Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Filtros adicionais











Intervalo de ano
1.
Mol Ther Nucleic Acids ; 17: 907-921, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31476669

RESUMO

The generation of induced pluripotent stem cells (iPSCs) from patient's somatic cells and the subsequent differentiation into desired cell types opens up numerous possibilities in regenerative medicine and tissue engineering. Adult cardiomyocytes have limited self-renewal capacity; thus, the efficient, safe, and clinically applicable generation of autologous cardiomyocytes is of great interest for the treatment of damaged myocardium. In this study, footprint-free iPSCs were successfully generated from urine-derived renal epithelial cells through a single application of self-replicating RNA (srRNA). The expression of pluripotency markers and the in vitro as well as in vivo trilineage differentiation were demonstrated. Furthermore, the resulting iPSCs contained no residual srRNA, and the karyotyping analysis demonstrated no detectable anomalies. The cardiac differentiation of these iPSCs resulted in autologous contracting cardiomyocytes after 10 days. We anticipate that the use of urine as a non-invasive cell source to obtain patient cells and the use of srRNA for reprogramming into iPSCs will greatly improve the future production of clinically applicable cardiomyocytes and other cell types. This could allow the regeneration of tissues by generating sufficient quantities of autologous cells without the risk of immune rejection.

2.
Cell Mol Life Sci ; 2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451894

RESUMO

The enzyme poly-ADP-ribose-polymerase (PARP) has important roles for many forms of DNA repair and it also participates in transcription, chromatin remodeling and cell death signaling. Currently, some PARP inhibitors are approved for cancer therapy, by means of canceling DNA repair processes and cell division. Drug repurposing is a new and attractive aspect of therapy development that could offer low-cost and accelerated establishment of new treatment options. Excessive PARP activity is also involved in neurodegenerative diseases including the currently untreatable and blinding retinitis pigmentosa group of inherited retinal photoreceptor degenerations. Hence, repurposing of known PARP inhibitors for patients with non-oncological diseases might provide a facilitated route for a novel retinitis pigmentosa therapy. Here, we demonstrate and compare the efficacy of two different PARP inhibitors, BMN-673 and 3-aminobenzamide, by using a well-established retinitis pigmentosa model, the rd1 mouse. Moreover, the mechanistic aspects of the PARP inhibitor-induced protection were also investigated in the present study. Our results showed that rd1 rod photoreceptor cell death was decreased by about 25-40% together with the application of these two PARP inhibitors. The wealth of human clinical data available for BMN-673 highlights a strong potential for a rapid clinical translation into novel retinitis pigmentosa treatments. Remarkably, we have found that the efficacy of 3 aminobenzamide was able to decrease PARylation at the nanomolar level. Our data also provide a link between PARP activity with the Wnt/ß-catenin pathway and the major intracellular antioxidant concentrations behind the PARP-dependent retinal degeneration. In addition, molecular modeling studies were integrated with experimental studies for better understanding of the role of PARP1 inhibitors in retinal degeneration.

3.
Int J Mol Sci ; 20(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987077

RESUMO

Jaw periosteal cells (JPCs) represent a suitable stem cell source for bone tissue engineering (BTE) applications. However, challenges associated with limited cell numbers, stressful cell sorting, or the occurrence of cell senescence during in vitro passaging and the associated insufficient osteogenic potential in vitro of JPCs and other mesenchymal stem/stromal cells (MSCs) are main hurdles and still need to be solved. In this study, for the first time, induced pluripotent stem cells (iPSCs) were generated from human JPCs to open up a new source of stem cells for BTE. For this purpose, a non-integrating self-replicating RNA (srRNA) encoding reprogramming factors and green fluorescent protein (GFP) as a reporter was used to obtain JPC-iPSCs with a feeder- and xeno-free reprogramming protocol to meet the highest safety standards for future clinical applications. Furthermore, to analyze the potential of these iPSCs as a source of osteogenic progenitor cells, JPC-iPSCs were differentiated into iPSC-derived mesenchymal stem/stromal like cells (iMSCs) and further differentiated to the osteogenic lineage under xeno-free conditions. The produced iMSCs displayed MSC marker expression and morphology as well as strong mineralization during osteogenic differentiation.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Arcada Osseodentária/citologia , Periósteo/citologia , RNA/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Reprogramação Celular , Camadas Germinativas/citologia , Humanos , Cariotipagem , Células-Tronco Mesenquimais/citologia , Osteogênese
4.
Int J Mol Sci ; 20(7)2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959917

RESUMO

Musculoskeletal disorders, such as osteoarthritis and intervertebral disc degeneration are causes of morbidity, which concomitantly burdens the health and social care systems worldwide, with massive costs. Link N peptide has recently been described as a novel anabolic stimulator for intervertebral disc repair. In this study, we analyzed the influence on anabolic response, by delivering synthetic Link N encoding mRNA into primary human chondrocytes and mesenchymal stromal cells (SCP1 cells), Furthermore, both cell types were seeded on knitted titanium scaffolds, and the influence of Link N peptide mRNA for possible tissue engineering applications was investigated. Synthetic modified Link N mRNA was efficiently delivered into both cell types and cell transfection resulted in an enhanced expression of aggrecan, Sox 9, and type II collagen with a decreased expression of type X collagen. Interestingly, despite increased expression of BMP2 and BMP7, BMP signaling was repressed and TGFß signaling was boosted by Link N transfection in mesenchymal stromal cells, suggesting possible regulatory mechanisms. Thus, the exogenous delivery of Link N peptide mRNA into cells augmented an anabolic response and thereby increased extracellular matrix synthesis. Considering these findings, we suppose that the cultivation of cells on knitted titanium scaffolds and the exogenous delivery of Link N peptide mRNA into cells could mechanically support the stability of tissue-engineered constructs and improve the synthesis of extracellular matrix by seeded cells. This method can provide a potent strategy for articular cartilage and intervertebral disc regeneration.


Assuntos
Condrócitos/metabolismo , RNA Mensageiro/metabolismo , Agrecanas/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Linhagem Celular , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Colágeno Tipo II/metabolismo , Colágeno Tipo X/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição SOX9/metabolismo
5.
Mol Ther Nucleic Acids ; 13: 387-398, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30343252

RESUMO

The application of endothelial progenitor cells (EPCs) for the revascularization of ischemic tissues, such as after myocardial infarction, stroke, and acute limb ischemia, has a huge clinical potential. However, the low retention and engraftment of EPCs as well as the poor survival of migrated stem cells in ischemic tissues still hamper the successful clinical application. Thus, in this study, we engineered, for the first time, murine EPCs with synthetic mRNAs to transiently produce proangiogenic factors vascular endothelial growth factor-A (VEGF-A), stromal cell-derived factor-1α (SDF-1α), and angiopoietin-1 (ANG-1). After the transfection of cells with synthetic mRNAs, significantly increased VEGF-A, SDF-1α, and ANG-1 protein levels were detected compared to untreated EPCs. Thereby, mRNA-engineered EPCs showed significantly increased chemotactic activity versus untreated EPCs and resulted in significantly improved attraction of EPCs. Furthermore, ANG-1 mRNA-transfected EPCs displayed a strong wound-healing capacity. Already after 12 hr, 94% of the created wound area in the scratch assay was closed compared to approximately 45% by untreated EPCs. Moreover, the transfection of EPCs with ANG-1 or SDF-1α mRNA also significantly improved the in vitro tube formation capacity; however, the strongest effect could be detected with EPCs simultaneously transfected with VEGF-A, SDF-1α, and ANG-1 mRNA. In the in vivo chicken chorioallantoic membrane (CAM) assay, EPCs transfected with ANG-1 mRNA revealed the strongest angiogenetic potential with significantly elevated vessel density and total vessel network length. In conclusion, this study demonstrated that EPCs can be successfully engineered with synthetic mRNAs encoding proangiogenic factors to improve their therapeutic angiogenetic potential in patients experiencing chronic or acute ischemic disease.

6.
Artigo em Inglês | MEDLINE | ID: mdl-30062094

RESUMO

Hemocompatibility of blood-contacting biomaterials is one of the most important criteria for their successful in vivo applicability. Thus, extensive in vitro analyses according to ISO 10993-4 are required prior to clinical applications. In this review, we summarize essential aspects regarding the evaluation of the hemocompatibility of biomaterials and the required in vitro analyses for determining the blood compatibility. Static, agitated, or shear flow models are used to perform hemocompatibility studies. Before and after the incubation of the test material with fresh human blood, hemolysis, cell counts, and the activation of platelets, leukocytes, coagulation and complement system are analyzed. Furthermore, the surface of biomaterials are evaluated concerning attachment of blood cells, adsorption of proteins, and generation of thrombus and fibrin networks.

7.
Mol Ther Nucleic Acids ; 11: 382-392, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858073

RESUMO

In recent years, synthetic mRNA-based applications to produce desired exogenous proteins in cells have been gaining importance. However, systemic delivery of synthetic mRNA can result in unspecific uptake into undesired cells or organs and, thereby, fail to target desired cells. Thus, local and targeted delivery of synthetic mRNA becomes increasingly important to reach the desired cell types and tissues. In this study, intradermal delivery of synthetic mRNA using a hollow microneedle injection-based method was evaluated. Furthermore, an ex vivo porcine skin model was established to analyze synthetic mRNA-mediated protein expression in the skin following intradermal delivery. Using this model, highly efficient delivery of synthetic mRNA was demonstrated, which resulted in detection of high levels of secretable humanized Gaussia luciferase (hGLuc) protein encoded by the microinjected synthetic mRNA. Interestingly, synthetic mRNA injected without transfection reagent was also able to enter the cells and resulted in protein expression. The established ex vivo porcine skin model can be used to evaluate the successful production of desired proteins after intradermal delivery of synthetic mRNAs before starting with in vivo experiments. Furthermore, the use of microneedles enables patient-friendly, painless, and efficient delivery of synthetic mRNAs into the dermis; thus, this method could be applied for local treatment of different skin diseases as well as for vaccination and immunotherapy.

8.
Mol Ther Nucleic Acids ; 11: 475-484, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858082

RESUMO

Elastin is one of the most important and abundant extracellular matrix (ECM) proteins that provide elasticity and resilience to tissues and organs, including vascular walls, ligaments, skin, and lung. Besides hereditary diseases, such as Williams-Beuren syndrome (WBS), which results in reduced elastin synthesis, injuries, aging, or acquired diseases can lead to the degradation of existing elastin fibers. Thus, the de novo synthesis of elastin is required in several medical conditions to restore the elasticity of affected tissues. Here, we applied synthetic modified mRNA encoding tropoelastin (TE) for the de novo synthesis of elastin and determined the mRNA-mediated elastin synthesis in cells, as well as ex vivo in porcine skin. EA.hy926 cells, human fibroblasts, and mesenchymal stem cells (MSCs) isolated from a patient with WBS were transfected with 2.5 µg TE mRNA. After 24 hr, the production of elastin was analyzed by Fastin assay and dot blot analyses. Compared with untreated cells, significantly enhanced elastin amounts were detected in TE mRNA transfected cells. The delivered synthetic TE mRNA was even able to significantly increase the elastin production in elastin-deficient MSCs. In porcine skin, approximately 20% higher elastin amount was detected after the intradermal delivery of synthetic mRNA by microinjection. In this study, we demonstrated the successful applicability of synthetic TE encoding mRNA to produce elastin in elastin-deficient cells as well as in skin. Thus, this auspicious mRNA-based integration-free method has a huge potential in the field of regenerative medicine to induce de novo elastin synthesis, e.g., in skin, blood vessels, or alveoli.

9.
Int J Mol Sci ; 19(5)2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29702615

RESUMO

The application of synthetic messenger RNA (mRNA) exhibits various advantages, such as expression of desired proteins in cells without genomic integration. In the field of tissue engineering, synthetic mRNAs could be also used to modulate the protein expression in implanted cells. Therefore, in this study, we incorporated synthetic humanized Gaussia luciferase (hGLuc) mRNA into alginate, chitosan, or chitosan-alginate hybrid hydrogels and analyzed the release of hGLuc mRNA from these hydrogels. After 3 weeks, 79% of the incorporated mRNA was released from alginate hydrogels, approximately 42% was released from chitosan hydrogels, and about 70% was released from chitosan-alginate hydrogels. Due to the injectability, chitosan-alginate hybrid hydrogels were selected for further investigation of the bioactivity of embedded hGLuc mRNA and the stability of these hydrogels was examined after the incorporation of synthetic mRNA by rheometric analysis. Therefore, HEK293 cells were incorporated into chitosan-alginate hydrogels containing mRNA transfection complexes and the luciferase activity in the supernatants was detected for up to 3 weeks. These results showed that the biodegradable chitosan-alginate hybrid hydrogels are promising delivery systems for sustained delivery of synthetic mRNAs into cells. Since chitosan-alginate hybrid hydrogels are injectable, the hydrogels can be simultaneously loaded with cells and the desired synthetic mRNA for exogenous protein synthesis and can be administered by minimally invasive local injection for tissue engineering applications.


Assuntos
Alginatos/metabolismo , Materiais Biocompatíveis/metabolismo , Quitosana/metabolismo , Hidrogéis/metabolismo , RNA Mensageiro/metabolismo , Alginatos/química , Materiais Biocompatíveis/química , Sobrevivência Celular , Quitosana/química , Sistemas de Liberação de Medicamentos , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Células HEK293 , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Humanos , Hidrogéis/química , Luciferases/genética , Luciferases/metabolismo , Sondas RNA , RNA Mensageiro/química , Reologia , Fatores de Tempo , Engenharia Tecidual
10.
Curr Pharm Des ; 24(45): 5437-5457, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30727878

RESUMO

The skin is the largest and most exposed organ in the human body. Not only it is involved in numerous biological processes essential for life but also it represents a significant endpoint for the application of pharmaceuticals. The area of in vitro skin tissue engineering has been progressing extensively in recent years. Advanced in vitro human skin models strongly impact the discovery of new drugs thanks to the enhanced screening efficiency and reliability. Nowadays, animal models are largely employed at the preclinical stage of new pharmaceutical compounds development for both risk assessment evaluation and pharmacokinetic studies. On the other hand, animal models often insufficiently foresee the human reaction due to the variations in skin immunity and physiology. Skin-on-chips devices offer innovative and state-of-the-art platforms essential to overcome these limitations. In the present review, we focus on the contribution of skin-on-chip platforms in fundamental research and applied medical research. In addition, we also highlighted the technical and practical difficulties that must be overcome to enhance skin-on-chip platforms, e.g. embedding electrical measurements, for improved modeling of human diseases as well as of new drug discovery and development.

11.
Mol Ther Nucleic Acids ; 8: 459-468, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28918045

RESUMO

Synthetically modified mRNA is a unique bioactive agent, ideal for use in therapeutic applications, such as cancer vaccination or treatment of single-gene disorders. In order to facilitate mRNA transfections for future therapeutic applications, there is a need for the delivery system to achieve optimal transfection efficacy, perform with durable stability, and provide drug safety. The objective of our study was to comprehensively analyze the use of 3ß-[N-(N',N'-dimethylaminoethane) carbamoyl](DC-Cholesterol)/dioleoylphosphatidylethanolamine (DOPE) liposomes as a potential transfection agent for modified mRNAs. Our cationic liposomes facilitated a high degree of mRNA encapsulation and successful cell transfection efficiencies. More importantly, no negative effects on cell viability or immune reactions were detected posttransfection. Notably, the liposomes had a long-acting transfection effect on cells, resulting in a prolonged protein production of alpha-1-antitrypsin (AAT). In addition, the stability of these mRNA-loaded liposomes allowed storage for 80 days, without the loss of transfection efficacy. Finally, comprehensive analysis showed that these liposomes are fully hemocompatible with fresh human whole blood. In summary, we present an extensive analysis on the use of DC-cholesterol/DOPE liposomes as mRNA delivery vehicles. This approach provides the basis of a safe and efficient therapeutic strategy in the development of successful mRNA-based drugs.

12.
Molecules ; 22(6)2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28594360

RESUMO

Nucleic acid ligands, aptamers, harbor the unique characteristics of small molecules and antibodies. The specificity and high affinity of aptamers enable their binding to different targets, such as small molecules, proteins, or cells. Chemical modifications of aptamers allow increased bioavailability. A further great benefit of aptamers is the antidote (AD)-mediated controllability of their effect. In this study, the AD-mediated complexation and neutralization of the thrombin binding aptamer NU172 and Toll-like receptor 9 (TLR9) binding R10-60 aptamer were determined. Thereby, the required time for the generation of aptamer/AD-complexes was analyzed at 37 °C in human serum using gel electrophoresis. Afterwards, the blocking of aptamers' effects was analyzed by determining the activated clotting time (ACT) in the case of the NU172 aptamer, or the expression of immune activation related genes IFN-1ß, IL-6, CXCL-10, and IL-1ß in the case of the R10-60 aptamer. Gel electrophoresis analyses demonstrated the rapid complexation of the NU172 and R10-60 aptamers by complementary AD binding after just 2 min of incubation in human serum. A rapid neutralization of anticoagulant activity of NU172 was also demonstrated in fresh human whole blood 5 min after addition of AD. Furthermore, the TLR9-mediated activation of PMDC05 cells was interrupted after the addition of the R10-60 AD. Using these two different aptamers, the rapid antagonizability of the aptamers was demonstrated in different environments; whole blood containing numerous proteins, cells, and different small molecules, serum, or cell culture media. Thus, nucleic acid ADs are promising molecules, which offer several possibilities for different in vivo applications, such as antagonizing aptamer-based drugs, immobilization, or delivery of oligonucleotides to defined locations.


Assuntos
Aptâmeros de Nucleotídeos/sangue , Receptor Toll-Like 9/sangue , Anticoagulantes/sangue , Anticoagulantes/química , Antídotos/química , Aptâmeros de Nucleotídeos/química , Coagulação Sanguínea/genética , Humanos , Ligantes , Técnica de Seleção de Aptâmeros , Trombina/química , Trombina/genética , Receptor Toll-Like 9/química
13.
Biotechnol J ; 12(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28220995

RESUMO

The aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano- and micro-technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell-matrix interactions at the nanoscale. With this perspective, this review discusses the most commonly used hydrogel materials and their fabrication strategies for regenerative engineering. We highlight the physical, chemical, and functional modulation of hydrogels to design and engineer biomimetic tissues based on recent achievements in nano- and micro-technologies. In addition, current hydrogel-based regenerative engineering strategies for treating multiple tissues, such as musculoskeletal, nervous and cardiac tissue, are also covered in this review. The interaction of multiple disciplines including materials science, cell biology, and chemistry, will further play an important role in the design of functional hydrogels for the regeneration of complex tissues.


Assuntos
Hidrogéis/química , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Animais , Pesquisa Biomédica , Humanos , Camundongos , Nanomedicina , Nanopartículas
14.
Pharmaceuticals (Basel) ; 10(1)2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28208634

RESUMO

Presently, a new era of drug-eluting stents is continuing to improve late adverse effects such as thrombosis after coronary stent implantation in atherosclerotic vessels. The application of gene expression-modulating stents releasing specific small interfering RNAs (siRNAs) or messenger RNAs (mRNAs) to the vascular wall might have the potential to improve the regeneration of the vessel wall and to inhibit adverse effects as a new promising therapeutic strategy. Different poly (lactic-co-glycolic acid) (PLGA) resomers for their ability as an siRNA delivery carrier against intercellular adhesion molecule (ICAM)-1 with a depot effect were tested. Biodegradability, hemocompatibility, and high cell viability were found in all PLGAs. We generated PLGA coatings with incorporated siRNA that were able to transfect EA.hy926 and human vascular endothelial cells. Transfected EA.hy926 showed significant siICAM-1 knockdown. Furthermore, co-transfection of siRNA and enhanced green fluorescent protein (eGFP) mRNA led to the expression of eGFP as well as to the siRNA transfection. Using our PLGA and siRNA multilayers, we reached high transfection efficiencies in EA.hy926 cells until day six and long-lasting transfection until day 20. Our results indicate that siRNA and mRNA nanoparticles incorporated in PLGA films have the potential for the modulation of gene expression after stent implantation to achieve accelerated regeneration of endothelial cells and to reduce the risk of restenosis.

15.
Stem Cells ; 35(1): 68-79, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27250673

RESUMO

Several diseases are caused by missing or defective synthesis of proteins due to genetic or acquired disorders. In recent years, in vitro transcribed (IVT) messenger RNA (mRNA)-based therapy for de novo protein expression in cells has increased in importance. Thereby, desired proteins can be produced in cells by exogenous delivery of IVT mRNA, which does not integrate into the host genome and results in transient production of target proteins. Due to the lack of genomic integration, the risk of mutation and tumor development is minimized. Different approaches using IVT mRNA have been applied to alter the expression profiles of cells by the production of proteins. IVT mRNAs encoding transcription factors have led to the highly efficient induction of pluripotency in somatic cells and generated induced pluripotent stem cells that are free of viral vector components. Furthermore, specific IVT mRNA cocktails containing more than one specific IVT mRNA can be used to directly induce the differentiation into a desired cell type. In theory, every desired mRNA can be produced in vitro and used to enable extrinsic biosynthesis of target proteins in each cell type. Cells can be engineered by IVT mRNA to express antigens on dendritic cells for vaccination and tumor treatment, surface receptors on stem cells for increased homing to distinct areas, and to produce industrial grade human growth factors. In this review, we focus on the progress and challenges in mRNA-based cell engineering approaches. Stem Cells 2017;35:68-79.


Assuntos
Engenharia Celular , Reprogramação Celular , Transcrição Genética , Animais , Humanos , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Macromol Biosci ; 17(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27758025

RESUMO

Hemocompatibility and cytocompatibility of biomaterials codetermine the success of tissue engineering applications. DNA, the natural component of our cells, is an auspicious biomaterial for the generation of designable scaffolds with tailorable characteristics. In this study, a combination of rolling circle amplification and multiprimed chain amplification is used to generate hydrogels at centimeter scale consisting solely of DNA. Using an in vitro rotation model and fresh human blood, the reaction of the hemostatic system on DNA hydrogels is analyzed. The measurements of hemolysis, platelets activation, and the activation of the complement, coagulation, and neutrophils using enzyme-linked immunosorbent assays demonstrate excellent hemocompatibility. In addition, the cytocompatibility of the DNA hydrogels is tested by indirect contact (agar diffusion tests) and material extract experiments with L929 murine fibroblasts according to the ISO 10993-5 specifications and no negative impact on the cell viability is detected. These results indicate the promising potential of DNA hydrogels as biomaterials for versatile applications in the field of regenerative medicine.


Assuntos
Materiais Biocompatíveis/síntese química , DNA/química , Hidrogéis/síntese química , Teste de Materiais/métodos , Animais , Materiais Biocompatíveis/química , Biomarcadores/metabolismo , Contagem de Células Sanguíneas , Linhagem Celular , Sobrevivência Celular , Hemólise , Humanos , Hidrogéis/química , Camundongos , Ativação Plaquetária , Reação em Cadeia da Polimerase , Reologia
17.
Drug Test Anal ; 9(2): 260-273, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27121912

RESUMO

Pyrogen testing represents a crucial safety measure for parental drugs and medical devices, especially in direct contact with blood or liquor. The European Pharmacopoeia regulates these quality control measures for parenterals. Since 2010, the monocyte activation test (MAT) has been an accepted pyrogen test that can be performed with different human monocytic cell sources: whole blood, isolated monocytic cells or monocytic cell lines with IL1ß, IL6, or TNFα as readout cytokines. In the present study, we examined the three different cell sources and cytokine readout parameters with the scope of accelerating the assay time. We could show that despite all cell types being able to detect pyrogens, primary cells were more sensitive than the monocytic cell line. Quantitative real-time PCR revealed IL6 mRNA transcripts having the largest change in Ct-values upon LPS-stimulation compared to IL1ß and TNFα, but quantification was unreliable. IL6 protein secretion from whole blood or peripheral blood mononuclear cells (PBMC) was also best suited for an accelerated assay with a larger linear range and higher signal-to-noise ratios upon LPS-stimulation. The unique combination with propan-2-ol or a temperature increase could additionally increase the cytokine production for earlier detection in PBMC. The increased incubation temperature could finally increase not only responses to lipopolysaccharides (LPS) but also other pyrogens by up to 13-fold. Therefore, pyrogen detection can be accelerated considerably by using isolated primary blood cells with an increased incubation temperature and IL6 as readout. These results could expedite assay time and thus help to promote further acceptance of the MAT. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Citocinas/imunologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Pirogênios/análise , Pirogênios/imunologia , Linhagem Celular , Células Cultivadas , Citocinas/genética , Humanos , Lipopolissacarídeos/imunologia , Monócitos/metabolismo , RNA Mensageiro/genética
18.
Cancer Res ; 76(18): 5550-61, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27488521

RESUMO

Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related deaths and is reported to be resistant to chemotherapy caused by tumor-initiating cells. These tumor-initiating cells express stem cell markers. An accumulation of tumor-initiating cells can be found in 2% to 50% of all HCC and is correlated with a poor prognosis. Mechanisms that mediate chemoresistance include drug export, increased metabolism, and quiescence. Importantly, the mechanisms that regulate quiescence in tumor-initiating cells have not been analyzed in detail so far. In this research we have developed a single cell tracking method to follow up the fate of tumor-initiating cells during chemotherapy. Thereby, we were able to demonstrate that mCXCL1 exerts cellular state-specific effects regulating the resistance to chemotherapeutics. mCXCL1 is the mouse homolog of the human IL8, a chemokine that correlates with poor prognosis in HCC patients. We found that mCXCL1 blocks differentiation of premalignant cells and activates quiescence in tumor-initiating cells. This process depends on the activation of the mTORC1 kinase. Blocking of the mTORC1 kinase induces differentiation of tumor-initiating cells and allows their subsequent depletion using the chemotherapeutic drug doxorubicin. Our work deciphers the mCXCL1-mTORC1 pathway as crucial in liver cancer stem cell maintenance and highlights it as a novel target in combination with conventional chemotherapy. Cancer Res; 76(18); 5550-61. ©2016 AACR.


Assuntos
Carcinoma Hepatocelular/patologia , Diferenciação Celular/fisiologia , Quimiocina CXCL1/metabolismo , Neoplasias Hepáticas/patologia , Complexos Multiproteicos/metabolismo , Células-Tronco Neoplásicas/patologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas Culina , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase
19.
Adv Exp Med Biol ; 917: 241-58, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27236559

RESUMO

Aptamers are auspicious nucleic acid ligands for targeting different molecules, such as small molecules, peptides, proteins, or even whole living cells. They are short single-stranded DNA or RNA oligonucleotides, which can fold into complex three-dimensional structures and bind selectively their targets. Using the combinatorial chemistry process SELEX (Systematic Evolution of Ligands by EXponential Enrichment), target specific aptamers can be selected. These aptamers have a variety of application possibilities and can be used as sensors, diagnostic, imaging or therapeutic agents, and in the field of regenerative medicine for tissue engineering.


Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Desenho de Drogas , Marcação de Genes , Proteínas/antagonistas & inibidores , Animais , Aptâmeros de Nucleotídeos/química , Humanos , Técnica de Seleção de Aptâmeros/métodos
20.
Stem Cells Int ; 2016: 5646384, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26770208

RESUMO

When germ-free cell cultures became a laboratory routine, hopes were high for using this novel technology for treatment of diseases or replacement of cells in patients suffering from injury, inflammation, or cancer or even refreshing cells in the elderly. Today, more than 50 years after the first successful bone marrow transplantation, clinical application of hematopoietic stem cells is a routine procedure, saving the lives of many every day. However, transplanting other than hematopoietic stem and progenitor cells is still limited to a few applications, and it mainly applies to mesenchymal stromal cells (MSCs) isolated from bone marrow. But research progressed and different trials explore the clinical potential of human MSCs isolated from bone marrow but also from other tissues including adipose tissue. Recently, MSCs isolated from bone marrow (bmMSCs) were shown to be a blend of distinct cells and MSCs isolated from different tissues show besides some common features also some significant differences. This includes the expression of distinct antigens on subsets of MSCs, which was utilized recently to define and separate functionally different subsets from bulk MSCs. We therefore briefly discuss differences found in subsets of human bmMSCs and in MSCs isolated from some other sources and touch upon how this could be utilized for cell-based therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA