Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
ACS Nano ; 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32584026


Quasi-two-dimensional (2D) semiconductor nanoplatelets manifest strong quantum confinement with exceptional optical characteristics of narrow photoluminescence peaks with energies tunable by thickness with monolayer precision. We employed scanning tunneling spectroscopy (STS) in conjunction with optical measurements to probe the thickness-dependent band gap and density of excited states in a series of CdSe nanoplatelets. The tunneling spectra, measured in the double-barrier tunnel junction configuration, reveal the effect of quantum confinement on the band gap taking place mainly through a blue-shift of the conduction band edge, along with a signature of 2D electronic structure intermixed with finite lateral-size and/or defects effects. The STS fundamental band gaps are larger than the optical gaps as expected from the contributions of exciton binding in the absorption, as confirmed by theoretical calculations. The calculations also point to strong valence band mixing between the light- and split-off hole levels. Strikingly, the energy difference between the heavy-hole and light-hole levels in the tunneling spectra are significantly larger than the corresponding values extracted from the absorption spectra. Possible explanations for this, including an interplay of nanoplatelet charging, dielectric confinement, and difference in exciton binding energy for light and heavy holes, are analyzed and discussed.

Nanoscale ; 9(45): 17884-17892, 2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29120002


The electrical and optical properties of semiconductor nanocrystals (NCs) can be controlled, in addition to size and shape, by doping. However, such a process is not trivial in NCs due to the high formation energy of dopants there. Nevertheless, it has been shown theoretically that in the case of B and P (acceptor/donor) codoped Si-NCs the formation energy is reduced relative to that of single type doping. Previous comprehensive measurements on ensembles of such codoped Si-NCs have pointed to the presence of donor and acceptor states within the energy gap. However, such a conjecture has not been directly verified previously. Following that, we investigate here the electronic properties of B and P codoped Si-NCs via Scanning Tunneling Spectroscopy. We monitored the quantum confinement effect in this system, for which the energy gap changed from ∼1.4 eV to ∼1.8 eV with the decrease of NC diameter from 8.5 to 3.5 nm. Importantly, all spectra showed two in-gap band-states, one close to the conduction band edge and the other to the valence band edge, which we attribute to the P and B dopant levels, respectively. The energy separation between these dopants states decrease monotonically with increasing NC diameter, in parallel to the decrease of the conduction-to-valence bands separation. A fundamental quantity that is derived directly for these Si-NCs is the intrinsic like position of the Fermi energy, a non-trivial result that is very relevant for understanding the system. Following the above results we suggest an explanation for the character and the origin of the dopants bands.