of different categories (B-cell and T-cell) were identified from them. Eminently antigenic and overlapping epitopes, which demonstrated strong associations with their respective human leukocyte antigen (HLA) alleles and depicted collective ~70% coverage of the world's populace, were shortlisted. Finally, 282 amino acids long MEV construct was established by connecting 13 major histocompatibility complex (MHC) class-I with two MHC class-II epitopes with appropriate adjuvant and linkers. Adjuvant and linkers were added to increase the immunogenic stimulation of the MEV. Developed MEV was stable, soluble, non-allergenic, non-toxic, flexible and highly antigenic. Furthermore, molecular docking and molecular dynamics (MD) simulations analyses were carried out. Results have shown a firm and robust binding affinity of MEV with human pathogenic toll-like receptor three (TLR3). The computationally mediated immune response of MEV demonstrated increased interferon-γ production, a significant abundance of immunoglobulin and activation of macrophages which are essential for immune-response against RSV. Moreover, MEV codons were optimized and in silico cloning was performed, to ensure its increased expression. These outcomes proposed that the MEV developed in this study will be a significant candidate against RSV to control and prevent RSV-related disorders if further investigated experimentally.

19.
Infect Genet Evol ; 84: 104371, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32485331

RESUMO

HCV is a viral infection posing a severe global threat when left untreated progress to end-stage liver disease, including cirrhosis and HCC. The NS5B polymerase of HCV is the most potent target that harbors four allosteric binding sites that could interfere with the HCV infection. We present the discovery of a novel synthetic compound that harbors the potential of NS5B polymerase inhibition. All eight compounds belonging to the benzothiazine family of heterocycles displayed no cellular cytotoxicity in HepG2 cells at nontoxic dose concentration (200 µM). Subsequently, among eight compounds of the series, merely compound 5b exhibited significant inhibition of the expression of the HCV NS5B gene as compared to DMSO control in semi-quantitative PCR. Based on our western blot result, 5b at the range of 50, 100 and 200 µM induced 20, 40, and 70% inhibition of NS5B protein respectively. To estimate the binding potential, 5b was docked at respective allosteric sites followed by molecular dynamics (MD) simulations for a period of 20 ns. In addition, binding free energy calculation by MM-GB/PBSA method revealed a conserved interaction profile of residues lining the allosteric sites in agreement with the reported NS5B co-crystallized inhibitors. The presented results provide important information about a novel compound 5b which may facilitate the the discovery of novel inhibitors that tends to target multiple sites on NS5B polymerase.

20.
Artigo em Inglês | MEDLINE | ID: mdl-32452324

RESUMO

Aims & Objective: Armoracia Rusticana has high medicinal values and is an excellent source of phytochemicals. This study was aimed to evaluate the antidiabetic potential of bioactive compounds from Armoracia Rusticana. METHODS: The antidiabetic analysis revealed Armoracia Rusticana was highly active against α-glucosidase with IC50 values of 5.6 µg/ml. Furthermore, molecular docking was used to identify the active constituents against α-glucosidase, while using acarbose as a controlled drug. RESULTS: Upon phytochemical screening, it was found that six out of ten phytochemicals were successfully docked in the respective binding sites. The lead phytochemical was Quercetin 3-O-beta-D-xylopyranoside which displayed a more binding score as compared to acarbose. They were subjected to analyze for drug-like properties which further strengthen its validation. CONCLUSION: It was, therefore, concluded that Armoracia Rusticana might potentially be used in the amelioration of type 2 diabetes. Potential molecules identified from this study could be considered as a lead drug to cure diabetes mellitus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...