Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Filtros adicionais











Intervalo de ano
1.
Nat Commun ; 10(1): 3669, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31413261

RESUMO

Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity.

2.
Int J Mol Sci ; 20(13)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266154

RESUMO

Telomere dynamics have been found to be better predictors of survival and mortality than chronological age. Telomeres, the caps that protect the end of linear chromosomes, are known to shorten with age, inducing cell senescence and aging. Furthermore, differences in age-related telomere attrition were established between short-lived and long-lived organisms. However, whether telomere length is a "biological thermometer" that reflects the biological state at a certain point in life or a biomarker that can influence biological conditions, delay senescence and promote longevity is still an ongoing debate. We cross-sectionally tested telomere length in different tissues of two long-lived (naked mole-rat and Spalax) and two short-lived (rat and mice) species to tease out this enigma. While blood telomere length of the naked mole-rat (NMR) did not shorten with age but rather showed a mild elongation, telomere length in three tissues tested in the Spalax declined with age, just like in short-lived rodents. These findings in the NMR, suggest an age buffering mechanism, while in Spalax tissues the shortening of the telomeres are in spite of its extreme longevity traits. Therefore, using long-lived species as models for understanding the role of telomeres in longevity is of great importance since they may encompass mechanisms that postpone aging.

4.
Bioinformatics ; 35(17): 3046-3054, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624692

RESUMO

MOTIVATION: Over the last decade, more diverse populations have been included in genome-wide association studies. If a genetic variant has a varying effect on a phenotype in different populations, genome-wide association studies applied to a dataset as a whole may not pinpoint such differences. It is especially important to be able to identify population-specific effects of genetic variants in studies that would eventually lead to development of diagnostic tests or drug discovery. RESULTS: In this paper, we propose PopCluster: an algorithm to automatically discover subsets of individuals in which the genetic effects of a variant are statistically different. PopCluster provides a simple framework to directly analyze genotype data without prior knowledge of subjects' ethnicities. PopCluster combines logistic regression modeling, principal component analysis, hierarchical clustering and a recursive bottom-up tree parsing procedure. The evaluation of PopCluster suggests that the algorithm has a stable low false positive rate (∼4%) and high true positive rate (>80%) in simulations with large differences in allele frequencies between cases and controls. Application of PopCluster to data from genetic studies of longevity discovers ethnicity-dependent heterogeneity in the association of rs3764814 (USP42) with the phenotype. AVAILABILITY AND IMPLEMENTATION: PopCluster was implemented using the R programming language, PLINK and Eigensoft software, and can be found at the following GitHub repository: https://github.com/gurinovich/PopCluster with instructions on its installation and usage. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

5.
Am J Clin Nutr ; 108(3): 453-475, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535086

RESUMO

Background: Even before the onset of age-related diseases, obesity might be a contributing factor to the cumulative burden of oxidative stress and chronic inflammation throughout the life course. Obesity may therefore contribute to accelerated shortening of telomeres. Consequently, obese persons are more likely to have shorter telomeres, but the association between body mass index (BMI) and leukocyte telomere length (TL) might differ across the life span and between ethnicities and sexes. Objective: A collaborative cross-sectional meta-analysis of observational studies was conducted to investigate the associations between BMI and TL across the life span. Design: Eighty-seven distinct study samples were included in the meta-analysis capturing data from 146,114 individuals. Study-specific age- and sex-adjusted regression coefficients were combined by using a random-effects model in which absolute [base pairs (bp)] and relative telomere to single-copy gene ratio (T/S ratio) TLs were regressed against BMI. Stratified analysis was performed by 3 age categories ("young": 18-60 y; "middle": 61-75 y; and "old": >75 y), sex, and ethnicity. Results: Each unit increase in BMI corresponded to a -3.99 bp (95% CI: -5.17, -2.81 bp) difference in TL in the total pooled sample; among young adults, each unit increase in BMI corresponded to a -7.67 bp (95% CI: -10.03, -5.31 bp) difference. Each unit increase in BMI corresponded to a -1.58 × 10(-3) unit T/S ratio (0.16% decrease; 95% CI: -2.14 × 10(-3), -1.01 × 10(-3)) difference in age- and sex-adjusted relative TL in the total pooled sample; among young adults, each unit increase in BMI corresponded to a -2.58 × 10(-3) unit T/S ratio (0.26% decrease; 95% CI: -3.92 × 10(-3), -1.25 × 10(-3)). The associations were predominantly for the white pooled population. No sex differences were observed. Conclusions: A higher BMI is associated with shorter telomeres, especially in younger individuals. The presently observed difference is not negligible. Meta-analyses of longitudinal studies evaluating change in body weight alongside change in TL are warranted.


Assuntos
Índice de Massa Corporal , Encurtamento do Telômero/fisiologia , Telômero/ultraestrutura , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Grupos Étnicos , Humanos , Leucócitos/ultraestrutura , Masculino , Pessoa de Meia-Idade , Obesidade/patologia , Fatores Sexuais
6.
PLoS Med ; 15(9): e1002654, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30240442

RESUMO

BACKGROUND: Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D. METHODS AND FINDINGS: In an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), "lipodystrophy-like" fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry. CONCLUSION: Our approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management.

7.
Artigo em Inglês | MEDLINE | ID: mdl-30060062

RESUMO

We assembled a collection of 28,297 participants from 7 studies of longevity and healthy aging comprising New England Centenarian, Long Life Family, Longevity Gene Population, Southern Italian Centenarian, Japanese Centenarian, the Danish Longevity and the Health and Retirement Studies to investigate the association between the APOE alleles ɛ2, ɛ3 and ɛ4 and extreme human longevity and age at death. By using 3 different genetic models and two definitions of extreme longevity based on either a threshold model or age at death, we show that ɛ4 is associated with a substantially decreased odds for extreme longevity, and increased risk for death that persists even beyond ages reached by less than 1% of the population. We also show that carrying the ɛ2ɛ3 or ɛ2ɛ3 genotype is associated with significantly increased odds to reach extreme longevity, with decreased risk for death compared to carrying the genotype ɛ2ɛ3 but with only a modest reduction in risk for death beyond an age reached by less than 1% of the population.

8.
Front Med (Lausanne) ; 5: 104, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719834

RESUMO

As average life span and elderly people prevalence in the western world population is gradually increasing, the incidence of age-related diseases such as cancer, heart diseases, diabetes, and dementia is increasing, bearing social and economic consequences worldwide. Understanding the molecular basis of aging-related processes can help extend the organism's health span, i.e., the life period in which the organism is free of chronic diseases or decrease in basic body functions. During the last few decades, immense progress was made in the understanding of major components of aging and healthy aging biology, including genomic instability, telomere attrition, epigenetic changes, proteostasis, nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and intracellular communications. This progress has been made by three spear-headed strategies: in vitro (cell and tissue culture from various sources), in vivo (includes diverse model and non-model organisms), both can be manipulated and translated to human biology, and the study of aging-like human syndromes and human populations. Herein, we will focus on current repository of genomic "senescence" stage of aging, which includes health decline, structural changes of the genome, faulty DNA damage response and DNA damage, telomere shortening, and epigenetic alterations. Although aging is a complex process, many of the "hallmarks" of aging are directly related to DNA structure and function. This review will illustrate the variety of these studies, done in in vitro, in vivo and human levels, and highlight the unique potential and contribution of each research level and eventually the link between them.

9.
PLoS Genet ; 14(5): e1007329, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29795570

RESUMO

As part of a broader collaborative network of exome sequencing studies, we developed a jointly called data set of 5,685 Ashkenazi Jewish exomes. We make publicly available a resource of site and allele frequencies, which should serve as a reference for medical genetics in the Ashkenazim (hosted in part at https://ibd.broadinstitute.org, also available in gnomAD at http://gnomad.broadinstitute.org). We estimate that 34% of protein-coding alleles present in the Ashkenazi Jewish population at frequencies greater than 0.2% are significantly more frequent (mean 15-fold) than their maximum frequency observed in other reference populations. Arising via a well-described founder effect approximately 30 generations ago, this catalog of enriched alleles can contribute to differences in genetic risk and overall prevalence of diseases between populations. As validation we document 148 AJ enriched protein-altering alleles that overlap with "pathogenic" ClinVar alleles (table available at https://github.com/macarthur-lab/clinvar/blob/master/output/clinvar.tsv), including those that account for 10-100 fold differences in prevalence between AJ and non-AJ populations of some rare diseases, especially recessive conditions, including Gaucher disease (GBA, p.Asn409Ser, 8-fold enrichment); Canavan disease (ASPA, p.Glu285Ala, 12-fold enrichment); and Tay-Sachs disease (HEXA, c.1421+1G>C, 27-fold enrichment; p.Tyr427IlefsTer5, 12-fold enrichment). We next sought to use this catalog, of well-established relevance to Mendelian disease, to explore Crohn's disease, a common disease with an estimated two to four-fold excess prevalence in AJ. We specifically attempt to evaluate whether strong acting rare alleles, particularly protein-truncating or otherwise large effect-size alleles, enriched by the same founder-effect, contribute excess genetic risk to Crohn's disease in AJ, and find that ten rare genetic risk factors in NOD2 and LRRK2 are enriched in AJ (p < 0.005), including several novel contributing alleles, show evidence of association to CD. Independently, we find that genomewide common variant risk defined by GWAS shows a strong difference between AJ and non-AJ European control population samples (0.97 s.d. higher, p<10-16). Taken together, the results suggest coordinated selection in AJ population for higher CD risk alleles in general. The results and approach illustrate the value of exome sequencing data in case-control studies along with reference data sets like ExAC (sites VCF available via FTP at ftp.broadinstitute.org/pub/ExAC_release/release0.3/) to pinpoint genetic variation that contributes to variable disease predisposition across populations.


Assuntos
Doença de Crohn/genética , Predisposição Genética para Doença/genética , Judeus/genética , Doenças Raras/genética , Algoritmos , Doença de Crohn/epidemiologia , Genética Populacional , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Modelos Genéticos , Epidemiologia Molecular , Polimorfismo de Nucleotídeo Único , Doenças Raras/epidemiologia
10.
Front Med (Lausanne) ; 5: 105, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765957

RESUMO

Frailty is a complex aging phenotype associated with increased vulnerability to disability and death. Understanding the biological antecedents of frailty may provide clues to healthy aging. The genome-wide association study hotspot, 9p21-23 region, is a risk locus for a number of age-related complex disorders associated with frailty. Hence, we conducted an association study to examine whether variations in 9p21-23 locus plays a role in the pathogenesis of frailty in 637 community-dwelling Ashkenazi Jewish adults aged 65 and older enrolled in the LonGenity study. The strongest association with frailty (adjusted for age and gender) was found with the SNP rs518054 (odds ratio: 1.635, 95% CI = 1.241-2.154; p-value: 4.81 × 10-04) intergenic and located between LOC105375977 and C9orf146. The prevalence of four SNPs (rs1324192, rs7019262, rs518054, and rs571221) risk alleles haplotype in this region was significantly higher (compared with other haplotypes) in frail older adults compared with non-frail older adults (29.7 vs. 20.8%, p = 0.0005, respectively). Functional analyses using in silico approaches placed rs518054 in the CTCF binding site as well as DNase hypersensitive region. Furthermore, rs518054 was found to be in an enhancer site of NFIB gene located downstream. NFIB is a transcription factor that promotes cell differentiation during development, has antiapoptotic effect, maintains stem cell populations in adult tissues, and also acts as epigenetic regulators. Our study found novel association of SNPs in the regulatory region in the 9p21-23 region with the frailty phenotype; signifying the importance of this locus in aging.

11.
Hum Genet ; 137(4): 343-355, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29705978

RESUMO

While increasingly large reference panels for genome-wide imputation have been recently made available, the degree to which imputation accuracy can be enhanced by population-specific reference panels remains an open question. Here, we sequenced at full-depth (≥ 30×), across two platforms (Illumina X Ten and Complete Genomics, Inc.), a moderately large (n = 738) cohort of samples drawn from the Ashkenazi Jewish population. We developed a series of quality control steps to optimize sensitivity, specificity, and comprehensiveness of variant calls in the reference panel, and then tested the accuracy of imputation against target cohorts drawn from the same population. Quality control (QC) thresholds for the Illumina X Ten platform were identified that permitted highly accurate calling of single nucleotide variants across 94% of the genome. QC procedures also identified numerous regions that are poorly mapped using current reference or alternate assemblies. After stringent QC, the population-specific reference panel produced more accurate and comprehensive imputation results relative to publicly available, large cosmopolitan reference panels, especially in the range of rare variants that may be most critical to further progress in mapping of complex phenotypes. The population-specific reference panel also permitted enhanced filtering of clinically irrelevant variants from personal genomes.

12.
Sci Transl Med ; 10(423)2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321258

RESUMO

Crohn's disease (CD), a form of inflammatory bowel disease, has a higher prevalence in Ashkenazi Jewish than in non-Jewish European populations. To define the role of nonsynonymous mutations, we performed exome sequencing of Ashkenazi Jewish patients with CD, followed by array-based genotyping and association analysis in 2066 CD cases and 3633 healthy controls. We detected association signals in the LRRK2 gene that conferred risk for CD (N2081D variant, P = 9.5 × 10-10) or protection from CD (N551K variant, tagging R1398H-associated haplotype, P = 3.3 × 10-8). These variants affected CD age of onset, disease location, LRRK2 activity, and autophagy. Bayesian network analysis of CD patient intestinal tissue further implicated LRRK2 in CD pathogenesis. Analysis of the extended LRRK2 locus in 24,570 CD cases, patients with Parkinson's disease (PD), and healthy controls revealed extensive pleiotropy, with shared genetic effects between CD and PD in both Ashkenazi Jewish and non-Jewish cohorts. The LRRK2 N2081D CD risk allele is located in the same kinase domain as G2019S, a mutation that is the major genetic cause of familial and sporadic PD. Like the G2019S mutation, the N2081D variant was associated with increased kinase activity, whereas neither N551K nor R1398H variants on the protective haplotype altered kinase activity. We also confirmed that R1398H, but not N551K, increased guanosine triphosphate binding and hydrolyzing enzyme (GTPase) activity, thereby deactivating LRRK2. The presence of shared LRRK2 alleles in CD and PD provides refined insight into disease mechanisms and may have major implications for the treatment of these two seemingly unrelated diseases.

13.
J Gerontol A Biol Sci Med Sci ; 73(11): 1439-1447, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-28977569

RESUMO

Previous studies note specific FOXO3 single-nucleotide polymorphisms (SNPs) associated with human longevity. However, it is not clear if these SNPs influence mortality risk beyond the oldest 1 percentile of survival. Using data from four longevity studies (total n = 8,266, age range 96-119 years for cases), we tested gene-wide association between 107 SNPs and survival to at least the oldest 1 percentile of survival for the 1900 birth cohort (≥96, white males; ≥100 white females). This analysis replicated 17 previously published variants, several of which are significant expression quantitative trait loci of FOXO3; rs6911407 and rs2253310 have the most significant effect on FOXO3 expressions in brain tissue. We then performed a survival analysis to determine if any of these 107 SNPs impact upon mortality risk beyond the oldest 1 percentile. While none of the 17 published variants was significantly associated with mortality risk beyond this extreme age, an uncommon homozygote genotype of rs9384680 exhibited the strongest association with mortality risk (p = 2.68E-04) in only 11 females, a heretofore unreported association. These analyses replicate the previous association of common variants of FOXO3 with older age but these common variants do not modify risk for mortality at ages beyond the oldest 1 percentile age of survival.

14.
Pediatr Diabetes ; 19(3): 388-392, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29193502

RESUMO

Diabetes occurs in 1/90 000 to 1/160 000 births and when diagnosed under 6 months of age is very likely to have a primary genetic cause. FOXP3 encodes a transcription factor critical for T regulatory cell function and mutations are known to cause "immune dysregulation, polyendocrinopathy (including insulin-requiring diabetes), enteropathy, X-linked" (IPEX) syndrome. This condition is often fatal unless patients receive a bone-marrow transplant. Here we describe the phenotype of male neonates and infants who had insulin-requiring diabetes without other features of IPEX syndrome and were found to have mutations in FOXP3. Whole-exome or next generation sequencing of genes of interest was carried out in subjects with isolated neonatal diabetes without a known genetic cause. RT-PCR was carried out to investigate the effects on RNA splicing of a novel intronic splice-site variant. Four male subjects were found to have FOXP3 variants in the hemizygous state: p.Arg114Trp, p.Arg347His, p.Lys393Met, and c.1044+5G>A which was detected in 2 unrelated probands and in a brother diagnosed with diabetes at 2.1 years of age. Of these, p.Arg114Trp is likely a benign rare variant found in individuals of Ashkenazi Jewish ancestry and p.Arg347His has been previously described in patients with classic IPEX syndrome. The p.Lys393Met and c.1044+5G>A variants are novel to this study. RT-PCR studies of the c.1044+5G>A splice variant confirmed it affected RNA splicing by generating both a wild type and truncated transcript. We conclude that FOXP3 mutations can cause early-onset insulin-requiring diabetes with or without other features of IPEX syndrome.


