Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
J Phys Chem Lett ; 11(1): 221-228, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31814411


Herein, we reveal for the first time a comprehensive mechanism of poorly investigated electrochemical decomposition of CH3NH3PbI3 using a set of microscopy techniques (optical, AFM, PL) and ToF-SIMS. We demonstrate that applied electric bias induces the oxidation of I- to I2, which remains trapped in the film in the form of polyiodides, and hence, the process can be conceivably reversed by reduction. On the contrary, reduction of organic methylammonium cation produces volatile products, which leave the film and thus make the degradation irreversible. Our results lead to a paradigm change when considering design principles for improving the stability of complex lead halide materials as those featuring organic cations rather than halide anions as the most electric field-sensitive components. Suppressing the electrochemical degradation of complex lead halides represents a crucial challenge, which should be addressed in order to bring the operational stability of perovskite photovoltaics to commercially interesting benchmarks.

Chem Commun (Camb) ; 51(12): 2239-41, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25370184


Here we report the application of the Electron Spin Resonance (ESR) spectroscopy as a highly sensitive analytical technique for assessment of the electronic quality of organic semiconductor materials, particularly conjugated polymers. It has been shown that different batches of the same conjugated polymer might contain substantially different amounts of radical species which were attributed to structural defects and/or impurities behaving as traps for mobile charge carriers. Good correlations between the concentrations of radicals in various batches of conjugated polymers and their performances in organic solar cells have been revealed.

Chem Commun (Camb) ; 51(12): 2242-4, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25435101


It was shown that ESR spectroscopy is a very useful technique for monitoring the photochemical and thermal degradation of conjugated polymers commonly used in organic solar cells. The relative stability of materials can be quantified by comparing the rates of trap accumulation (dC(R)/dt) estimated from their ESR profiles.