Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 522
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-35682206

RESUMO

Advocating for healthy environments is a matter of justice. Changes in environments have tremendous impacts on the health of communities, and oftentimes, individuals are unable to safeguard themselves through individual actions alone. Efforts frequently require collective action and are often most effective when led by the communities most impacted. In this spirit, we launched "Vibrations", an African environment photo essay contest. Through funding and publicity, we aimed to support community-led environmental improvement and education initiatives presently taking place on the continent. We received nearly two dozen submissions and selected eight winners. The winners come from five countries (Ghana, Kenya, Mozambique, Nigeria, and South Africa) and have taken on a range of projects aimed at improving environments across a variety of African regions. Projects included efforts to combat pollution, create environmentally conscious school curricula, utilize clean energy sources, and spread awareness about environmental justice concerns in local communities. It is our hope that this report highlights these transformative community-driven efforts, promotes continued conversations on environmental justice in Africa, and encourages meaningful action via policy changes and collaborations throughout the African continent and beyond.


Assuntos
Educação em Saúde , Instituições Acadêmicas , Humanos , Moçambique , Nigéria , África do Sul
2.
J Hazard Mater ; 436: 129177, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643003

RESUMO

Pesticide dissipation half-life in plants is an important factor to assessing environmental fate of pesticides and establishing pre-harvest intervals critical to good agriculture practices. However, empirically measured pesticide dissipation half-lives are highly variable and the accurate prediction with models is challenging. This study utilized a dataset of pesticide dissipation half-lives containing 1363 datapoints, 311 pesticides, 10 plant types, and 4 plant component classes. Novel dissipation half-life intervals were proposed and predicted to account for high variations in empirical data. Four machine learning models (i.e., gradient boosting regression tree [GBRT], random forest [RF], supporting vector classifier [SVC], and logistic regression [LR]) were developed to predict dissipation half-life intervals using extended connectivity fingerprints (ECFP), temperature, plant type, and plant component class as model inputs. GBRT-ECFP had the best model performance with F1-microbinary score of 0.698 ± 0.010 for the binary classification compared with other machine learning models (e.g., LR-ECFP, F1-microbinary= 0.662 ± 0.009). Feature importance analysis of molecular structures in the binary classification identified aromatic rings, carbonyl group, organophosphate, =C-H, and N-containing heterocyclic groups as important substructures related to pesticide dissipation half-lives. This study suggests the utility of machine learning models in assessing the environmental fate of pesticides in agricultural crops.

3.
Respir Med ; 200: 106896, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35716602

RESUMO

BACKGROUND: The Epigenetic Smoking Status Estimator (EpiSmokEr) predicts smoking phenotypes based on DNA methylation at 121 CpG sites. OBJECTIVE: Evaluate associations of EpiSmokEr-predicted versus self-reported smoking phenotypes with lung function and all-cause mortality in a cohort of older adults. METHODS: The prospective Normative Aging Study collected DNA methylation measurements from 1999 to 2012 with follow-up through 2016. The R package EpiSmokEr derived predicted smoking phenotypes based on DNA methylation levels assayed by the Illumina HumanMethylation450 Beadchip. Spirometry was collected every 3-5 years. Airflow limitation was defined as forced expiratory volume in 1 s/forced vital capacity <0.7. Vital status was monitored through periodic mailings. RESULTS: Among 784 participants contributing 5414 person-years of follow-up, the EpiSmokEr-predicted smoking phenotypes matched the self-reported phenotypes for 228 (97%) never smokers and 22 (71%) current smokers. In contrast, EpiSmokEr classified 407 (79%) self-reported former smokers as never smokers. Nonetheless, the EpiSmokEr-predicted former smoking phenotype was more strongly associated with incident airflow limitation (hazard ratio [HR] = 3.15, 95% confidence interval [CI] = 1.50-6.59) and mortality (HR = 2.11, 95% CI = 1.56-2.85) compared to the self-reported former smoking phenotype (airflow limitation: HR = 2.21, 95% CI = 1.13-4.33; mortality: HR = 1.08, 95% CI = 0.86-1.36). Risk of airflow limitation and death did not differ among self-reported never smokers and former smokers who were classified as never smokers. The discriminative accuracy of EpiSmokEr-predicted phenotypes for incident airflow limitation and mortality was improved compared to self-reported phenotypes. CONCLUSIONS: The DNA methylation-based EpiSmokEr classifier may be a useful surrogate of smoking-induced lung damage and may identify former smokers most at risk of adverse smoking-related health effects.

4.
Mutat Res Rev Mutat Res ; 789: 108415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35690418

RESUMO

BACKGROUND: Among children, sex-specific differences in disease prevalence, age of onset, and susceptibility have been observed in health conditions including asthma, immune response, metabolic health, some pediatric and adult cancers, and psychiatric disorders. Epigenetic modifications such as DNA methylation may play a role in the sexual differences observed in diseases and other physiological traits. METHODS: We performed a meta-analysis of the association of sex and cord blood DNA methylation at over 450,000 CpG sites in 8438 newborns from 17 cohorts participating in the Pregnancy And Childhood Epigenetics (PACE) Consortium. We also examined associations of child sex with DNA methylation in older children ages 5.5-10 years from 8 cohorts (n = 4268). RESULTS: In newborn blood, sex was associated at Bonferroni level significance with differences in DNA methylation at 46,979 autosomal CpG sites (p < 1.3 × 10-7) after adjusting for white blood cell proportions and batch. Most of those sites had lower methylation levels in males than in females. Of the differentially methylated CpG sites identified in newborn blood, 68% (31,727) met look-up level significance (p < 1.1 × 10-6) in older children and had methylation differences in the same direction. CONCLUSIONS: This is a large-scale meta-analysis examining sex differences in DNA methylation in newborns and older children. Expanding upon previous studies, we replicated previous findings and identified additional autosomal sites with sex-specific differences in DNA methylation. Differentially methylated sites were enriched in genes involved in cancer, psychiatric disorders, and cardiovascular phenotypes.


Assuntos
Metilação de DNA , Epigenoma , Adolescente , Criança , Metilação de DNA/genética , Epigênese Genética , Epigenômica , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Caracteres Sexuais
5.
Epigenomics ; 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35638388

RESUMO

Background: Breast milk-derived extracellular vesicle (EV) miRNAs may program child health outcomes associated with maternal asthma and atopy. The authors investigated associations between maternal asthma/atopy and EV miRNAs in the Programming of Intergenerational Stress Mechanisms cohort. Methods: Breast milk-derived EV miRNAs collected 6.1 ± 5.9 weeks postnatally (n = 80 mothers) were profiled using the TaqMan OpenArray Human MicroRNA Panel. The authors assessed associations using adjusted robust regression. Results: Nine EV miRNAs were associated with asthma during pregnancy (a priori criteria: nominal p < 0.05; |Bregression| >0.2). miR-1290 was associated with asthma and atopy during pregnancy (p < 0.05; |Bregression| >0.2). Enriched Kyoto Encyclopedia of Genes and Genomes pathways included TGF-ß signaling and extracellular matrix-receptor interaction (false discovery rate <0.05). Conclusion: In this study, maternal asthma and atopy were associated with breast milk-derived EV miRNAs. Additional studies are needed to understand whether EV miRNAs have direct effects on infant and child health.


Maternal asthma is associated with child health outcomes, although the biological mechanisms involved are not fully understood. miRNAs are small molecules involved in regulating gene expression. miRNAs packaged into membrane-bound particles called extracellular vesicles (EVs) are present in human breast milk and may pass from mother to infant to signal which genes to translate into proteins. This study investigated the extent to which maternal asthma and atopy influenced levels of 130 EV miRNAs measured in breast milk. Nine EV miRNAs were associated with maternal asthma during pregnancy, and one EV miRNA was associated with maternal atopy. miRNAs associated with asthma target genes in pathways related to asthma; however, future research is needed to determine whether changes in breast milk-derived EV miRNAs impact child health.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35536696

RESUMO

RATIONALE: Methylation integrates factors present at birth and modifiable across life that can influence pulmonary function. Studies are limited in scope and replication. OBJECTIVES: To conduct large-scale epigenome-wide meta-analyses of blood DNA methylation and pulmonary function. METHODS: Twelve cohorts analyzed associations of methylation at cytosine-phosphate-guanine probes (CpGs), using Illumina450K or EPIC/850K arrays, with FEV1, FVC, and FEV1/FVC. We performed multi-ancestry epigenome-wide meta-analyses (17,503 individuals: 14,761 European; 2,549 African; and 193 Hispanic/Latino ancestries) and interpreted results using integrative epigenomics. MEASUREMENTS AND MAIN RESULTS: We identified 1,267 CpGs (1,042 genes) differentially methylated (FDR<0.025) in relation to FEV1, FVC, or FEV1/FVC, including 1,240 novel and 73 also related to COPD (1,787 cases). We found 294 CpGs unique to European or African ancestry and 395 CpGs unique to never or ever smokers. The majority of significant CpGs correlated with nearby gene expression in blood. Findings were enriched in key regulatory elements for gene function, including accessible chromatin elements, in both blood and lung. Sixty-nine implicated genes are targets of investigational or approved drugs. One example novel gene highlighted by integrative epigenomic and druggable target analysis is TNFRSF4. Mendelian randomization and colocalization analyses suggest that EWAS signals capture causal regulatory genomic loci. CONCLUSIONS: We identified numerous novel loci differentially methylated in relation to pulmonary function; few were detected in large genome-wide association studies. Integrative analyses highlight functional relevance and potential therapeutic targets. This comprehensive discovery of potentially modifiable, novel lung function loci expands knowledge gained from genetic studies providing insights into lung pathogenesis. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

7.
Ecotoxicol Environ Saf ; 239: 113634, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35617899

RESUMO

BACKGROUND: Fine particulate matter (PM2.5) is a modifiable environmental risk factor with established adverse effects on human health. However, associations between acute PM2.5 fluctuation and DNA methylation remain unknown. METHODS: A quasi-experimental study utilizing naturally occurring PM2.5 pollution waves (PPWs) was conducted on 32 healthy young adults. Repeated follow-up measurements were performed and participants served as their own controls before, during, and after PPWs. Exposure measurements including indoor and ambient PM2.5 levels, and equivalent personal PM2.5 exposure were further estimated based on the time-location information. DNA methylation profiles of circulating CD4+T cells were obtained using Illumina HumanMethylationEPIC BeadChip. Linear mixed-effect models were applied to estimate the associations between two scenarios (during-PPWs vs. pre-PPWs periods and during-PPWs vs. post-PPWs periods) and methylation level of each CpG site. We further validated their associations with the personal PM2.5 exposure, and GO and KEGG analyses and mediation analysis were conducted accordingly. RESULTS: Data from 26 participants were included in final analysis after quality control. Short-term high PM2.5 exposure was associated with DNA methylation changes of participants. Nine differently methylated CpG sites were not only significantly associated with PPWs periods but also with personal PM2.5 exposure in 24-h prior to the health examinations (p < 0.01). Gene ontology analysis found that five sites were associated with two pathways relating to membrane protein synthesis. PM2.5-related changes in CpG sites were mediated by sP-selectin, 8-isoPGF2α, EGF, GRO, IL-15, and IFN-α2, with mediated proportions ranging from 9.65% to 23.40%. CONCLUSIONS: This is the first quasi-experimental study showing that short-term high PM2.5 exposure could alter the DNA methylation of CD4+T cells, which provided valuable information for further exploring underlying biological mechanisms and epigenetic biomarkers for PM2.5-related acute health effects.

8.
Environ Int ; 165: 107298, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35597113

RESUMO

BACKGROUND: Air pollution has been linked to obesity while higher ambient temperatures typically reduce metabolic demand in a compensatory manner. Both relationships may impact glucose metabolism, thus we examined the association between intermediate- and long-term exposure to fine particulate matter (PM2.5) and ambient temperature and glycated hemoglobin(HbA1c), a longer-term marker of glucose control. METHODS: We assessed 3-month, 6-month, and 12-month average air pollution and ambient temperature at 1-km2 spatial resolution via satellite remote sensing models (2013-2019), and assessed HbA1c at four, six, and eight years postpartum in women enrolled in the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) cohort based in Mexico City. PM2.5 and ambient temperature were matched to participants' addresses and confirmed by GPS tracker. Using linear mixed-effects models, we examined the association between 3-month, 6-month, and 12-month average PM2.5 and ambient temperature with repeated log-transformed HbA1c values. All models included a random intercept for each woman and were adjusted for calendar year, season, and individual-level confounders (age, marital status, smoking, alcohol consumption level, and education level). RESULTS: We analyzed 1,265 HbA1c measurements of 484 women. Per 1 µg/m3 increase in 3-month and 6-month PM2.5, HbA1c levels increased by 0.28% (95% confidence interval (95 %CI): 0.14, 0.42%) and 0.28% (95 %CI: 0.04, 0.52%) respectively. No association was seen for 12-month average PM2.5. Per 1 °C increase in ambient temperature, HbA1c levels decreased by 0.63% (95 %CI: -1.06, -0.21%) and 0.61% (95 %CI: -1.08, -0.13%), while the 12-month average again is not associated with HbA1c. CONCLUSIONS: Intermediate-term exposure to PM2.5 and ambient temperature are associated with opposing changes in HbA1c levels, in this region of high PM2.5 and moderate temperature fluctuation. These effects, measurable in mid-adult life, may portend future risk of type 2 diabetes and possible heart disease.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Diabetes Mellitus Tipo 2 , Adulto , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/efeitos adversos , Feminino , Hemoglobina A Glicada , Humanos , Obesidade , Material Particulado/efeitos adversos , Material Particulado/análise , Temperatura
9.
Aging Cell ; 21(6): e13608, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35546478

RESUMO

DNA methylation (DNAm) has been reported to be associated with many diseases and with mortality. We hypothesized that the integration of DNAm with clinical risk factors would improve mortality prediction. We performed an epigenome-wide association study of whole blood DNAm in relation to mortality in 15 cohorts (n = 15,013). During a mean follow-up of 10 years, there were 4314 deaths from all causes including 1235 cardiovascular disease (CVD) deaths and 868 cancer deaths. Ancestry-stratified meta-analysis of all-cause mortality identified 163 CpGs in European ancestry (EA) and 17 in African ancestry (AA) participants at p < 1 × 10-7 , of which 41 (EA) and 16 (AA) were also associated with CVD death, and 15 (EA) and 9 (AA) with cancer death. We built DNAm-based prediction models for all-cause mortality that predicted mortality risk after adjusting for clinical risk factors. The mortality prediction model trained by integrating DNAm with clinical risk factors showed an improvement in prediction of cancer death with 5% increase in the C-index in a replication cohort, compared with the model including clinical risk factors alone. Mendelian randomization identified 15 putatively causal CpGs in relation to longevity, CVD, or cancer risk. For example, cg06885782 (in KCNQ4) was positively associated with risk for prostate cancer (Beta = 1.2, PMR  = 4.1 × 10-4 ) and negatively associated with longevity (Beta = -1.9, PMR  = 0.02). Pathway analysis revealed that genes associated with mortality-related CpGs are enriched for immune- and cancer-related pathways. We identified replicable DNAm signatures of mortality and demonstrated the potential utility of CpGs as informative biomarkers for prediction of mortality risk.


Assuntos
Doenças Cardiovasculares , Neoplasias , Biomarcadores , Doenças Cardiovasculares/genética , Metilação de DNA/genética , Epigênese Genética , Epigenômica , Humanos , Masculino , Neoplasias/genética
10.
Environ Res ; 212(Pt C): 113360, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35500859

RESUMO

Epigenetic mechanisms may underlie air pollution-health outcome associations. We estimated gaseous air pollutant-DNA methylation (DNAm) associations using twelve subpopulations within Women's Health Initiative (WHI) and Atherosclerosis Risk in Communities (ARIC) cohorts (n = 8397; mean age 61.3 years; 83% female; 46% African-American, 46% European-American, 8% Hispanic/Latino). We used geocoded participant address-specific mean ambient carbon monoxide (CO), nitrogen oxides (NO2; NOx), ozone (O3), and sulfur dioxide (SO2) concentrations estimated over the 2-, 7-, 28-, and 365-day periods before collection of blood samples used to generate Illumina 450 k array leukocyte DNAm measurements. We estimated methylome-wide, subpopulation- and race/ethnicity-stratified pollutant-DNAm associations in multi-level, linear mixed-effects models adjusted for sociodemographic, behavioral, meteorological, and technical covariates. We combined stratum-specific estimates in inverse variance-weighted meta-analyses and characterized significant associations (false discovery rate; FDR<0.05) at Cytosine-phosphate-Guanine (CpG) sites without among-strata heterogeneity (PCochran's Q > 0.05). We attempted replication in the Cooperative Health Research in Region of Augsburg (KORA) study and Normative Aging Study (NAS). We observed a -0.3 (95% CI: -0.4, -0.2) unit decrease in percent DNAm per interquartile range (IQR, 7.3 ppb) increase in 28-day mean NO2 concentration at cg01885635 (chromosome 3; regulatory region 290 bp upstream from ZNF621; FDR = 0.03). At intragenic sites cg21849932 (chromosome 20; LIME1; intron 3) and cg05353869 (chromosome 11; KLHL35; exon 2), we observed a -0.3 (95% CI: -0.4, -0.2) unit decrease (FDR = 0.04) and a 1.2 (95% CI: 0.7, 1.7) unit increase (FDR = 0.04), respectively, in percent DNAm per IQR (17.6 ppb) increase in 7-day mean ozone concentration. Results were not fully replicated in KORA and NAS. We identified three CpG sites potentially susceptible to gaseous air pollution-induced DNAm changes near genes relevant for cardiovascular and lung disease. Further harmonized investigations with a range of gaseous pollutants and averaging durations are needed to determine the effect of gaseous air pollutants on DNA methylation and ultimately gene expression.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Metilação de DNA , Epigenoma , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dióxido de Nitrogênio/análise , Ozônio/análise , Ozônio/toxicidade , Material Particulado/análise
11.
Cereb Cortex ; 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35535719

RESUMO

Structural and functional magnetic resonance imaging (MRI) studies have suggested a neuroanatomical basis that may underly attention-deficit-hyperactivity disorder (ADHD), but the anatomical ground truth remains unknown. In addition, the role of the white matter (WM) microstructure related to attention and impulsivity in a general pediatric population is still not well understood. Using a state-of-the-art structural connectivity pipeline based on the Brainnetome atlas extracting WM connections and its subsections, we applied dimensionality reduction techniques to obtain biologically interpretable WM measures. We selected the top 10 connections-of-interests (located in frontal, parietal, occipital, and basal ganglia regions) with robust anatomical and statistical criteria. We correlated WM measures with psychometric test metrics (Conner's Continuous Performance Test 3) in 171 children (27 Dx ADHD, 3Dx ASD, 9-13 years old) from the population-based GESTation and Environment cohort. We found that children with lower microstructural complexity and lower axonal density show a higher impulsive behavior on these connections. When segmenting each connection in subsections, we report WM alterations localized in one or both endpoints reflecting a specific localization of WM alterations along each connection. These results provide new insight in understanding the neurophysiology of attention and impulsivity in a general population.

12.
Clin Epigenetics ; 14(1): 48, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395780

RESUMO

BACKGROUND: Altered DNA methylation (DNAm) may be one pathway through which early-life adversity (ELA) contributes to adverse mental and physical health outcomes. This study investigated whether the presence versus absence of ELA experiences reflecting the dimensions of threat and deprivation were associated with epigenome-wide DNAm cross-sectionally and longitudinally in a community-based sample of children and adolescents. METHODS: In 113 youths aged 8-16 years with wide variability in ELA, we examined associations of abuse (physical, sexual, emotional; indicating threat-related experiences) and neglect (emotional, physical; indicating deprivation-related experiences) with DNAm assessed with the Illumina EPIC BeadChip array, with DNA derived from saliva. In cross-sectional epigenome-wide analyses, we investigated associations of lifetime abuse and neglect with DNAm at baseline. In longitudinal epigenome-wide analyses, we examined whether experiencing abuse and neglect over an approximately 2-year follow-up were each associated with change in DNAm from baseline to follow-up. RESULTS: In cross-sectional analyses adjusting for lifetime experience of neglect, lifetime experience of abuse was associated with DNAm for four cytosine-phosphodiester-guanine (CpG) sites (cg20241299: coefficient = 0.023, SE = 0.004; cg08671764: coefficient = 0.018, SE = 0.003; cg27152686: coefficient = - 0.069, SE = 0.012; cg24241897: coefficient = - 0.003, SE = 0.001; FDR < .05). In longitudinal analyses, experiencing neglect over follow-up was associated with an increase in DNAm for one CpG site, adjusting for abuse over follow-up (cg03135983: coefficient = 0.036, SE = 0.006; FDR < .05). CONCLUSIONS: In this study, we identified examples of epigenetic patterns associated with ELA experiences of threat and deprivation that were already observable in youth. We provide novel evidence for change in DNAm over time in relation to ongoing adversity and that experiences reflecting distinct ELA dimensions may be characterized by unique epigenetic patterns.


Assuntos
Experiências Adversas da Infância , Adolescente , Criança , Estudos Transversais , Metilação de DNA , Epigênese Genética , Epigenômica , Humanos
13.
Front Pediatr ; 10: 828089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450103

RESUMO

Background: The small number of studies examining the association of prenatal acetaminophen with birth outcomes have all relied on maternal self-report. It remains unknown whether prenatal acetaminophen exposure measured in a biological specimen is associated with birth outcomes. Objectives: To investigate the association of acetaminophen measured in meconium with birthweight, gestational age, preterm birth, size for gestational age, gestational diabetes, preeclampsia, and high blood pressure. Methods: This birth cohort from Sherbrooke, QC, Canada, included 773 live births. Mothers with no thyroid disease enrolled at their first prenatal care visit or delivery. Acetaminophen was measured in meconium for 393 children at delivery. We tested associations of prenatal acetaminophen with birthweight, preterm birth, gestational age, small and large for gestational age, gestational diabetes, preeclampsia, and high blood pressure. We imputed missing data via multiple imputation and used inverse probability weighting to account for confounding and selection bias. Results: Acetaminophen was detected in 222 meconium samples (56.5%). Prenatal acetaminophen exposure was associated with decreased birthweight by 136 g (ß = -136; 95% CI [-229, -43]), 20% increased weekly hazard of delivery (hazard ratio = 1.20; 95% CI [1.00, 1.43]), and over 60% decreased odds of being born large for gestational age (odds ratio = 0.38; 95% CI [0.20, 0.75]). Prenatal acetaminophen was not associated with small for gestational age, preterm birth, or any pregnancy complications. Conclusion: Prenatal acetaminophen was associated with adverse birth outcomes. Although unobserved confounding and confounding by indication are possible, these results warrant further investigation into adverse perinatal effects of prenatal acetaminophen exposure.

14.
Environ Int ; 163: 107224, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35395577

RESUMO

In silico prediction of chemical ecotoxicity (HC50) represents an important complement to improve in vivo and in vitro toxicological assessment of manufactured chemicals. Recent application of machine learning models to predict chemical HC50 yields variable prediction performance that depends on effectively learning chemical representations from high-dimension data. To improve HC50 prediction performance, we developed an autoencoder model by learning latent space chemical embeddings. This novel approach achieved state-of-the-art prediction performance of HC50 with R2 of 0.668 ± 0.003 and mean absolute error (MAE) of 0.572 ± 0.001, and outperformed other dimension reduction methods including principal component analysis (PCA) (R2 = 0.601 ± 0.031 and MAE = 0.629 ± 0.005), kernel PCA (R2 = 0.631 ± 0.008 and MAE = 0.625 ± 0.006), and uniform manifold approximation and projection dimensionality reduction (R2 = 0.400 ± 0.008 and MAE = 0.801 ± 0.002). A simple linear layer with chemical embeddings learned from the autoencoder model performed better than random forest (R2 = 0.663 ± 0.007 and MAE = 0.591 ± 0.008), fully connected neural network (R2 = 0.614 ± 0.016 and MAE = 0.610 ± 0.008), least absolute shrinkage and selection operator (R2 = 0.617 ± 0.037 and MAE = 0.619 ± 0.007), and ridge regression (R2 = 0.638 ± 0.007 and MAE = 0.613 ± 0.005) using unlearned raw input features. Our results highlighted the usefulness of learning latent chemical representations, and our autoencoder model provides an alternative approach for robust HC50 prediction.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação
15.
Artigo em Inglês | MEDLINE | ID: mdl-35449498

RESUMO

PURPOSE OF REVIEW: Environmental pollutants contribute to the pathogenesis of numerous diseases including chronic cardiovascular, respiratory, and neurodegenerative diseases, among others. Emerging evidence suggests that extracellular vesicles (EVs) may mediate the association of environmental exposures with chronic diseases. The purpose of this review is to describe the impact of common environmental exposures on EVs and their role in linking environmental pollutants to the pathogenesis of chronic systemic diseases. RECENT FINDINGS: Common environmental pollutants including particulate matter, tobacco smoke, and chemical pollutants trigger the release of EVs from multiple systems in the body. Existing research has focused primarily on air pollutants, which alter EV production and release in the lungs and systemic circulation. Air pollutants also impact the selective loading of EV cargo including microRNA and proteins, which modify the cellular function in recipient cells. As a result, pollutant-induced EVs often contribute to a pro-inflammatory and pro-thrombotic milieu, which increases the risk of pollutant-related diseases including obstructive lung diseases, cardiovascular disease, neurodegenerative diseases, and lung cancer. Common environmental exposures are associated with multifaceted changes in EVs that lead to functional alterations in recipient cells and contribute to the pathogenesis of chronic systemic diseases. EVs may represent emerging targets for the prevention and treatment of diseases that stem from environmental exposures. However, novel research is required to expand our knowledge of the biological action of EV cargo, elucidate determinants of EV release, and fully understand the impact of environmental pollutants on human health.

16.
Exposome ; 2(1): osac002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295547

RESUMO

The exposome, the environmental complement of the genome, is an omics level characterization of an individual's exposures. There is growing interest in uncovering the role of the environment in human health using an exposomic framework that provides a systematic and unbiased analysis of the non-genetic drivers of health and disease. Many environmental toxicants are associated with molecular hallmarks of aging. An exposomic framework has potential to advance understanding of these associations and how modifications to the environment can promote healthy aging in the population. However, few studies have used this framework to study biological aging. We provide an overview of approaches and challenges in using an exposomic framework to investigate environmental drivers of aging. While capturing exposures over a life course is a daunting and expensive task, the use of historical data can be a practical way to approach this research.

17.
Environ Res ; 211: 113038, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35231456

RESUMO

There are important questions surrounding the potential contribution of outdoor and indoor air quality in the transmission of SARS-CoV-2 and perpetuation of COVID-19 epidemic waves. Environmental health may be a critical component of COVID-19 prevention. The public health community and health agencies should consider the evolving evidence in their recommendations and statements, and work to issue occupational guidelines. Evidence coming from the current epidemiological and experimental research is expected to add knowledge about virus diffusion, COVID-19 severity in most polluted areas, inter-personal distance requirements and need for wearing face masks in indoor or outdoor environments. The COVID-19 pandemic has highlighted the need for maintaining particulate matter concentrations at low levels for multiple health-related reasons, which may also include the spread of SARS-CoV-2. Indoor environments represent even a more crucial challenge to cope with, as it is easier for the SARS-COV2 to spread, remain vital and infect other subjects in closed spaces in the presence of already infected asymptomatic or mildly symptomatic people. The potential merits of preventive measures, such as CO2 monitoring associated with natural or controlled mechanical ventilation and air purification, for schools, indoor public places (restaurants, offices, hotels, museums, theatres/cinemas etc.) and transportations need to be carefully considered. Hospital settings and nursing/retirement homes as well as emergency rooms, infectious diseases divisions and ambulances represent higher risk indoor environments and may require additional monitoring and specific decontamination strategies based on mechanical ventilation or air purification.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Pandemias/prevenção & controle , Material Particulado , RNA Viral , SARS-CoV-2
18.
Environ Health Perspect ; 130(3): 37005, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35266797

RESUMO

BACKGROUND: DNA methylation alterations may underlie associations between gestational perfluoroalkyl substances (PFAS) exposure and later-life health outcomes. To the best of our knowledge, no longitudinal studies have examined the associations between gestational PFAS and DNA methylation. OBJECTIVES: We examined associations of gestational PFAS exposure with longitudinal DNA methylation measures at birth and in adolescence using the Health Outcomes and Measures of the Environment (HOME) Study (2003-2006; Cincinnati, Ohio). METHODS: We quantified serum concentrations of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoate (PFNA), and perfluorohexane sulfonate (PFHxS) in mothers during pregnancy. We measured DNA methylation in cord blood (n=266) and peripheral leukocytes at 12 years of age (n=160) using the Illumina HumanMethylation EPIC BeadChip. We analyzed associations between log2-transformed PFAS concentrations and repeated DNA methylation measures using linear regression with generalized estimating equations. We included interaction terms between children's age and gestational PFAS. We performed Gene Ontology enrichment analysis to identify molecular pathways. We used Project Viva (1999-2002; Boston, Massachusetts) to replicate significant associations. RESULTS: After adjusting for covariates, 435 cytosine-guanine dinucleotide (CpG) sites were associated with PFAS (false discovery rate, q<0.05). Specifically, we identified 2 CpGs for PFOS, 12 for PFOA, 8 for PFHxS, and 413 for PFNA; none overlapped. Among these, 2 CpGs for PFOA and 4 for PFNA were replicated in Project Viva. Some of the PFAS-associated CpG sites annotated to gene regions related to cancers, cognitive health, cardiovascular disease, and kidney function. We found little evidence that the associations between PFAS and DNA methylation differed by children's age. DISCUSSION: In these longitudinal data, PFAS biomarkers were associated with differences in several CpGs at birth and at 12 years of age in or near genes linked to some PFAS-associated health outcomes. Future studies should examine whether DNA methylation mediates associations between gestational PFAS exposure and health. https://doi.org/10.1289/EHP10118.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorcarbonetos , Adolescente , Criança , Metilação de DNA , Epigenoma , Feminino , Humanos , Recém-Nascido , Estudos Longitudinais , Gravidez
19.
Environ Res ; 209: 112835, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35101400

RESUMO

BACKGROUND: Phthalates are endocrine disrupting chemicals that may influence weight status; however, few studies have considered weight gain during pregnancy and subsequent long-term weight changes in women. OBJECTIVE: To determine associations of prenatal phthalate exposure with maternal weight during pregnancy and through up to seven years post-delivery. METHODS: We analyzed 15 urinary phthalate biomarker concentrations during the 2nd and 3rd trimesters among 874 pregnant women enrolled in the Programming Research in Obesity, Growth Environment and Social Stress Study in Mexico City. We examined three time-specific maternal weight outcomes: gestational weight gain (between 2nd and 3rd trimesters), short-term weight (between 3rd trimester and 12 months post-delivery), and long-term weight (between 18 months and 6-7 years post-delivery). We used Bayesian Kernel Machine Regression (BKMR) to estimate associations for the total phthalate mixture, as well as multivariable linear mixed models for individual phthalate biomarkers. RESULTS: As a mixture, 2nd trimester urinary phthalate biomarker concentrations were associated with somewhat lower gestational weight gain between the 2nd and 3rd trimesters (interquartile range, IQR, difference: -0.07 standard deviations, SD; 95% credible interval, CrI: -0.20, 0.06); multivariable regression and BKMR models indicated that this inverse association was primarily driven by mono-2-ethyl-5-carboxypentyl terephthalate (MECPTP). Prenatal (2nd and 3rd trimesters) urinary phthalate mixture concentrations were positively associated with maternal weight change through 12 months postpartum (IQR difference: 0.11 SD; 95% CrI: 0.00, 0.23); these associations persisted from 18 months to 6-7 years follow-up (IQR difference: 0.07 SD; 95% CrI: 0.04, 0.10). Postpartum weight changes were associated with mono-3-carboxypropyl phthalate (MCPP) and MECPTP. CONCLUSIONS: Prenatal phthalate exposure was inversely associated with gestational weight gain and positively associated with long-term changes in maternal weight. Further investigation is required to understand how phthalates may influence body composition and whether they contribute to the development of obesity and other cardiometabolic diseases in women.


Assuntos
Poluentes Ambientais , Ganho de Peso na Gestação , Ácidos Ftálicos , Teorema de Bayes , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Feminino , Humanos , México , Ácidos Ftálicos/toxicidade , Gravidez
20.
Aging (Albany NY) ; 14(4): 1691-1712, 2022 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-35220276

RESUMO

The proportion of aging populations affected by dementia is increasing. There is an urgent need to identify biological aging markers in mid-life before symptoms of age-related dementia present for early intervention to delay the cognitive decline and the onset of dementia. In this cohort study involving 1,676 healthy participants (mean age 40) with up to 15 years of follow up, we evaluated the associations between cognitive function and two classes of novel biological aging markers: blood-based epigenetic aging and neuroimaging-based brain aging. Both accelerated epigenetic aging and brain aging were prospectively associated with worse cognitive outcomes. Specifically, every year faster epigenetic or brain aging was on average associated with 0.19-0.28 higher (worse) Stroop score, 0.04-0.05 lower (worse) RAVLT score, and 0.23-0.45 lower (worse) DSST (all false-discovery-rate-adjusted p <0.05). While epigenetic aging is a more stable biomarker with strong long-term predictive performance for cognitive function, brain aging biomarker may change more dynamically in temporal association with cognitive decline. The combined model using epigenetic and brain aging markers achieved the highest accuracy (AUC: 0.68, p<0.001) in predicting global cognitive function status. Accelerated epigenetic age and brain age at midlife may aid timely identification of individuals at risk for accelerated cognitive decline and promote the development of interventions to preserve optimal functioning across the lifespan.


Assuntos
Disfunção Cognitiva , Demência , Envelhecimento/genética , Biomarcadores , Encéfalo/diagnóstico por imagem , Cognição , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Estudos de Coortes , Vasos Coronários , Epigênese Genética , Humanos , Estudos Longitudinais , Neuroimagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...