Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34637747

RESUMO

Human brains share a broadly similar functional organization with consequential individual variation. This duality in brain function has primarily been observed when using techniques that consider the spatial organization of the brain, such as MRI. Here, we ask whether these common and unique signals of cognition are also present in temporally sensitive but spatially insensitive neural signals. To address this question, we compiled electroencephalogram (EEG) data from individuals of both sexes while they performed multiple working memory tasks at two different data-collection sites (n = 171 and 165). Results revealed that trial-averaged EEG activity exhibited inter-electrode correlations that were stable within individuals and unique across individuals. Furthermore, models based on these inter-electrode correlations generalized across datasets to predict participants' working memory capacity and general fluid intelligence. Thus, inter-electrode correlation patterns measured with EEG provide a signature of working memory and fluid intelligence in humans and a new framework for characterizing individual differences in cognitive abilities.

2.
J Cogn Neurosci ; 33(10): 2132-2148, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34496022

RESUMO

Our attention is critically important for what we remember. Prior measures of the relationship between attention and memory, however, have largely treated "attention" as a monolith. Here, across three experiments, we provide evidence for two dissociable aspects of attention that influence encoding into long-term memory. Using spatial cues together with a sensitive continuous report procedure, we find that long-term memory response error is affected by both trial-by-trial fluctuations of sustained attention and prioritization via covert spatial attention. Furthermore, using multivariate analyses of EEG, we track both sustained attention and spatial attention before stimulus onset. Intriguingly, even during moments of low sustained attention, there is no decline in the representation of the spatially attended location, showing that these two aspects of attention have robust but independent effects on long-term memory encoding. Finally, sustained and spatial attention predicted distinct variance in long-term memory performance across individuals. That is, the relationship between attention and long-term memory suggests a composite model, wherein distinct attentional subcomponents influence encoding into long-term memory. These results point toward a taxonomy of the distinct attentional processes that constrain our memories.

3.
J Cogn Neurosci ; 33(7): 1354-1364, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34496399

RESUMO

Multiple neural signals have been found to track the number of items stored in working memory (WM). These signals include oscillatory activity in the alpha band and slow-wave components in human EEG, both of which vary with storage loads and predict individual differences in WM capacity. However, recent evidence suggests that these two signals play distinct roles in spatial attention and item-based storage in WM. Here, we examine the hypothesis that sustained negative voltage deflections over parieto-occipital electrodes reflect the number of individuated items in WM, whereas oscillatory activity in the alpha frequency band (8-12 Hz) within the same electrodes tracks the attended positions in the visual display. We measured EEG activity while participants stored the orientation of visual elements that were either grouped by collinearity or not. This grouping manipulation altered the number of individuated items perceived while holding constant the number of locations occupied by visual stimuli. The negative slow wave tracked the number of items stored and was reduced in amplitude in the grouped condition. By contrast, oscillatory activity in the alpha frequency band tracked the number of positions occupied by the memoranda and was unaffected by perceptual grouping. Perceptual grouping, then, reduced the number of individuated representations stored in WM as reflected by the negative slow wave, whereas the location of each element was actively maintained as indicated by alpha power. These findings contribute to the emerging idea that distinct classes of EEG signals work in concert to successfully maintain on-line representations in WM.

4.
Cereb Cortex ; 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34428283

RESUMO

Current theories propose that the short-term retention of information in working memory (WM) and the recall of information from long-term memory (LTM) are supported by overlapping neural mechanisms in occipital and parietal cortex. However, the extent of the shared representations between WM and LTM is unclear. We designed a spatial memory task that allowed us to directly compare the representations of remembered spatial information in WM and LTM with carefully matched behavioral response precision between tasks. Using multivariate pattern analyses on functional magnetic resonance imaging data, we show that visual memories were represented in a sensory-like code in both memory tasks across retinotopic regions in occipital and parietal cortex. Regions in lateral parietal cortex also encoded remembered locations in both tasks, but in a format that differed from sensory-evoked activity. These results suggest a striking correspondence in the format of representations maintained in WM and retrieved from LTM across occipital and parietal cortex. On the other hand, we also show that activity patterns in nearly all parietal regions, but not occipital regions, contained information that could discriminate between WM and LTM trials. Our data provide new evidence for theories of memory systems and the representation of mnemonic content.

5.
Cereb Cortex ; 31(7): 3323-3337, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33675357

RESUMO

Visual working memory (WM) must maintain relevant information, despite the constant influx of both relevant and irrelevant information. Attentional control mechanisms help determine which of this new information gets access to our capacity-limited WM system. Previous work has treated attentional control as a monolithic process-either distractors capture attention or they are suppressed. Here, we provide evidence that attentional capture may instead be broken down into at least two distinct subcomponent processes: (1) Spatial capture, which refers to when spatial attention shifts towards the location of irrelevant stimuli and (2) item-based capture, which refers to when item-based WM representations of irrelevant stimuli are formed. To dissociate these two subcomponent processes of attentional capture, we utilized a series of electroencephalography components that track WM maintenance (contralateral delay activity), suppression (distractor positivity), item individuation (N2pc), and spatial attention (lateralized alpha power). We show that new, relevant information (i.e., a task-relevant distractor) triggers both spatial and item-based capture. Irrelevant distractors, however, only trigger spatial capture from which ongoing WM representations can recover more easily. This fractionation of attentional capture into distinct subcomponent processes provides a refined framework for understanding how distracting stimuli affect attention and WM.

6.
J Neurosci ; 41(14): 3180-3191, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33653697

RESUMO

Past work has demonstrated that active suppression of salient distractors is a critical part of visual selection. Evidence for goal-driven suppression includes below-baseline visual encoding at the position of salient distractors (Gaspelin and Luck, 2018) and neural signals such as the distractor positivity (Pd) that track how many distractors are presented in a given hemifield (Feldmann-Wüstefeld and Vogel, 2019). One basic question regarding distractor suppression is whether it is inherently spatial or nonspatial in character. Indeed, past work has shown that distractors evoke both spatial (Theeuwes, 1992) and nonspatial forms of interference (Folk and Remington, 1998), motivating a direct examination of whether space is integral to goal-driven distractor suppression. Here, we use behavioral and EEG data from adult humans (male and female) to provide clear evidence for a spatial gradient of suppression surrounding salient singleton distractors. Replicating past work, both reaction time and neural indices of target selection improved monotonically as the distance between target and distractor increased. Importantly, these target selection effects were paralleled by a monotonic decline in the amplitude of the Pd, an electrophysiological index of distractor suppression. Moreover, multivariate analyses revealed spatially selective activity in the θ-band that tracked the position of the target and, critically, revealed suppressed activity at spatial channels centered on distractor positions. Thus, goal-driven selection of relevant over irrelevant information benefits from a spatial gradient of suppression surrounding salient distractors.SIGNIFICANCE STATEMENT Past work has shown that distractor suppression is an important part of goal-driven attentional selection, but has not yet revealed whether suppression is spatially directed. Using behavioral data, event-related potentials (ERPs) of the EEG signal [N2pc and distractor positivity (Pd) component], as well as a multivariate model of EEG data [channel tuning functions (CTF)], we show that suppression-related neural activity increases monotonically as the distance between targets and distractors decreases, and that spatially-selective activity in the θ-band reveals depressed activity in spatial channels that index distractor positions. Thus, we provide robust evidence for spatially-guided distractor suppression, a result that has important implications for models of goal-driven attentional control.


Assuntos
Atenção/fisiologia , Potenciais Evocados Visuais/fisiologia , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Percepção Espacial/fisiologia , Adolescente , Adulto , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Percepção Visual/fisiologia , Adulto Jovem
7.
Psychophysiology ; 58(5): e13791, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33569785

RESUMO

The contralateral delay activity (CDA) is an event-related potential component commonly used to examine the online processes of visual working memory. Here, we provide a robust analysis of the statistical power that is needed to achieve reliable and reproducible results with the CDA. Using two very large EEG datasets that examined the contrast between CDA amplitude with set sizes 2 and 6 items and set sizes 2 and 4 items, we present a subsampling analysis that estimates the statistical power achieved with varying numbers of subjects and trials based on the proportion of significant tests in 10,000 iterations. We also generated simulated data using Bayesian multilevel modeling to estimate power beyond the bounds of the original datasets. The number of trials and subjects required depends critically on the effect size. Detecting the presence of the CDA-a reliable difference between contralateral and ipsilateral electrodes during the memory period-required only 30-50 clean trials with a sample of 25 subjects to achieve approximately 80% statistical power. However, for detecting a difference in CDA amplitude between two set sizes, a substantially larger number of trials and subjects were required; approximately 400 clean trials with 25 subjects to achieve 80% power. Thus, to achieve robust tests of how CDA activity differs across conditions, it is essential to be mindful of the estimated effect size. We recommend researchers designing experiments to detect set-size differences in the CDA collect substantially more trials per subject.

8.
Psychophysiology ; 58(4): e13779, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33550667

RESUMO

A long-standing question in the field of vision research is whether scalp-recorded EEG activity contains sufficient information to identify stimulus chromaticity. Recent multivariate work suggests that it is possible to decode which chromaticity an observer is viewing from the multielectrode pattern of EEG activity. There is debate, however, about whether the claimed effects of stimulus chromaticity on visual evoked potentials (VEPs) are instead caused by unequal stimulus luminances, which are achromatic differences. Here, we tested whether stimulus chromaticity could be decoded when potential confounds with luminance were minimized by (1) equating chromatic stimuli in luminance using heterochromatic flicker photometry for each observer and (2) independently varying the chromaticity and luminance of target stimuli, enabling us to test whether the pattern for a given chromaticity generalized across wide variations in luminance. We also tested whether luminance variations can be decoded from the topography of voltage across the scalp. In Experiment 1, we presented two chromaticities (appearing red and green) at three luminance levels during separate trials. In Experiment 2, we presented four chromaticities (appearing red, orange, yellow, and green) at two luminance levels. Using a pattern classifier and the multielectrode pattern of EEG activity, we were able to accurately decode the chromaticity and luminance level of each stimulus. Furthermore, we were able to decode stimulus chromaticity when we trained the classifier on chromaticities presented at one luminance level and tested at a different luminance level. Thus, EEG topography contains robust information regarding stimulus chromaticity, despite large variations in stimulus luminance.

9.
J Neurosci ; 41(8): 1802-1815, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33441434

RESUMO

Covert spatial attention has a variety of effects on the responses of individual neurons. However, relatively little is known about the net effect of these changes on sensory population codes, even though perception ultimately depends on population activity. Here, we measured the EEG in human observers (male and female), and isolated stimulus-evoked activity that was phase-locked to the onset of attended and ignored visual stimuli. Using an encoding model, we reconstructed spatially selective population tuning functions from the pattern of stimulus-evoked activity across the scalp. Our EEG-based approach allowed us to measure very early visually evoked responses occurring ∼100 ms after stimulus onset. In Experiment 1, we found that covert attention increased the amplitude of spatially tuned population responses at this early stage of sensory processing. In Experiment 2, we parametrically varied stimulus contrast to test how this effect scaled with stimulus contrast. We found that the effect of attention on the amplitude of spatially tuned responses increased with stimulus contrast, and was well described by an increase in response gain (i.e., a multiplicative scaling of the population response). Together, our results show that attention increases the gain of spatial population codes during the first wave of visual processing.SIGNIFICANCE STATEMENT We know relatively little about how attention improves population codes, even though perception is thought to critically depend on population activity. In this study, we used an encoding-model approach to test how attention modulates the spatial tuning of stimulus-evoked population responses measured with EEG. We found that attention multiplicatively scales the amplitude of spatially tuned population responses. Furthermore, this effect was present within 100 ms of stimulus onset. Thus, our results show that attention improves spatial population codes by increasing their gain at this early stage of processing.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Potenciais Evocados Visuais/fisiologia , Neurônios/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
10.
Neuroimage ; 226: 117562, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189931

RESUMO

An extensive body of work has shown that attentional capture is contingent on the goals of the observer: Capture is strongly reduced or even eliminated when an irrelevant singleton stimulus does not match the target-defining properties (Folk et al., 1992). There has been a long-standing debate on whether attentional capture can be explained by goal-driven and/or stimulus-driven accounts. Here, we shed further light on this matter by using EEG activity (raw EEG and alpha power) to provide a time-resolved index of attentional orienting towards salient stimuli that either matched or did not match target-defining properties. A search display containing the target stimulus was preceded by a spatially uninformative singleton cue that either matched the color of the upcoming target (contingent cues), or that appeared in an irrelevant color (non-contingent cues). Multivariate analysis of raw EEG and alpha power revealed preferential tuning to the location of both contingent and non-contingent cues, with a stronger bias towards contingent than non-contingent cues. The time course of these effects, however, depended on the neural signal. Raw EEG data revealed attentional orienting towards the contingent cue early on in the trial (>156 ms), while alpha power revealed sustained spatial selection in the cued locations at a later moment in the trial (>250 ms). Moreover, while raw EEG showed stronger capture by contingent cues during this early time window, an advantage for contingent cues arose during a later time window in alpha band activity. Thus, our findings suggest that raw EEG activity and alpha-band power tap into distinct neural processes that index separate aspects of covert spatial attention.


Assuntos
Ritmo alfa/fisiologia , Atenção/fisiologia , Encéfalo/fisiologia , Orientação Espacial/fisiologia , Adulto , Sinais (Psicologia) , Eletroencefalografia , Feminino , Humanos , Masculino , Análise Multivariada , Tempo de Reação/fisiologia , Adulto Jovem
11.
Psychophysiology ; 57(12): e13691, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33040349

RESUMO

Working memory (WM) is an online memory system that is critical for holding information in a rapidly accessible state during ongoing cognitive processing. Thus, there is strong value in methods that provide a temporally resolved index of WM load. While univariate EEG signals have been identified that vary with WM load, recent advances in multivariate analytic approaches suggest that there may be rich sources of information that do not generate reliable univariate signatures. Here, using data from four published studies (n = 286 and >250,000 trials), we demonstrate that multivariate analysis of EEG voltage topography provides a sensitive index of the number of items stored in WM that generalizes to novel human observers. Moreover, multivariate load detection ("mvLoad") can provide robust information at the single-trial level, exceeding the sensitivity of extant univariate approaches. We show that this method tracks WM load in a manner that is (1) independent of the spatial position of the memoranda, (2) precise enough to differentiate item-by-item increments in the number of stored items, (3) generalizable across distinct tasks and stimulus displays, and (4) correlated with individual differences in WM behavior. Thus, this approach provides a powerful complement to univariate analytic approaches, enabling temporally resolved tracking of online memory storage in humans.

12.
Psychon Bull Rev ; 27(6): 1269-1278, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32808159

RESUMO

Working memory maintains information in a readily accessible state and has been shown to degrade as the length of the retention interval increases. Previous research has suggested that this decline is attributable to changes in precision as well as sudden loss of item representations. Here, by measuring trial-to-trial variations in performance, we examined an orthogonal distinction between the maximum number of items that an individual can store, and the probability of achieving that maximum. Across two experiments, we replicated the finding that performance declines after long (10 s) retention intervals, as well as past observations that forgetting was due to probabilistic dropping of individual items rather than all-or-none losses of the stored memories. Critically, longer retention intervals did not reduce the maximum amount of information that could be stored in working memory. Instead, lower attentional control accounted for a decreased probability of maintaining the maximum number of items in working memory. Thus, longer retention intervals impact working memory storage via fluctuations in attentional control that lower the probability of achieving a stable maximum storage capacity.


Assuntos
Atenção , Memória de Curto Prazo , Retenção Psicológica , Adulto , Feminino , Humanos , Estudos Longitudinais , Masculino , Memória de Longo Prazo , Modelagem Computacional Específica para o Paciente , Probabilidade
13.
J Neurosci ; 40(13): 2717-2726, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32054678

RESUMO

Covert spatial attention has long been thought to speed visual processing. Psychophysics studies have shown that target information accrues faster at attended locations than at unattended locations. However, with behavioral evidence alone, it is difficult to determine whether attention speeds visual processing of the target or subsequent postperceptual stages of processing (e.g., converting sensory responses into decision signals). Moreover, although many studies have shown that attention can boost the amplitude of visually evoked neural responses, no robust effect has been observed on the latency of those neural responses. Here, we offer new evidence that may reconcile the neural and behavioral findings. We examined whether covert attention influenced the latency of the N2pc component, an electrophysiological marker of visual selection that has been linked with object individuation-the formation of an object representation that is distinct from the background and from other objects in the scene. To this end, we manipulated whether or not human observers (male and female) covertly attended the location of an impending search target. We found that the target evoked N2pc onset ∼20 ms earlier when the target location was cued than when it was not cued. In a second experiment, we provided a direct replication of this effect, confirming that the effect of attention on N2pc latency is robust. Thus, although attention may not speed the earliest stages of sensory processing, attention does speed the critical transition between raw sensory encoding and the formation of individuated object representations.SIGNIFICANCE STATEMENT Covert spatial attention improves processing at attended locations. Past behavioral studies have shown that information about visual targets accrues faster at attended than at unattended locations. However, it has remained unclear whether attention speeds perceptual analysis or subsequent postperceptual stages of processing. Here, we present robust evidence that attention speeds the N2pc, an electrophysiological signal that indexes the formation of individuated object representations. Our findings show that attention speeds a relatively early stage of perceptual processing while also elucidating the specific perceptual process that is speeded.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Individuação , Tempo de Reação/fisiologia , Percepção Espacial/fisiologia , Adolescente , Adulto , Sinais (Psicologia) , Eletroencefalografia , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Masculino , Estimulação Luminosa , Percepção Visual/fisiologia , Adulto Jovem
14.
J Cogn Neurosci ; 32(2): 272-282, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31633465

RESUMO

Voluntary control over spatial attention has been likened to the operation of a zoom lens, such that processing quality declines as the size of the attended region increases, with a gradient of performance that peaks at the center of the selected area. Although concurrent changes in activity in visual regions suggest that zoom lens adjustments influence perceptual stages of processing, extant work has not distinguished between changes in the spatial selectivity of attention-driven neural activity and baseline shift of activity that can increase mean levels of activity without changes in selectivity. Here, we distinguished between these alternatives by measuring EEG activity in humans to track preparatory changes in alpha activity that indexed the precise topography of attention across the possible target positions. We observed increased spatial selectivity in alpha activity when observers voluntarily directed attention toward a narrower region of space, a pattern that was mirrored in target discrimination accuracy. Thus, alpha activity tracks both the centroid and spatial extent of covert spatial attention before the onset of the target display, lending support to the hypothesis that narrowing the zoom lens of attention shapes the initial encoding of sensory information.


Assuntos
Ritmo alfa/fisiologia , Atenção/fisiologia , Córtex Cerebral/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Percepção Espacial/fisiologia , Adolescente , Adulto , Sinais (Psicologia) , Fixação Ocular/fisiologia , Humanos , Adulto Jovem
15.
J Cogn Neurosci ; 32(3): 558-569, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31617823

RESUMO

Working memory maintains information so that it can be used in complex cognitive tasks. A key challenge for this system is to maintain relevant information in the face of task-irrelevant perturbations. Across two experiments, we investigated the impact of task-irrelevant interruptions on neural representations of working memory. We recorded EEG activity in humans while they performed a working memory task. On a subset of trials, we interrupted participants with salient but task-irrelevant objects. To track the impact of these task-irrelevant interruptions on neural representations of working memory, we measured two well-characterized, temporally sensitive EEG markers that reflect active, prioritized working memory representations: the contralateral delay activity and lateralized alpha power (8-12 Hz). After interruption, we found that contralateral delay activity amplitude momentarily sustained but was gone by the end of the trial. Lateralized alpha power was immediately influenced by the interrupters but recovered by the end of the trial. This suggests that dissociable neural processes contribute to the maintenance of working memory information and that brief irrelevant onsets disrupt two distinct online aspects of working memory. In addition, we found that task expectancy modulated the timing and magnitude of how these two neural signals responded to task-irrelevant interruptions, suggesting that the brain's response to task-irrelevant interruption is shaped by task context.

16.
J Exp Psychol Gen ; 148(8): 1373-1385, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31343232

RESUMO

Brady, Konkle, and Alvarez (2009) argued that statistical learning boosts the number of colors that can be held online in visual working memory (WM). They showed that when specific colors are consistently paired together in a WM task, subjects can take optimal advantage of these regularities to recall more colors, an effect they labeled memory compression. They proposed that memory compression is a product of visual statistical learning, an automatic apprehension of statistical regularities that has been shown in prior work to be disconnected from explicit learning. If statistical learning enables an expansion of the number of individuated representations in visual WM, it would require revision of virtually all models of capacity in this online memory system. That said, this provocative claim is inconsistent with multiple studies that have found no improvement in WM performance following numerous repetitions of specific sample displays (e.g., Logie, Brockmole, & Vandenbroucke, 2009; Olson & Jiang, 2004). Here, we replicate the Brady et al. (2009) findings but show that memory compression effects were restricted to subjects who had perfect explicit recall of the color pairs at the end of the study, suggesting that statistical regularities boosted performance by enabling contributions from long-term memory. Thus, while memory compression effects provide an interesting example of the tight collaboration between online and offline memory representations, they do not provide evidence that statistical regularities can augment the number of individuated representations that can be concurrently stored in visual WM. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Assuntos
Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Percepção Visual/fisiologia , Adulto , Cor , Feminino , Humanos , Masculino , Rememoração Mental/fisiologia , Estimulação Luminosa
17.
J Neurophysiol ; 122(2): 539-551, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188708

RESUMO

A hallmark of episodic memory is the phenomenon of mentally reexperiencing the details of past events, and a well-established concept is that the neuronal activity that mediates encoding is reinstated at retrieval. Evidence for reinstatement has come from multiple modalities, including functional magnetic resonance imaging and electroencephalography (EEG). These EEG studies have shed light on the time course of reinstatement but have been limited to distinguishing between a few categories. The goal of this work was to use recently developed experimental and technical approaches, namely continuous report tasks and inverted encoding models, to determine which frequencies of oscillatory brain activity support the retrieval of precise spatial memories. In experiment 1, we establish that an inverted encoding model applied to multivariate alpha topography tracks the retrieval of precise spatial memories. In experiment 2, we demonstrate that the frequencies and patterns of multivariate activity at study are similar to the frequencies and patterns observed during retrieval. These findings highlight the broad potential for using encoding models to characterize long-term memory retrieval.NEW & NOTEWORTHY Previous EEG work has shown that category-level information observed during encoding is recapitulated during memory retrieval, but studies with this time-resolved method have not demonstrated the reinstatement of feature-specific patterns of neural activity during retrieval. Here we show that EEG alpha-band activity tracks the retrieval of spatial representations from long-term memory. Moreover, we find considerable overlap between the frequencies and patterns of activity that track spatial memories during initial study and at retrieval.


Assuntos
Ritmo alfa/fisiologia , Córtex Cerebral/fisiologia , Memória Episódica , Memória de Longo Prazo/fisiologia , Rememoração Mental/fisiologia , Memória Espacial/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
18.
Nat Hum Behav ; 3(8): 808-816, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31110335

RESUMO

Attention and working memory are clearly intertwined, as shown by co-variations in individual ability and the recruitment of similar neural substrates. Both processes fluctuate over time1-5, and these fluctuations may be a key determinant of individual variations in ability6,7. If these fluctuations are due to the waxing and waning of a common cognitive resource, attention and working memory should co-vary on a moment-to-moment basis. To test this, we developed a hybrid task that interleaved a sustained attention task and a whole-report working memory task. Experiment 1 established that performance fluctuations on these tasks correlated across and within participants: attention lapses led to worse working memory performance. Experiment 2 extended this finding using a real-time triggering procedure that monitored attention fluctuations to probe working memory during optimal (high-attention) or suboptimal (low-attention) moments. In low-attention moments, participants stored fewer items in working memory. Experiment 3 ruled out task-general fluctuations as an explanation for these co-variations by showing that the precision of colour memory was unaffected by variations in attention state. In summary, we demonstrate that attention and working memory lapse together, providing additional evidence for the tight integration of these cognitive processes.


Assuntos
Atenção/fisiologia , Memória de Curto Prazo/fisiologia , Feminino , Humanos , Masculino , Desempenho Psicomotor , Adulto Jovem
19.
PLoS Biol ; 17(4): e3000239, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31026274

RESUMO

Persistent neural activity that encodes online mental representations plays a central role in working memory (WM). However, there has been debate regarding the number of items that can be concurrently represented in this active neural state, which is often called the "focus of attention." Some models propose a strict single-item limit, such that just 1 item can be neurally active at once while other items are relegated to an activity-silent state. Although past studies have decoded multiple items stored in WM, these studies cannot rule out a switching account in which only a single item is actively represented at a time. Here, we directly tested whether multiple representations can be held concurrently in an active state. We tracked spatial representations in WM using alpha-band (8-12 Hz) activity, which encodes spatial positions held in WM. Human observers remembered 1 or 2 positions over a short delay while we recorded electroencephalography (EEG) data. Using a spatial encoding model, we reconstructed active stimulus-specific representations (channel-tuning functions [CTFs]) from the scalp distribution of alpha-band power. Consistent with past work, we found that the selectivity of spatial CTFs was lower when 2 items were stored than when 1 item was stored. Critically, data-driven simulations revealed that the selectivity of spatial representations in the two-item condition could not be explained by models that propose that only a single item can exist in an active state at once. Thus, our findings demonstrate that multiple items can be concurrently represented in an active neural state.


Assuntos
Atenção/fisiologia , Memória de Curto Prazo/fisiologia , Adolescente , Adulto , Ritmo alfa/fisiologia , Encéfalo/fisiologia , Eletroencefalografia/métodos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Estimulação Luminosa/métodos
20.
Psychol Sci ; 30(4): 526-540, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30817220

RESUMO

Complex cognition relies on both on-line representations in working memory (WM), said to reside in the focus of attention, and passive off-line representations of related information. Here, we dissected the focus of attention by showing that distinct neural signals index the on-line storage of objects and sustained spatial attention. We recorded electroencephalogram (EEG) activity during two tasks that employed identical stimulus displays but varied the relative demands for object storage and spatial attention. We found distinct delay-period signatures for an attention task (which required only spatial attention) and a WM task (which invoked both spatial attention and object storage). Although both tasks required active maintenance of spatial information, only the WM task elicited robust contralateral delay activity that was sensitive to mnemonic load. Thus, we argue that the focus of attention is maintained via a collaboration between distinct processes for covert spatial orienting and object-based storage.


Assuntos
Atenção/fisiologia , Memória de Curto Prazo/fisiologia , Memória Espacial/fisiologia , Cor , Eletroencefalografia , Humanos , Análise e Desempenho de Tarefas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...