Assuntos
Diabetes Mellitus Tipo 1/congênito , Diabetes Mellitus/genética , Diarreia/diagnóstico , Fatores de Transcrição Forkhead/genética , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças do Sistema Imunitário/congênito , Sistema de Registros , Diabetes Mellitus Tipo 1/diagnóstico , Humanos , Doenças do Sistema Imunitário/diagnóstico , Lactente , Recém-Nascido , Masculino
15.
Am J Cardiol ; 120(12): 2170-2175, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29050682

RESUMO

Offspring of parents with exceptional longevity (OPEL) manifest lower prevalence of cardiovascular disease (CVD), but the role of lifestyle factors in this unique cohort is not known. Our study tested whether OPEL have lesser prevalence of CVD independent of lifestyle factors. Prevalence of CVD and CVD risk factors was assessed in a population of community-dwelling Ashkenazi Jewish adults aged 65 to 94 years. Participants included OPEL (n = 395), defined as having at least 1 parent living past the age of 95 years, and offspring of parents with usual survival (OPUS, n = 450), defined as having neither parent survive to 95 years. Medical and lifestyle information was obtained using standardized questionnaires. Socioeconomic status was defined based on validated classification scores. Dietary intake was evaluated with the Block Brief Food Frequency Questionnaire (2000) in a subgroup of the study population (n = 234). Our study found no significant differences in the prevalence of obesity, smoking, alcohol use, physical activity, social strata scores, and dietary intake between the 2 groups. After adjustment for age and gender, the OPEL demonstrated 29% lower odds of having hypertension (95% confidence interval [CI] 0.53 to 0.95), 65% lower odds of having had a stroke (95% CI 0.14 to 0.88), and 35% lower odds of having CVD (95% CI 0.43 to 0.98), compared with OPUS. In conclusion, exceptional parental longevity is associated with lower prevalence of CVD independent of lifestyle, socioeconomic status, and nutrition, thus highlighting the potential role of genetics in disease-free survival among individuals with exceptional parental longevity.


Assuntos
Doenças Cardiovasculares/epidemiologia , Estilo de Vida , Longevidade , Pais , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Masculino , Prevalência , Estudos Retrospectivos , Fatores de Risco , Classe Social , Estados Unidos/epidemiologia
16.
Neurobiol Aging ; 58: 238.e1-238.e8, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28705468

RESUMO

Motoric cognitive risk (MCR) syndrome is a newly described predementia syndrome characterized by the presence of cognitive complaints and slow gait, which is associated with increased risk of conversion to dementia. The underlying biological mechanisms for MCR have not yet been established. Neuroinflammation mediated through cytokines plays a pivotal role in the pathogenesis of dementia. Hence, our objective was to prospectively examine whether variations in cytokine genes (CRP, IFNG, IL1A, IL1B, IL4, IL6, IL10, IL18, TNF, and IL12A) play a role in MCR incidence in 530 community-dwelling Ashkenazi Jewish adults aged 65 years and older without MCR or dementia at baseline enrolled in the LonGenity study. Over a median follow-up of 2.99 years, 70 participants developed MCR. Single nucleotide polymorphisms (SNPs) in the transcriptional regulatory regions of cytokine IL10, rs1800896 (hazard ratio adjusted for age, gender, and education, aHR: 1.667; 95% CI: 1.198-2.321) and rs3024498 (aHR: 1.926; 95% CI: 1.315-2.822), were associated with incident MCR. Functional analysis using in silico approaches indicated associated SNP rs3024498 "C" allele being the local expression quantitative trait locus. Associated alleles of both the SNPs, rs1800896 and rs3024498, were implicated with overexpression of IL10 gene. None of the variants in the neuroinflammatory pathway studied were associated with incident mild cognitive impairment syndrome. These observations support a role for the IL10 gene in dementia pathogenesis by increasing risk of developing MCR in older adults.


Assuntos
Disfunção Cognitiva/genética , Demência/genética , Estudos de Associação Genética , Interleucina-10/genética , Polimorfismo de Nucleotídeo Único/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Disfunção Cognitiva/epidemiologia , Demência/epidemiologia , Feminino , Expressão Gênica , Humanos , Judeus/genética , Masculino , Locos de Características Quantitativas/genética , Risco , Síndrome , Transcrição Genética/genética
17.
Sci Adv ; 3(6): e1602025, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28630896

RESUMO

Although both growth hormone (GH) and insulin-like growth factor 1 (IGF-1) signaling were shown to regulate life span in lower organisms, the role of GH signaling in human longevity remains unclear. Because a GH receptor exon 3 deletion (d3-GHR) appears to modulate GH sensitivity in humans, we hypothesized that this polymorphism could play a role in human longevity. We report a linear increased prevalence of d3-GHR homozygosity with age in four independent cohorts of long-lived individuals: 841 participants [567 of the Longevity Genes Project (LGP) (8% increase; P = 0.01), 152 of the Old Order Amish (16% increase; P = 0.02), 61 of the Cardiovascular Health Study (14.2% increase; P = 0.14), and 61 of the French Long-Lived Study (23.5% increase; P = 0.02)]. In addition, mega analysis of males in all cohorts resulted in a significant positive trend with age (26% increase; P = 0.007), suggesting sexual dimorphism for GH action in longevity. Further, on average, LGP d3/d3 homozygotes were 1 inch taller than the wild-type (WT) allele carriers (P = 0.05) and also showed lower serum IGF-1 levels (P = 0.003). Multivariate regression analysis indicated that the presence of d3/d3 genotype adds approximately 10 years to life span. The LGP d3/d3-GHR transformed lymphocytes exhibited superior growth and extracellular signal-regulated kinase activation, to GH treatment relative to WT GHR lymphocytes (P < 0.01), indicating a GH dose response. The d3-GHR variant is a common genetic polymorphism that modulates GH responsiveness throughout the life span and positively affects male longevity.

18.
J Gerontol A Biol Sci Med Sci ; 72(9): 1201-1206, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28486590

RESUMO

As with many other tissues and organs, the immune system is also affected by age. Immunosenescence is characterized by a decreased ability of immune cells to mount a productive response upon exposure to new antigens. Several studies have reported that members of families with exceptional longevity show improved immune function, which might contribute to the increased life- and health-span observed in those families. Autophagy is a catabolic process that delivers cytoplasmic material to the lysosomes for degradation. Defective autophagy is known to be associated with age in several cell types and tissues and its dysregulation is related to age-associated diseases. In T-cells, autophagy has an essential role in modulating protein and organelle homeostasis and in the regulation of activation-induced responses. In this study, using two different cohorts of individuals belonging to families with exceptional longevity, we show that CD4+ T-cells isolated from the offspring of parents with exceptional longevity show improved activation-induced autophagic activity compared with age-matched controls. Interestingly, increased autophagy is positively correlated with increased interferon-γ production. In conclusion, autophagy appears to be better maintained in members of families with extended longevity and positively correlates with improved T-cell function.


Assuntos
Autofagia/imunologia , Linfócitos T CD4-Positivos/imunologia , Longevidade/imunologia , Ativação Linfocitária/imunologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Homeostase , Humanos , Masculino , Fenótipo
19.
J Gerontol A Biol Sci Med Sci ; 72(11): 1453-1464, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-28329165

RESUMO

The search for the genetic determinants of extreme human longevity has been challenged by the phenotype's rarity and its nonspecific definition by investigators. To address these issues, we established a consortium of four studies of extreme longevity that contributed 2,070 individuals who survived to the oldest one percentile of survival for the 1900 U.S. birth year cohort. We conducted various analyses to discover longevity-associated variants (LAV) and characterized those LAVs that differentiate survival to extreme age at death (eSAVs) from those LAVs that become more frequent in centenarians because of mortality selection (eg, survival to younger years). The analyses identified new rare variants in chromosomes 4 and 7 associated with extreme survival and with reduced risk for cardiovascular disease and Alzheimer's disease. The results confirm the importance of studying truly rare survival to discover those combinations of common and rare variants associated with extreme longevity and longer health span.


Assuntos
Estudo de Associação Genômica Ampla , Longevidade/genética , Polimorfismo de Nucleotídeo Único , Idoso de 80 Anos ou mais , Feminino , Variação Genética , Humanos , Masculino , Fenótipo
20.
Nat Genet ; 48(12): 1462-1472, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27798627

RESUMO

The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits.


Assuntos
Ordem de Nascimento , Estudo de Associação Genômica Ampla , Paridade/genética , Locos de Características Quantitativas , Reprodução/genética , Comportamento Reprodutivo/fisiologia , Feminino , Fertilidade/genética , Humanos , Idade Materna , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA