Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(1): 129-140, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38109782

RESUMO

Three new coordination polymers (CPs) constructed from the linker 1,4-di(dithiocarboxylate) (BDDTC2-)─the sulfur-analog of 1,4-benzenedicarboxylate (BDC2-)─together with Mn-, Zn-, and Fe-based inorganic SBUs are reported with description of their structural and electronic properties. Single-crystal X-ray diffraction revealed structural diversity ranging from one-dimensional chains in [Mn(BDDTC)(DMF)2] (1) to two-dimensional (2D) honeycomb sheets observed for [Zn2(BDDTC)3][Zn(DMF)5(H2O)] (2). Gas adsorption experiments confirmed a 3D porous structure for the mixed-valent material [Fe2(BDDTC)2(OH)] (3). 3 contains a 1:1 ratio of Fe2+/3+ ions, as evidenced by 57Fe Mössbauer, X-band EPR, and X-ray absorption spectroscopy. Its empirical formula was established by elemental analysis, thermal gravimetric analysis, infrared vibrational spectroscopy, and X-ray absorption spectroscopy in lieu of elusive single-crystal X-ray diffraction data. In contrast to the Mn- and Zn-based compounds 1 and 2, the Fe2+/3+ CP 3 showed remarkably high electrical conductivity of 5 × 10-3 S cm-1 (according to van der Pauw measurements), which is within the range of semiconducting materials. Overall, our study confirms that sulfur derivatives of typical carboxylate linkers (e.g., BDC) are suitable for the construction of electrically conducting CPs, due to acceptedly higher covalency in metal-ligand bonding compared to the electrically insulating carboxylate CPs or metal-organic frameworks. At the same time, the direct comparison between insulating CPs 1 and 2 with CP 3 emphasizes that the electronic structure of the metal is likewise a crucial aspect to construct electrically conductive materials.

2.
Inorg Chem ; 60(24): 19242-19252, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34870417

RESUMO

Benzene-1,3,5-tri(dithiocarboxylate) (BTDTC3-), the sulfur-donor analogue of trimesate (BTC3-, benzene-1,3,5-tricarboxylate), is introduced, and its potential as a multidentate, electronically bridging ligand in coordination chemistry is evaluated. For this, the sodium salt Na3BTDTC has been synthesized, characterized, and compared with the sodium salt of the related ditopic benzene-1,4-di(dithiocarboxylate) (Na2BDDTC). Single-crystal X-ray diffraction of the respective tetrahydrofuran (THF) solvates reveals that such multitopic aromatic dithiocarboxylate linkers can form both discrete metal complexes (Na3BTDTC·9THF) and (two-dimensional) coordination polymers (Na2BDDTC·4THF). Additionally, the versatile coordination behavior of the novel BTDTC3- ligand is demonstrated by successful synthesis and characterization of trinuclear Cu(I) and hexanuclear Mo(II)2 paddlewheel complexes. The electronic structure and molecular orbitals of both dithiocarboxylate ligands as well as their carboxylate counterparts are investigated by density functional theory computational methods. Electrochemical investigations suggest that BTDTC3- enables electronic communication between the coordinated metal ions, rendering it a promising tritopic linker for functional coordination polymers.

3.
Anal Chim Acta ; 1150: 238198, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33583555

RESUMO

Investigating silver-based nanoparticles (Ag-b-NPs) in environmental samples is challenging with current analytical techniques, owing to their low concentrations (ng L-1) in the presence of high quantities of dissolved Ag(I) species. sp-ICP-MS is a promising technique able to simultaneously determine the concentration and particle sizes of Ag-b-NPs even at concentrations of several ng L-1. However, sp-ICP-MS suffers from the coexistence of dissolved analyte species causing high background signals. These background signals cover particle signals and therefore limit the size detection limit (SDL) in sp-ICP-MS. Ag-b-NPs in environmental samples exhibit diameters of < 20 nm, whereas the current sp-ICP-MS approaches barely reach an SDL as low as 20 nm. Using a surfactant-mediated sample pre-treatment (improved cloud point extraction, iCPE), we were able to separate Ag-b-NPs in aqueous samples from dissolved Ag(I) species and enrich the NPs in the extract. By hyphenating iCPE to sp-ICP-MS, we were able to reach SDL values as low as 4.5 nm, thus paving the way for the successful monitoring of Ag-b-NPs in the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA