Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta Med ; 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32693425

RESUMO

Mitragynine is the most abundant psychoactive alkaloid derived from the leaves of Mitragyna speciosa (kratom), a tropical plant indigenous to regions of Southeast Asia. Mitragynine displays a moderate affinity to opioid receptors, and kratom is often self-prescribed to treat pain and/or opioid addiction. The purpose of this study was to investigate the safety and pharmacokinetic properties of mitragynine in the dog. Single dose oral (5 mg/kg) and intravenous (0.1 mg/kg) pharmacokinetic studies of mitragynine were performed in female beagle dogs. The plasma concentrations of mitragynine were measured using ultra-performance liquid chromatography coupled with a tandem mass spectrometer, and the pharmacokinetic properties were analyzed using non-compartmental analysis. Following intravenous administration, mitragynine showed a large volume of distribution (Vd, 6.3 ± 0.6 L/kg) and high clearance (Cl, 1.8 ± 0.4 L/h/kg). Following oral mitragynine dosing, first peak plasma (Cmax, 278.0 ± 47.4 ng/mL) concentrations were observed within 0.5 h. A potent mu-opioid receptor agonist and active metabolite of mitragynine, 7-hydroxymitragynine, was also observed with a Cmax of 31.5 ± 3.3 ng/mL and a Tmax of 1.7 ± 0.6 h in orally dosed dogs while its plasma concentrations were below the lower limit of quantification (1 ng/mL) for the intravenous study. The absolute oral bioavailability of mitragynine was 69.6%. Administration of mitragynine was well tolerated, although mild sedation and anxiolytic effects were observed. These results provide the first detailed pharmacokinetic information for mitragynine in a non-rodent species (the dog) and therefore also provide significant information for allometric scaling and dose predictions when designing clinical studies.

2.
AAPS J ; 22(5): 94, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32691179

RESUMO

The sigma-2 receptor has been cloned and identified as Tmem97, which is a transmembrane protein involved in intracellular Ca2+ regulation and cholesterol homeostasis. Since its discovery, the sigma-2 receptor has been an extremely controversial target, and many efforts have been made to elucidate the functional role of this receptor during physiological and pathological conditions. Recently, this receptor has been proposed as a potential target to treat neuropathic pain due to the ability of sigma-2 receptor agonists to relieve mechanical hyperalgesia in mice model of chronic pain. In the present work, we developed a highly selective sigma-2 receptor ligand (sigma-1/sigma-2 selectivity ratio > 1000), 1-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-3-methyl-1H- benzo[d]imidazol-2(3H)-one (CM398), with an encouraging in vitro and in vivo pharmacological profile in rodents. In particular, radioligand binding studies demonstrated that CM398 had preferential affinity for sigma-2 receptor compared with sigma-1 receptor and at least four other neurotransmitter receptors sites, including the norepinephrine transporter. Following oral administration, CM398 showed rapid absorption and peak plasma concentration (Cmax) occurred within 10 min of dosing. Moreover, the compound showed adequate, absolute oral bioavailability of 29.0%. Finally, CM398 showed promising anti-inflammatory analgesic effects in the formalin model of inflammatory pain in mice. The results collected in this study provide more evidence that selective sigma-2 receptor ligands can be useful tools in the development of novel pain therapeutics and altogether, these data suggest that CM398 is a suitable lead candidate for further evaluation.

3.
Toxicol Lett ; 319: 148-154, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31707106

RESUMO

In vitro cytochrome P450 inhibition of major kratom alkaloids: mitragynine (MTG), speciogynine (SPG), speciocilliatine (SPC), corynantheidine (COR), 7-hydroxymitragynine (7HMG) and paynantheine (PAY) was evaluated using human liver microsomes (HLMs) to understand their drug-drug interaction potential. CYP450 isoform-specific substrates of CYP1A2, 2C8, 2C9, 2C19, 2D6, and 3A4/5 were incubated in HLMs with or without alkaloids. Preliminary CYP450 inhibition (IC50) data were generated for each of these isoforms. In addition, the type of inhibition and estimation of the inhibition constants (Ki) of MTG and COR were determined. Among the tested alkaloids, MTG and COR were potent inhibitors of CYP2D6 (IC50, 2.2 and 4.2 µM, respectively). Both MTG and COR exhibited competitive inhibition of CYP2D6 activity and the Ki were found to be 1.1 and 2.8 µM, respectively. SPG and PAY showed moderate inhibition of CYP2D6 activity. Additionally, moderate inhibitory effects by SPC, MTG, and SPG were observed on CYP2C19 activity. Interestingly, inhibition of only midazolam hydroxylase CYP3A4/5 activity by COR, PAY, and MTG was observed while no inhibitory effect was observed when testosterone was used as a probe substrate. In conclusion, MTG and COR may lead to clinically significant adverse drug interactions upon coadministration of drugs that are substantially metabolized by CYP2D6.


Assuntos
Alcaloides/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Interações Medicamentosas , Mitragyna/química , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Isoenzimas/efeitos dos fármacos , Isoenzimas/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo
4.
J Pharm Biomed Anal ; 180: 113019, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31838282

RESUMO

Corynantheidine, a minor alkaloid found in Mitragyna speciosa (Korth.) Havil, has been shown to bind to opioid receptors and act as a functional opioid antagonist, but its unique contribution to the overall properties of kratom remains relatively unexplored. The first validated bioanalytical method for the quantification of corynantheidine in rat plasma is described. The method was linear in the dynamic range from 1-500 ng/mL, requires a small plasma sample volume (25 µL), and a simple protein precipitation method for extraction of the analyte. The separation was achieved with Waters BEH C18 2.1 × 50 mm column and the 3-minute gradient of 10 mM ammonium acetate buffer (pH = 3.5) and acetonitrile as mobile phase. The method was validated in terms of accuracy, precision, selectivity, sensitivity, recovery, stability, and dilution integrity. It was applied to the analysis of the male Sprague Dawley rat plasma samples obtained during pharmacokinetic studies of corynantheidine administered both intravenously (I.V.) and orally (P.O.) (2.5 mg/kg and 20 mg/kg, respectively). The non-compartmental analysis performed in Certara Phoenix® yielded the following parameters: clearance 884.1 ±â€¯32.3 mL/h, apparent volume of distribution 8.0 ±â€¯1.2 L, exposure up to the last measured time point 640.3 ±â€¯24.0 h*ng/mL, and a mean residence time of 3.0 ±â€¯0.2 h with I.V. dose. The maximum observed concentration after a P.O. dose of 213.4 ±â€¯40.4 ng/mL was detected at 4.1 ±â€¯1.3 h with a mean residence time of 8.8 ±â€¯1.8 h. Absolute oral bioavailability was 49.9 ±â€¯16.4 %. Corynantheidine demonstrated adequate oral bioavailability, prolonged absorption and exposure, and an extensive extravascular distribution. In addition, imaging mass spectrometry analysis of the brain tissue was performed to evaluate the distribution of the compound in the brain. Corynantheidine was detected in the corpus callosum and some regions of the hippocampus.

5.
J Ethnopharmacol ; 249: 112462, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816368

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Kratom (Mitragyna speciosa) is a native medicinal plant of Southeast Asia widely reported to be used to reduce opioid dependence and mitigate withdrawal symptoms. There is also evidence to suggest that opioid poly-drug users were using kratom to abstain from opioids. AIM OF THE STUDY: To determine the patterns and reasons for kratom use among current and former opioid poly-drug users in Malaysia. MATERIALS AND METHODS: A total of 204 opioid poly-drug users (142 current users vs. 62 former users) with current kratom use history were enrolled into this cross-sectional study. A validated UPLC-MS/MS method was used to evaluate the alkaloid content of a kratom street sample. RESULTS: Results from Chi-square analysis showed that there were no significant differences in demographic characteristics between current and former opioid poly-drug users except with respect to marital status. Current users had higher odds of being single (OR: 2.2: 95%CI: 1.21-4.11; p < 0.009). Similarly, there were no significant differences in the duration (OR: 1.1: 0.62-2.03; p < 0.708), daily quantity (OR: 1.5: 0.85-2.82; p < 0.154) or frequency of kratom use between current and former opioid poly-drug users (OR: 1.1: 0.62-2.06; p < 0.680). While both current and former opioid users reported using kratom to ameliorate opioid withdrawal, current users had significantly higher likelihood of using kratom for that purpose (OR: 5.4: 95%CI: 2.81-10.18; p < 0.0001). In contrast, former opioid users were more likely to be using kratom for its euphoric (mood elevating) effects (OR: 1.9: 95%CI: 1.04-3.50; p < 0.035). Results from the UPLC-MS/MS analysis indicated the major alkaloids present in the representative kratom street sample (of approximately 300 mL of brewed kratom) were mitragynine, followed by paynantheine, speciociliatine and speciogynine, as well as low levels of 7-hydroxymitragynine. CONCLUSIONS: Both current and former opioid poly-drug users regularly used kratom (three glasses or about 900 mL daily or the equivalent of 170.19 mg of mitragynine) to overcome opioid poly-drug use problems.

6.
J Med Chem ; 63(1): 433-439, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31834797

RESUMO

Selected indole-based kratom alkaloids were evaluated for their opioid and adrenergic receptor binding and functional effects, in vivo antinociceptive effects, plasma protein binding, and metabolic stability. Mitragynine, the major alkaloid in Mitragyna speciosa (kratom), had higher affinity at opioid receptors than at adrenergic receptors while the vice versa was observed for corynantheidine. The observed polypharmacology of kratom alkaloids may support its utilization to treat opioid use disorder and withdrawal.

7.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1134-1135: 121875, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31790916

RESUMO

The nonpeptide small molecule, MES207, exhibits 17-fold preferential binding to the neuropeptide FF receptor 1 (NPFFR1) over NPFFR2 and shows antagonist functionality at NPFF receptors. In order to further the development of MES207 as a NPFFR1 probe, an UPLC-MS/MS bioanalytical method was developed and validated to quantify MES207 in rat plasma for a linearity range of 3-200 ng/mL. The method was applied in the analysis of the plasma, brain, and urine samples collected during pharmacokinetic studies in healthy male and female Sprague Dawley rats. The animals were dosed through oral gavage (50 mg/kg) and intravenously (2.5 mg/kg). Test samples were analyzed using the validated bioanalytical method to generate plasma concentration-time profiles. The results were further subjected to non-compartmental analysis using Phoenix 6.4®. MES207 exhibits a large volume of distribution (1.2 ±â€¯0.6 L), high clearance (0.8 ±â€¯0.1 L/h), and a poor oral bioavailability (1.7 ±â€¯0.4%). The compound also showed a multiple peak phenomenon with a very short absorption phase. It appears that gender does not significantly influence the differences in pharmacokinetic parameters of this NPFF probe.


Assuntos
Guanidinas/sangue , Guanidinas/farmacocinética , Piperidinas/sangue , Piperidinas/farmacocinética , Receptores de Neuropeptídeos/antagonistas & inibidores , Animais , Cromatografia Líquida de Alta Pressão/métodos , Estabilidade de Medicamentos , Feminino , Guanidinas/química , Limite de Detecção , Modelos Lineares , Masculino , Piperidinas/química , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
8.
Psychopharmacology (Berl) ; 236(9): 2725-2734, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31098655

RESUMO

RATIONALE: Mitragyna speciosa (kratom) may hold promise as both an analgesic and treatment for opioid use disorder. Mitragynine, its primary alkaloid constituent, is an opioid receptor ligand. However, the extent to which the in vivo effects of mitragynine are mediated by opioid receptors, or whether mitragynine interacts with other opioid agonists, is not fully established. OBJECTIVES: The effects of mitragynine and the prototypical opioid agonist morphine were compared for their capacity to decrease operant responding for food delivery, and to increase response latency to a thermal stimulus. METHODS: Male and female Sprague-Dawley rats responded under a multiple cycle fixed ratio 10 schedule of food delivery and were tested on a hot plate (52 °C) immediately after each cycle. Morphine and mitragynine were administered alone, in combination with each other, and in combination with the opioid antagonist naltrexone. RESULTS: Morphine and mitragynine dose-dependently decreased schedule-controlled responding; the ED50 values were 7.3 and 31.5 mg/kg, respectively. Both drugs increased thermal antinociception; the ED50 value for morphine was 18.3. Further, doses of naltrexone that antagonized morphine did not antagonize mitragynine. Mitragynine (17.8 mg/kg) did not alter the rate-decreasing or antinociceptive effects of morphine. CONCLUSIONS: The antinociceptive effects of mitragynine and morphine occur at doses larger than those that disrupt learned behavior. Opioid receptors do not appear to mediate the disruptive effects of mitragynine on learned behavior. Mitragynine had lesser antinociceptive effects than morphine, and these did not appear to be mediated by opioid receptors. The pharmacology of mitragynine includes a substantial non-opioid mechanism.


Assuntos
Analgésicos/farmacologia , Aprendizagem por Discriminação/efeitos dos fármacos , Morfina/farmacologia , Medição da Dor/efeitos dos fármacos , Alcaloides de Triptamina e Secologanina/farmacologia , Analgésicos Opioides/farmacologia , Animais , Aprendizagem por Discriminação/fisiologia , Relação Dose-Resposta a Droga , Feminino , Masculino , Mitragyna , Antagonistas de Entorpecentes/farmacologia , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/agonistas
9.
Int J Drug Policy ; 70: 70-77, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31103778

RESUMO

Kratom (Mitragyna speciosa) is a tree-like plant indigenous to Southeast Asia. Its leaves, and the teas brewed from them have long been used by people in that region to stave off fatigue and to manage pain and opioid withdrawal. Evidence suggests kratom is being increasingly used by people in the United States and Europe for the self-management of opioid withdrawal and treatment of pain. Recent studies have confirmed that kratom and its chemical constituents have potentially useful pharmacological actions. However, there have also been increasing numbers of reports of adverse effects resulting from use of kratom products. In August 2016, the US Drug Enforcement Administration announced plans to classify kratom and its mitragynine constituents as Schedule I Controlled Substances, a move that triggered a massive response from pro-kratom advocates. The debate regarding the risks, and benefits and safety of kratom continues to intensify. Kratom proponents tout kratom as a safer and less addictive alternative to opioids for the management of pain and opioid addiction. The anti-kratom faction argues that kratom, itself, is a dangerous and addictive drug that ought to be banned. Given the widespread use of kratom and the extensive media attention it is receiving, it is important for physicians, scientists and policy makers to be knowledgeable about the subject. The purpose of this commentary is to update readers about recent developments and controversies in this rapidly evolving area. All of the authors are engaged in various aspects of kratom research and it is our intention to provide a fair and balanced overview that can form the basis for informed decisions on kratom policy. Our conclusions from these analyses are: (a) User reports and results of preclinical studies in animals strongly suggest that kratom and its main constituent alkaloid, mitragynine may have useful activity in alleviating pain and managing symptoms of opioid withdrawal, even though well-controlled clinical trials have yet to be done. (b) Even though kratom lacks many of the toxicities of classic opioids, there are legitimate concerns about the safety and lack of quality control of purported "kratom" products that are being sold in the US. (c) The issues regarding the safety and efficacy of kratom and its mitragynine constituent can only be resolved by additional research. Classification of the Mitragyna alkaloids as Schedule I controlled substances would substantially impede this important research on kratom.


Assuntos
Controle de Medicamentos e Entorpecentes/legislação & jurisprudência , Mitragyna/efeitos adversos , Extratos Vegetais/efeitos adversos , Extratos Vegetais/uso terapêutico , Alcaloides de Triptamina e Secologanina/efeitos adversos , Animais , Humanos , Extratos Vegetais/farmacologia , Folhas de Planta/efeitos adversos , Alcaloides de Triptamina e Secologanina/farmacologia , Alcaloides de Triptamina e Secologanina/uso terapêutico , Síndrome de Abstinência a Substâncias/tratamento farmacológico
10.
Drug Test Anal ; 11(8): 1162-1171, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30997725

RESUMO

Kratom (Mitragyna speciosa) is a psychoactive plant popular in the United States for the self-treatment of pain and opioid addiction. For standardization and quality control of raw and commercial kratom products, an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantification of ten key alkaloids, namely: corynantheidine, corynoxine, corynoxine B, 7-hydroxymitragynine, isocorynantheidine, mitragynine, mitraphylline, paynantheine, speciociliatine, and speciogynine. Chromatographic separation of diastereomers, or alkaloids sharing same ion transitions, was achieved on an Acquity BEH C18 column with a gradient elution using a mobile phase containing acetonitrile and aqueous ammonium acetate buffer (10mM, pH 3.5). The developed method was linear over a concentration range of 1-200 ng/mL for each alkaloid. The total analysis time per sample was 22.5 minutes. The analytical method was validated for accuracy, precision, robustness, and stability. After successful validation, the method was applied for the quantification of kratom alkaloids in alkaloid-rich fractions, ethanolic extracts, lyophilized teas, and commercial products. Mitragynine (0.7%-38.7% w/w), paynantheine (0.3%-12.8% w/w), speciociliatine (0.4%-12.3% w/w), and speciogynine (0.1%-5.3% w/w) were the major alkaloids in the analyzed kratom products/extracts. Minor kratom alkaloids (corynantheidine, corynoxine, corynoxine B, 7-hydroxymitragynine, isocorynantheidine) were also quantified (0.01%-2.8% w/w) in the analyzed products; however mitraphylline was below the lower limit of quantification in all analyses.


Assuntos
Alcaloides/análise , Mitragyna/química , Extratos Vegetais/química , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção , Espectrometria de Massas em Tandem/métodos
11.
Oncogene ; 38(22): 4264-4282, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30718919

RESUMO

While HER2 and EGFR are overexpressed in breast cancers and multiple other types of tumors, the use of EGFR and/or HER2 inhibitors have failed to cure many cancer patients, largely because cancers acquire resistance to HER2/EGFR-specific drugs. Cancers that overexpress the HER-family proteins EGFR, HER2, and HER3 are uniquely sensitive to agents that disrupt HER2 and EGFR protein folding. We previously showed that disruption of disulfide bond formation by Disulfide Disrupting Agents (DDAs) kills HER2/EGFR overexpressing cells through multiple mechanisms. Herein, we show that interference with proline isomerization in HER2/EGFR overexpressing cells also induces cancer cell death. The peptidyl-prolyl isomerase inhibitor Cyclosporine A (CsA) selectively kills EGFR+ or HER2+ breast cancer cells in vitro by activating caspase-dependent apoptotic pathways. Further, CsA synergizes with the DDA tcyDTDO to kill HER2/EGFR overexpressing cells in vitro and the two agents cooperate to kill HER2+ tumors in vivo. There is a critical need for novel strategies to target HER2+ and EGFR+ cancers that are resistant to currently available mechanism-based agents. Drugs that target HER2/EGFR protein folding, including DDAs and CsA, have the potential to kill cancers that overexpress EGFR or HER2 through the induction of proteostatic synthetic lethality.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptor ErbB-2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclosporina/farmacologia , Receptores ErbB/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptor ErbB-3/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Planta Med ; 85(4): 340-346, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30452072

RESUMO

Kratom (Mitragyna speciosa) has been examined for its opioid activity, especially for the treatment of opioid withdrawal and pain. Mitragynine, the most abundant alkaloid in kratom, is thought to be the major psychoactive alkaloid. An HPLC method was developed for the quantification of mitragynine in kratom leaf extracts. In addition, a multiple reaction mode based UPLC-MS/MS method was developed and validated for the quantification of mitragynine in rat plasma. Pharmacokinetic studies were performed by comparing a single intravenous dose of mitragynine (5 mg/kg, mitragynine hydrochloride) to a single oral dose of mitragynine (20 mg/kg, mitragynine hydrochloride), lyophilized kratom tea, and the organic fraction of the lyophilized kratom tea at an equivalent mitragynine dose of 20 mg/kg in rats. After intravenous administration, mitragynine exhibited a biexponential decrease in the concentration-time profile, indicating the fast distribution of mitragynine from the systemic circulation or central compartment to the peripheral compartments. Mitragynine hydrochloride, lyophilized kratom tea, and the lyophilized kratom tea organic fraction were dosed orally and the absolute oral bioavailability of mitragynine in rats was found to be 1.5- and 1.8-fold higher than that of mitragynine dosed alone. The results provide evidence that an equivalent oral dose of the traditional preparation (lyophilized kratom tea) and formulated/manufactured products (organic fraction) of kratom leaves provide better systemic exposure of mitragynine than that of mitragynine dosed alone.


Assuntos
Mitragyna/química , Extratos Vegetais/farmacocinética , Folhas de Planta/química , Alcaloides de Triptamina e Secologanina/farmacocinética , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão , Trânsito Gastrointestinal , Injeções Intravenosas , Masculino , Extratos Vegetais/administração & dosagem , Ratos , Ratos Sprague-Dawley , Alcaloides de Triptamina e Secologanina/administração & dosagem , Alcaloides de Triptamina e Secologanina/sangue , Alcaloides de Triptamina e Secologanina/isolamento & purificação
13.
Xenobiotica ; 49(11): 1279-1288, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30547698

RESUMO

1. Mitragynine is the major indole-based alkaloid of Mitragyna speciosa (kratom). Decoctions (teas) of the plant leaves have been used traditionally for cough, diarrhoea, pain, hypertension and for the treatment of opioid addiction. In the West, kratom has become increasingly utilized for mood elevation, pain treatment and as a means of self-treating opioid addiction. 2. Metabolic pathways of mitragynine were identified in human liver microsomes (HLM) and S9 fractions. A total of thirteen metabolites were identified, four oxidative metabolites and a metabolite formed by demethylation at the 9-methoxy group were the major metabolites of mitragynine. 3. The cytochrome P450 enzymes involved in the metabolism of mitragynine were identified using selective chemical inhibitors of HLM and recombinant cytochrome P450. The metabolism of mitragynine was predominantly carried out through the CYP3A4 with minor contributions by CYP2D6 and CYP2C9. The formation of five oxidative metabolites (Met2, Met4, Met6, Met8 and Met11) was catalyzed by the CYP3A4. 4. In summary, mitragynine was extensively metabolized in HLM primarily to O-demethylated and mono-oxidative metabolites. The CYP3A4 enzyme plays a predominant role in the metabolic clearance of mitragynine and also in the formation of 7-hydroxymitragynine (Met2), a known active minor alkaloid identified in the leaf material.


Assuntos
Mitragyna/química , Alcaloides de Triptamina e Secologanina/farmacocinética , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa/metabolismo , Humanos , Hidrólise , Metabolômica/métodos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Espectrometria de Massas em Tandem
14.
PLoS One ; 13(5): e0197940, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29795658

RESUMO

Kava is regaining its popularity with detailed characterizations warranted. We developed an ultraperformance liquid chromatography high-resolution tandem mass spectrometry (UPLC-MS/MS) method for major kavalactones (kavain, dihydrokavain, methysticin, dihydromethysticin and desmethoxyyangonin) with excellent selectivity and specificity. The method has been validated for different matrices following the Food and Drug Administration guidance of analytical procedures and methods validation. The scope of this method has been demonstrated by quantifying these kavalactones in two kava products, characterizing their tissue distribution and pharmacokinetics in mice, and detecting their presence in human urines and plasmas upon kava intake. As expected, the abundances of these kavalactones differed significantly in kava products. All of them exhibited a large volume of distribution with extensive tissue affinity and adequate mean residence time (MRT) in mice. This method also successfully quantified these kavalactones in human body fluids upon kava consumption at the recommended human dose. This UPLC-MS/MS method therefore can be used to characterize kava products and its pharmacokinetics in animals and in humans.


Assuntos
Kava/química , Lactonas/administração & dosagem , Lactonas/análise , Técnica de Diluição de Radioisótopos , Espectrometria de Massas em Tandem/métodos , Animais , Humanos , Lactonas/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pironas/administração & dosagem , Pironas/análise , Pironas/farmacocinética , Distribuição Tecidual , Urinálise
15.
Mol Imaging Biol ; 19(5): 779-786, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28280965

RESUMO

PURPOSE: Sigma-1 receptors (S1Rs) play an important role in many neurological disorders. Simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) with S1R radioligands may provide valuable information for diagnosing and guiding treatment for these diseases. Our previously reported S1R radioligand, [18F]FTC-146, demonstrated high affinity for the S1R (K i = 0.0025 nM) and excellent selectivity for the S1R over the sigma-2 receptor (S2Rs; K i = 364 nM) across several species (from mouse to non-human primate). Herein, we report the clinical-grade radiochemistry filed with exploratory Investigational New Drug (eIND) and first-in-human PET/MRI evaluation of [18F]FTC-146. PROCEDURES: [18F]FTC-146 is prepared via a direct [18F] fluoride nucleophilic radiolabeling reaction and formulated in 0.9 % NaCl containing no more than 10 % ethanol through sterile filtration. Quality control (QC) was performed based on USP 823 before doses were released for clinical use. The safety and whole body biodistribution of [18F]FTC-146 were evaluated using a simultaneous PET/MR scanner in two representative healthy human subjects. RESULTS: [18F]FTC-146 was synthesized with a radiochemical yield of 3.3 ± 0.7 % and specific radioactivity of 8.3 ± 3.3 Ci/µmol (n = 10, decay corrected to EOB). Both radiochemical and chemical purities were >95 %; the prepared doses were stable for 4 h at ambient temperature. All QC test results met specified clinical criteria. The in vivo PET/MRI investigations showed that [18F]FTC-146 rapidly crossed the blood brain barrier and accumulated in S1R-rich regions of the brain. There were also radioactivity distributed in the peripheral organs, i.e., the lungs, spleen, pancreas, and thyroid. Furthermore, insignificant uptake of [18F]FTC-146 was observed in cortical bone and muscle. CONCLUSION: A reliable and automated radiosynthesis for providing routine clinical-grade [18F]FTC-146 for human studies was established in a modified GE TRACERlab FXFN. PET/MRI demonstrated the initial tracer biodistribution in humans, and clinical studies investigating different S1R-related diseases are in progress.


Assuntos
Azepinas/química , Azepinas/síntese química , Benzotiazóis/química , Benzotiazóis/síntese química , Imagem por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Adulto , Azepinas/farmacocinética , Benzotiazóis/farmacocinética , Feminino , Humanos , Masculino , Distribuição Tecidual
16.
Drug Test Anal ; 9(8): 1236-1242, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28039926

RESUMO

An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for quantification of CM304, a novel and highly selective sigma-1 receptor antagonist that has recently entered into human clinical trials. A structural analogue of CM304, SN56, was used as the internal standard (IS). Chromatographic separation was achieved on an Acquity UPLC™ BEH C18 (1.7 µm, 2.1 mm × 50 mm) column using a mobile phase [water:methanol (0.1%v/v formic acid; 50:50, %v/v)] at a flow rate of 0.2 mL/min. Mass spectrometric detection was performed in the positive ionization mode with multiple reaction monitoring (MRM) using m/z transitions of 337 > 238 for CM304 and 319 > 220 for the IS. The method was found to be linear and reproducible with a regression coefficient consistently >0.99 for the calibration range of 3 to 3000 ng/mL. The extraction recovery ranged from 91.5 to 98.4% from spiked (7.5, 300 and 2526 ng/mL) plasma quality control samples. The precision (%RSD; 1.1 to 2.9%) and accuracy (%RE; -1.9 to 1.8%) were within acceptable limit. The validated method was successfully applied to a single dose oral and intravenous (I.V.) pharmacokinetic study of CM304 in rats. Following I.V. administration, the compound exhibited adequate exposure along with high extravascular distribution and insignificant amount of extra hepatic metabolism. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Azepinas/sangue , Benzotiazóis/sangue , Receptores sigma/antagonistas & inibidores , Espectrometria de Massas em Tandem/métodos , Administração Intravenosa , Administração Oral , Animais , Azepinas/administração & dosagem , Azepinas/análise , Benzotiazóis/administração & dosagem , Benzotiazóis/análise , Cromatografia Líquida de Alta Pressão/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Limite de Detecção , Masculino , Ratos , Ratos Sprague-Dawley
17.
J Med Toxicol ; 12(4): 341-349, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27752985

RESUMO

INTRODUCTION: Kratom (Mitragyna speciosa), a plant native to Southeast Asia, has been used for centuries for its stimulant and opium-like effects. Mitragynine and 7-hydroxymitragynine, exclusive to M. speciosa, are the alkaloids primary responsible for Kratom's biologic and psychoactive profile, and likely contribute to its problematic use. We purchased several commercially available Kratom analogs for analysis and through our results, present evidence of probable adulteration with the highly potent and addictive plant alkaloid, 7-hydroxymitragynine. METHODS: A simple and sensitive LC-MS/MS method was developed for simultaneous quantification of mitragynine and 7-hydroxymitragynine in methanol extract of marketed Kratom supplements. RESULTS: We found multiple commercial Kratom products to have concentrations of 7-hydroxymitragynine that are substantially higher than those found in raw M. speciosa leaves. CONCLUSIONS: We have found multiple packaged commercial Kratom products likely to contain artificially elevated concentrations of 7-hydroxymitragynine, the alkaloid responsible for M. speciosa's concerning mechanistic and side effect profile. This study describes a unique form of product adulteration, which stresses the importance of increased dietary supplement oversight of Kratom-containing supplements.


Assuntos
Contaminação de Medicamentos , Mitragyna/química , Entorpecentes/análise , Alcaloides de Triptamina e Secologanina/análise , Cromatografia Líquida , Suplementos Nutricionais/análise , Extratos Vegetais/química , Espectrometria de Massas em Tandem
18.
J Nucl Med ; 55(1): 147-53, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24337599

RESUMO

UNLABELLED: The noninvasive imaging of σ-1 receptors (S1Rs) could provide insight into their role in different diseases and lead to novel diagnostic/treatment strategies. The main objective of this study was to assess the S1R radiotracer (18)F-FTC-146 in rats. Preliminary squirrel monkey imaging and human serum/liver microsome studies were performed to gain information about the potential of (18)F-FTC-146 for eventual clinical translation. METHODS: The distribution and stability of (18)F-FTC-146 in rats were assessed via PET/CT, autoradiography, γ counting, and high-performance liquid chromatography (HPLC). Preliminary PET/MRI of squirrel monkey brain was conducted along with HPLC assessment of (18)F-FTC-146 stability in monkey plasma and human serum. RESULTS: Biodistribution studies showed that (18)F-FTC-146 accumulated in S1R-rich rat organs, including the lungs, pancreas, spleen, and brain. Pretreatment with known S1R compounds, haloperidol, or BD1047, before radioligand administration, significantly attenuated (18)F-FTC-146 accumulation in all rat brain regions by approximately 85% (P < 0.001), suggesting radiotracer specificity for S1Rs. Similarly, PET/CT and autoradiography results demonstrated accumulation of (18)F-FTC-146 in rat brain regions known to contain S1Rs and that this uptake could be blocked by BD1047 pretreatment. Ex vivo analysis of (18)F-FTC-146 in the brain showed that only intact radiotracer was present at 15, 30, and 60 min, whereas rapid metabolism of residual (18)F-FTC-146 was observed in rat plasma. Preliminary monkey PET/MRI studies demonstrated specific accumulation of (18)F-FTC-146 in the brain (mainly in cortical structures, cerebellum, and vermis) that could be attenuated by pretreatment with haloperidol. HPLC of monkey plasma suggested radioligand metabolism, whereas (18)F-FTC-146 appeared to be stable in human serum. Finally, liver microsome studies revealed that (18)F-FTC-146 has a longer half-life in human microsomes, compared with rodents. CONCLUSION: Together, these results indicate that (18)F-FTC-146 is a promising tool for visualizing S1Rs in preclinical studies and that it has potential for mapping these sites in the human brain.


Assuntos
Azepinas/química , Benzotiazóis/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Receptores sigma/química , Animais , Encéfalo/patologia , Cromatografia Líquida de Alta Pressão , Humanos , Ligantes , Imagem por Ressonância Magnética , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Saimiri , Distribuição Tecidual , Tomografia Computadorizada por Raios X
19.
Biomed Chromatogr ; 27(12): 1726-32, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23893615

RESUMO

A simple, sensitive and specific ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to determine the concentrations of 7-hydroxymitragynine in rat plasma. Following a single-step liquid-liquid extraction of plasma samples using chloroform, 7-hydroxymitragynine and the internal standard (tryptoline) were separated on an Acquity UPLC(TM) BEH C18 (1.7 µm, 2.1 × 50 mm) column using an isocratic elution at a flow rate of 0.2 mL/min. The mobile phase consisted of 0.1% acetic acid in water and 0.1% acetic acid in acetonitrile (10:90, v/v). The run time was 2.5 min. The analysis was carried out under the multiple reaction-monitoring mode using positive electrospray ionization. Protonated ions [M + H](+) and their respective product ions were monitored at the following transitions: 415 → 190 for 7-hydroxymitragynine and 173 → 144 for the internal standard. The calibration curve was linear over the range of 10-4000 ng/mL (r(2) = 0.999) with a lower limit of quantification of 10 ng/mL. The extraction recoveries ranged from 62.0 to 67.3% at concentrations of 20, 600 and 3200 ng/mL). Intra- and inter-day assay precisions (relative standard deviation) were <15% and the accuracy was within 96.5-104.0%. This validated method was successfully applied to quantify 7-hydroxymitragynine in rat plasma following intravenous administration.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Alcaloides de Triptamina e Secologanina/sangue , Espectrometria de Massas em Tandem/métodos , Analgésicos Opioides/agonistas , Animais , Estabilidade de Medicamentos , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Alcaloides de Triptamina e Secologanina/química , Alcaloides de Triptamina e Secologanina/farmacocinética , Sensibilidade e Especificidade
20.
Biomed Chromatogr ; 27(8): 1034-40, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23558564

RESUMO

Methamphetamine abuse continues as a major problem in the USA owing to its powerful psychological addictive properties. AZ66, 3-[4-(4-cyclohexylpiperazine-1-yl)pentyl]-6-fluorobenzo[d]thiazole-2(3H)-one, an optimized sigma receptor ligand, is a promising therapeutic agent against methamphetamine. To study the in vivo pharmacokinetics of this novel sigma receptor ligand in rats, a sensitive ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method was developed in rat plasma and validated. The developed method requires a small volume of plasma (100 µL) and a simple liquid-liquid extraction. The chromatographic separations were achieved in 3.3 min using an Acquity UPLC BEH Shield RP18 column. The mass spectrophotometric detection was carried out using a Waters Micromass Quattro MicroTM triple-quadrupole system. Multiple reaction monitoring was used for the quantitation with transitions m/z 406 → m/z 181 for AZ66 and m/z 448 → m/z 285 for aripiprazole. The method was validated over a concentration range of 1-3500 ng/mL and the lower limit of quantitation was determined to be 1 ng/mL. Validation of the assay demonstrated that the developed UPLC/MS/MS method was sensitive, accurate and selective for the determination of AZ66 in rat plasma. The present method has been successfully applied to an i.v. pharmacokinetic study in Sprague-Dawley rats.


Assuntos
Benzotiazóis/sangue , Cromatografia Líquida de Alta Pressão/métodos , Piperazinas/sangue , Receptores sigma/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Benzotiazóis/química , Benzotiazóis/farmacocinética , Ligantes , Modelos Lineares , Masculino , Piperazinas/química , Piperazinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA