Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Sci Rep ; 10(1): 16866, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033290

RESUMO

Coronary computed tomography angiography is an established technique in clinical practice and a valuable tool in the diagnosis of coronary artery disease in humans. Imaging of coronaries in preclinical research, i.e. in small animals, is very difficult due to the high demands on spatial and temporal resolution. Mice exhibit heart rates of up to 600 beats per minute motivating the need for highest detector framerates while the coronaries show diameters below 100 µm indicating the requirement for highest spatial resolution. We herein use a custom built micro-CT equipped with dedicated reconstruction algorithms to illustrate that coronary imaging in mice is possible. The scanner provides a spatial and temporal resolution sufficient for imaging of smallest, moving anatomical structures and the dedicated reconstruction algorithms reduced radiation dose to less than 1 Gy but do not yet allow for longitudinal studies. Imaging studies were performed in ten mice administered with a blood-pool contrast agent. Results show that the course of the left coronary artery can be visualized in all mice and all major branches can be identified for the first time using micro-CT. This reduces the gap in cardiac imaging between clinical practice and preclinical research.

2.
Cell Rep ; 32(12): 108160, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32966793

RESUMO

The glyoxalase system is a highly conserved and ubiquitously expressed enzyme system, which is responsible for the detoxification of methylglyoxal (MG), a spontaneous by-product of energy metabolism. This study is able to show that a phosphorylation of threonine-107 (T107) in the (rate-limiting) Glyoxalase 1 (Glo1) protein, mediated by Ca2+/calmodulin-dependent kinase II delta (CamKIIδ), is associated with elevated catalytic efficiency of Glo1 (lower KM; higher Vmax). Additionally, we observe proteasomal degradation of non-phosphorylated Glo1 via ubiquitination does occur more rapidly as compared with native Glo1. The absence of CamKIIδ is associated with poor detoxification capacity and decreased protein content of Glo1 in a murine CamKIIδ knockout model. Therefore, phosphorylation of T107 in the Glo1 protein by CamKIIδ is a quick and precise mechanism regulating Glo1 activity, which is experimentally linked to an altered Glo1 status in cancer, diabetes, and during aging.

3.
Redox Biol ; 36: 101669, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32818796

RESUMO

NADPH oxidases produce reactive oxygen species that differ in localization, type and concentration. Within the Nox family only Nox4 produces H2O2 which can directly oxidize cysteine residues. With this post-translational modification, activity, stability, localization and protein-protein interactions of the affected protein is altered. Nox4 controls differentiation, cellular homeostasis and prevents inflammation. Therefore, is likely that epigenetic mechanisms contribute to the effects of Nox4. One group of epigenetic modifiers are class IIa histone deacetylases (HDACs). We hypothesize that Nox4-derived H2O2 oxidizes HDACs and analyzed whether HDACs can be differentially oxidized by Nox4. As an artificial system, we utilized HEK293 cells, overexpressing Nox4 in a tetracycline-inducible manner. HDAC4 was oxidized upon Nox4 overexpression. Additionally, Nox4 overexpression increased HDAC4 phosphorylation on Ser632. H2O2 disrupted HDAC4/Mef2A complex, which de-represses Mef2A. In endothelial cells such as HUVECs and HMECs, overexpression of HDAC4 significantly reduced tube formation. Overexpression of a redox insensitive HDAC4 had no effect on endothelial tube formation. Treatment with H2O2, induction of Nox4 expression by treatment of the cells with TGFß and co-overexpression of Nox4 not only induced phosphorylation of HDAC4, but also restored the repressive effect of HDAC4 for tube formation, while overexpression of a redox dead mutant of Nox4 did not. Taken together, Nox4 oxidizes HDAC4, increases its phosphorylation, and eventually ensures proper tube formation by endothelial cells.

4.
Cells ; 9(7)2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635460

RESUMO

For decades, cardiovascular disease (CVD) has been the leading cause of death throughout most developed countries. Several studies relate RNA splicing, and more recently also circular RNAs (circRNAs), to CVD. CircRNAs originate from linear transcripts and have been shown to exhibit tissue-specific expression profiles. Here, we present an in-depth analysis of sequence, structure, modification, and cardiac circRNA interactions. We used human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs), human healthy and diseased (ischemic cardiomyopathy, dilated cardiomyopathy) cardiac tissue, and human umbilical vein endothelial cells (HUVECs) to profile circRNAs. We identified shared circRNAs across all samples, as well as model-specific circRNA signatures. Based on these circRNAs, we identified 63 positionally conserved and expressed circRNAs in human, pig, and mouse hearts. Furthermore, we found that the sequence of circRNAs can deviate from the sequence derived from the genome sequence, an important factor in assessing potential functions. Integration of additional data yielded evidence for m6A-methylation of circRNAs, potentially linked to translation, as well as, circRNAs overlapping with potential Argonaute 2 binding sites, indicating potential association with the RISC complex. Moreover, we describe, for the first time in cardiac model systems, a sub class of circRNAs containing the start codon of their primary transcript (AUG circRNAs) and observe an enrichment for m6A-methylation for AUG circRNAs.

5.
J Mol Cell Cardiol ; 145: 88-98, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32485181

RESUMO

Class IIa histone deacetylases (HDACs) critically regulate cardiac function through the repression of the activity of myocyte enhancer factor 2 (MEF2)-dependent gene programs. Protein kinase D (PKD) and Ca2+/Calmodulin-dependent kinase II (CaMKII) activate MEF2 by phosphorylating distinct HDAC isoforms and thereby creating 14-3-3 binding sites for nucleo-cytoplasmic shuttling. Recently, it has been shown that this process is counteracted by cyclic AMP (cAMP)-dependent signaling. Here, we investigated the specific mechanisms of how cAMP-dependent signaling regulates distinct HDAC isoforms and determined their relative contributions to the protection from pathological MEF2 activation. We found that cAMP is sufficient to induce nuclear retention and to blunt phosphorylation of the 14-3-3 binding sites of HDAC5 (Ser259/498) and HDAC9 (Ser218/448) but not HDAC4 (Ser246/467/632). These regulatory events could be observed only in cardiomyocytes and myocyte-like cells but not in non-myocytes, pointing to an indirect myocyte-specific mode of action. Consistent with one previous report, we found that blunted phosphorylation of HDAC5 and HDAC9 was mediated by protein kinase A (PKA)-dependent inhibition of PKD. However, we show by the use of neonatal cardiomyocytes derived from genetic HDAC mouse models that endogenous HDAC5 but not HDAC9 contributes specifically to the repression of endogenous MEF2 activity. HDAC4 contributed significantly to the repression of MEF2 activity but based on the mechanistic findings of this study combined with previous results we attribute this to PKA-dependent proteolysis of HDAC4. Consistently, cAMP-induced repression of agonist-driven cellular hypertrophy was blunted in cardiomyocytes deficient for both HDAC5 and HDAC4. In conclusion, cAMP inhibits MEF2 through both nuclear accumulation of hypo-phosphorylated HDAC5 and through a distinct HDAC4-dependent mechanism.

6.
Circ Res ; 126(10): 1327-1329, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32379577
7.
Cardiovasc Res ; 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32365197

RESUMO

Echocardiography is a reliable and reproducible method to assess non-invasively cardiac function in clinical and experimental research. Significant progress in the development of echocardiographic equipment and transducers has led to the successful translation of this methodology from humans to rodents, allowing for the scoring of disease severity and progression, testing of new drugs, and monitoring cardiac function in genetically modified or pharmacologically treated animals. However, as yet, there is no standardization in the procedure to acquire echocardiographic measurements in small animals. This position paper focuses on the appropriate acquisition and analysis of echocardiographic parameters in adult mice and rats, and provides reference values, representative images and videos for the accurate and reproducible quantification of left ventricular function in healthy and pathological conditions.

8.
Clin Res Cardiol ; 109(10): 1197-1222, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32405737

RESUMO

The acute and long-lasting side effects of modern multimodal tumour therapy significantly impair quality of life and survival of patients afflicted with malignancies. The key components of this therapy include radiotherapy, conventional chemotherapy, immunotherapy and targeted therapies. In addition to established tumour therapy strategies, up to 30 new therapies are approved each year with only incompletely characterised side effects. This consensus paper discusses the risk factors that contribute to the development of a potentially adverse reaction to tumour therapy and, in addition, defines specific side effect profiles for different treatment groups. The focus is on novel therapeutics and recommendations for the surveillance and treatment of specific patient groups.

12.
Circulation ; 141(20): 1628-1644, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32100557

RESUMO

BACKGROUND: Acute occlusion of a coronary artery results in swift tissue necrosis. Bordering areas of the infarcted myocardium can also experience impaired blood supply and reduced oxygen delivery, leading to altered metabolic and mechanical processes. Although transcriptional changes in hypoxic cardiomyocytes are well studied, little is known about the proteins that are actively secreted from these cells. METHODS: We established a novel secretome analysis of cardiomyocytes by combining stable isotope labeling and click chemistry with subsequent mass spectrometry analysis. Further functional validation experiments included ELISA measurement of human samples, murine left anterior descending coronary artery ligation, and adeno-associated virus 9-mediated in vivo overexpression in mice. RESULTS: The presented approach is feasible for analysis of the secretome of primary cardiomyocytes without serum starvation. A total of 1026 proteins were identified to be secreted within 24 hours, indicating a 5-fold increase in detection compared with former approaches. Among them, a variety of proteins have not yet been explored in the context of cardiovascular pathologies. One of the secreted factors most strongly upregulated upon hypoxia was PCSK6 (proprotein convertase subtilisin/kexin type 6). Validation experiments revealed an increase of PCSK6 on mRNA and protein level in hypoxic cardiomyocytes. PCSK6 expression was elevated in hearts of mice after 3 days of ligation of the left anterior descending artery, a finding confirmed by immunohistochemistry. ELISA measurements in human serum also indicate distinct kinetics for PCSK6 in patients with acute myocardial infarction, with a peak on postinfarction day 3. Transfer of PCSK6-depleted cardiomyocyte secretome resulted in decreased expression of collagen I and III in fibroblasts compared with control treated cells, and small interfering RNA-mediated knockdown of PCSK6 in cardiomyocytes impacted transforming growth factor-ß activation and SMAD3 (mothers against decapentaplegic homolog 3) translocation in fibroblasts. An adeno-associated virus 9-mediated, cardiomyocyte-specific overexpression of PCSK6 in mice resulted in increased collagen expression and cardiac fibrosis, as well as decreased left ventricular function, after myocardial infarction. CONCLUSIONS: A novel mass spectrometry-based approach allows investigation of the secretome of primary cardiomyocytes. Analysis of hypoxia-induced secretion led to the identification of PCSK6 as being crucially involved in cardiac remodeling after acute myocardial infarction.

14.
J Physiol ; 598(7): 1361-1376, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30770570

RESUMO

KEY POINTS: Mitochondrial Ca2+ uptake stimulates the Krebs cycle to regenerate the reduced forms of pyridine nucleotides (NADH, NADPH and FADH2 ) required for ATP production and reactive oxygen species (ROS) elimination. Ca2+ /calmodulin-dependent protein kinase II (CaMKII) has been proposed to regulate mitochondrial Ca2+ uptake via mitochondrial Ca2+ uniporter phosphorylation. We used two mouse models with either global deletion of CaMKIIδ (CaMKIIδ knockout) or cardiomyocyte-specific deletion of CaMKIIδ and γ (CaMKIIδ/γ double knockout) to interrogate whether CaMKII controls mitochondrial Ca2+ uptake in isolated mitochondria and during ß-adrenergic stimulation in cardiac myocytes. CaMKIIδ/γ did not control Ca2+ uptake, respiration or ROS emission in isolated cardiac mitochondria, nor in isolated cardiac myocytes, during ß-adrenergic stimulation and pacing. The results of the present study do not support a relevant role of CaMKII for mitochondrial Ca2+ uptake in cardiac myocytes under physiological conditions. ABSTRACT: Mitochondria are the main source of ATP and reactive oxygen species (ROS) in cardiac myocytes. Furthermore, activation of the mitochondrial permeability transition pore (mPTP) induces programmed cell death. These processes are essentially controlled by Ca2+ , which is taken up into mitochondria via the mitochondrial Ca2+ uniporter (MCU). It was recently proposed that Ca2+ /calmodulin-dependent protein kinase II (CaMKII) regulates Ca2+ uptake by interacting with the MCU, thereby affecting mPTP activation and programmed cell death. In the present study, we investigated the role of CaMKII under physiological conditions in which mitochondrial Ca2+ uptake matches energy supply to the demand of cardiac myocytes. Accordingly, we measured mitochondrial Ca2+ uptake in isolated mitochondria and cardiac myocytes harvested from cardiomyocyte-specific CaMKII δ and γ double knockout (KO) (CaMKIIδ/γ DKO) and global CaMKIIδ KO mice. To simulate a physiological workload increase, cardiac myocytes were subjected to ß-adrenergic stimulation (by isoproterenol superfusion) and an increase in stimulation frequency (from 0.5 to 5 Hz). No differences in mitochondrial Ca2+ accumulation were detected in isolated mitochondria or cardiac myocytes from both CaMKII KO models compared to wild-type littermates. Mitochondrial redox state and ROS production were unchanged in CaMKIIδ/γ DKO, whereas we observed a mild oxidation of mitochondrial redox state and an increase in H2 O2 emission from CaMKIIδ KO cardiac myocytes exposed to an increase in workload. In conclusion, the results obtained in the present study do not support the regulation of mitochondrial Ca2+ uptake via the MCU or mPTP activation by CaMKII in cardiac myocytes under physiological conditions.

15.
Nat Metab ; 1(11): 1157-1167, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31742248

RESUMO

Catecholamines stimulate the first step of lipolysis by PKA-dependent release of the lipid droplet-associated protein ABHD5 from perilipin to co-activate the lipase ATGL. Here, we unmask a yet unrecognized proteolytic and cardioprotective function of ABHD5. ABHD5 acts in vivo and in vitro as a serine protease cleaving HDAC4. Through the production of an N-terminal polypeptide of HDAC4 (HDAC4-NT), ABHD5 inhibits MEF2-dependent gene expression and thereby controls glucose handling. ABHD5-deficiency leads to neutral lipid storage disease in mice. Cardiac-specific gene therapy of HDAC4-NT does not protect from intra-cardiomyocyte lipid accumulation but strikingly from heart failure, thereby challenging the concept of lipotoxicity-induced heart failure. ABHD5 levels are reduced in failing human hearts and murine transgenic ABHD5 expression protects from pressure-overload induced heart failure. These findings represent a conceptual advance by connecting lipid with glucose metabolism through HDAC4 proteolysis and enable new translational approaches to treat cardiometabolic disease.

16.
Proc Natl Acad Sci U S A ; 116(44): 22282-22287, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31619570

RESUMO

Sympathetic activation of ß-adrenoreceptors (ß-AR) represents a hallmark in the development of heart failure (HF). However, little is known about the underlying mechanisms of gene regulation. In human ventricular myocardium from patients with end-stage HF, we found high levels of phosphorylated histone 3 at serine-28 (H3S28p). H3S28p was increased by inhibition of the catecholamine-sensitive protein phosphatase 1 and decreased by ß-blocker pretreatment. By a series of in vitro and in vivo experiments, we show that the ß-AR downstream protein kinase CaM kinase II (CaMKII) directly binds and phosphorylates H3S28. Whereas, in CaMKII-deficient myocytes, acute catecholaminergic stimulation resulted in some degree of H3S28p, sustained catecholaminergic stimulation almost entirely failed to induce H3S28p. Genome-wide analysis of CaMKII-mediated H3S28p in response to chronic ß-AR stress by chromatin immunoprecipitation followed by massive genomic sequencing led to the identification of CaMKII-dependent H3S28p target genes. Forty percent of differentially H3S28p-enriched genomic regions were associated with differential, mostly increased expression of the nearest genes, pointing to CaMKII-dependent H3S28p as an activating histone mark. Remarkably, the adult hemoglobin genes showed an H3S28p enrichment close to their transcriptional start or end sites, which was associated with increased messenger RNA and protein expression. In summary, we demonstrate that chronic ß-AR activation leads to CaMKII-mediated H3S28p in cardiomyocytes. Thus, H3S28p-dependent changes may play an unexpected role for cardiac hemoglobin regulation in the context of sympathetic activation. These data also imply that CaMKII may be a yet unrecognized stress-responsive regulator of hematopoesis.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Insuficiência Cardíaca/metabolismo , Hemoglobinas/genética , Código das Histonas , Histonas/metabolismo , Miocárdio/metabolismo , Sistema Nervoso Simpático/fisiologia , Antagonistas Adrenérgicos beta/farmacologia , Adulto , Animais , Catecolaminas/farmacologia , Células Cultivadas , Feminino , Insuficiência Cardíaca/genética , Hemoglobinas/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fosforilação , Ratos , Sistema Nervoso Simpático/efeitos dos fármacos
17.
Circ Res ; 125(4): 431-448, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31284834

RESUMO

RATIONALE: Gene expression profiles have been mainly determined by analysis of transcript abundance. However, these analyses cannot capture posttranscriptional gene expression control at the level of translation, which is a key step in the regulation of gene expression, as evidenced by the fact that transcript levels often poorly correlate with protein levels. Furthermore, genome-wide transcript profiling of distinct cell types is challenging due to the fact that lysates from tissues always represent a mixture of cells. OBJECTIVES: This study aimed to develop a new experimental method that overcomes both limitations and to apply this method to perform a genome-wide analysis of gene expression on the translational level in response to pressure overload. METHODS AND RESULTS: By combining ribosome profiling (Ribo-seq) with a ribosome-tagging approach (Ribo-tag), it was possible to determine the translated transcriptome in specific cell types from the heart. After pressure overload, we monitored the cardiac myocyte translatome by purifying tagged cardiac myocyte ribosomes from cardiac lysates and subjecting the ribosome-protected mRNA fragments to deep sequencing. We identified subsets of mRNAs that are regulated at the translational level and found that translational control determines early changes in gene expression in response to cardiac stress in cardiac myocytes. Translationally controlled transcripts are associated with specific biological processes related to translation, protein quality control, and metabolism. Mechanistically, Ribo-seq allowed for the identification of upstream open reading frames in transcripts, which we predict to be important regulators of translation. CONCLUSIONS: This method has the potential to (1) provide a new tool for studying cell-specific gene expression at the level of translation in tissues, (2) reveal new therapeutic targets to prevent cellular remodeling, and (3) trigger follow-up studies that address both, the molecular mechanisms involved in the posttranscriptional control of gene expression in cardiac cells, and the protective functions of proteins expressed in response to cellular stress.


Assuntos
Miócitos Cardíacos/metabolismo , Ribossomos/metabolismo , Análise de Sequência de RNA/métodos , Disfunção Ventricular/genética , Animais , Células Cultivadas , Ventrículos do Coração/citologia , Hemodinâmica , Masculino , Camundongos , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/química , Estresse Fisiológico , Disfunção Ventricular/metabolismo
18.
Circulation ; 140(7): 580-594, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31195810

RESUMO

BACKGROUND: Worldwide, diabetes mellitus and heart failure represent frequent comorbidities with high socioeconomic impact and steadily growing incidence, calling for a better understanding of how diabetic metabolism promotes cardiac dysfunction. Paradoxically, some glucose-lowering drugs have been shown to worsen heart failure, raising the question of how glucose mediates protective versus detrimental cardiac signaling. Here, we identified a histone deacetylase 4 (HDAC4) subdomain as a molecular checkpoint of adaptive and maladaptive signaling in the diabetic heart. METHODS: A conditional HDAC4 allele was used to delete HDAC4 specifically in cardiomyocytes (HDAC4-knockout). Mice were subjected to diabetes mellitus either by streptozotocin injections (type 1 diabetes mellitus model) or by crossing into mice carrying a leptin receptor mutation (db/db; type 2 diabetes mellitus model) and monitored for remodeling and cardiac function. Effects of glucose and the posttranslational modification by ß-linked N-acetylglucosamine (O-GlcNAc) on HDAC4 were investigated in vivo and in vitro by biochemical and cellular assays. RESULTS: We show that the cardio-protective N-terminal proteolytic fragment of HDAC4 is enhanced in vivo in patients with diabetes mellitus and mouse models, as well as in vitro under high-glucose and high-O-GlcNAc conditions. HDAC4-knockout mice develop heart failure in models of type 1 and type 2 diabetes mellitus, whereas wild-type mice do not develop clear signs of heart failure, indicating that HDAC4 protects the diabetic heart. Reexpression of the N-terminal fragment of HDAC4 prevents HDAC4-dependent diabetic cardiomyopathy. Mechanistically, the posttranslational modification of HDAC4 at serine (Ser)-642 by O-GlcNAcylation is an essential step for production of the N-terminal fragment of HDAC4, which was attenuated by Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632. Preventing O-GlcNAcylation at Ser-642 not only entirely precluded production of the N-terminal fragment of HDAC4 but also promoted Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632, pointing to a mutual posttranslational modification cross talk of (cardio-detrimental) phosphorylation at Ser-632 and (cardio-protective) O-GlcNAcylation at Ser-642. CONCLUSIONS: In this study, we found that O-GlcNAcylation of HDAC4 at Ser-642 is cardio-protective in diabetes mellitus and counteracts pathological Ca2+/calmodulin-dependent protein kinase II signaling. We introduce a molecular model explaining how diabetic metabolism possesses important cardio-protective features besides its known detrimental effects. A deeper understanding of the here-described posttranslational modification cross talk may lay the groundwork for the development of specific therapeutic concepts to treat heart failure in the context of diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/prevenção & controle , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Wistar , Serina/metabolismo
19.
Eur J Heart Fail ; 21(5): 553-576, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30989768

RESUMO

Cardiomyopathies are a heterogeneous group of heart muscle diseases and an important cause of heart failure (HF). Current knowledge on incidence, pathophysiology and natural history of HF in cardiomyopathies is limited, and distinct features of their therapeutic responses have not been systematically addressed. Therefore, this position paper focuses on epidemiology, pathophysiology, natural history and latest developments in treatment of HF in patients with dilated (DCM), hypertrophic (HCM) and restrictive (RCM) cardiomyopathies. In DCM, HF with reduced ejection fraction (HFrEF) has high incidence and prevalence and represents the most frequent cause of death, despite improvements in treatment. In addition, advanced HF in DCM is one of the leading indications for heart transplantation. In HCM, HF with preserved ejection (HFpEF) affects most patients with obstructive, and ∼10% of patients with non-obstructive HCM. A timely treatment is important, since development of advanced HF, although rare in HCM, portends a poor prognosis. In RCM, HFpEF is common, while HFrEF occurs later and more frequently in amyloidosis or iron overload/haemochromatosis. Irrespective of RCM aetiology, HF is a harbinger of a poor outcome. Recent advances in our understanding of the mechanisms underlying the development of HF in cardiomyopathies have significant implications for therapeutic decision-making. In addition, new aetiology-specific treatment options (e.g. enzyme replacement therapy, transthyretin stabilizers, immunoadsorption, immunotherapy, etc.) have shown a potential to improve outcomes. Still, causative therapies of many cardiomyopathies are lacking, highlighting the need for the development of effective strategies to prevent and treat HF in cardiomyopathies.

20.
ESC Heart Fail ; 6(4): 711-722, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31025825

RESUMO

AIMS: Myocardial infarction (MI) and heart failure (HF) are risk factors for the development of depression, additionally worsening the quality of life and patient outcome. How HF causes depression and how depression promotes HF remain mechanistically unclear, which is at least partly caused by the difficulty of in vivo modelling of psychosomatic co-morbidity. We aimed to study the potential sequence of events with respect to different depression aspects upon HF. METHODS AND RESULTS: Male C57BL6 mice underwent MI, followed by behavioural and echocardiographic characterization. Motility, exploration, and anxiety-like behaviour were unaffected in mice after MI. We did not observe increased depressive-like behaviour in the sucrose preference, tail suspension, or Porsolt forced swim test. Mice did not display signs of learned helplessness (LH) when compared to sham. Accordingly, cluster analysis revealed only a slightly higher quota of LH in HF (38%) vs. sham mice (32%). But strikingly, three-group cluster analysis revealed an additional intermediate subpopulation at risk for LH after HF (29%). Interestingly, this population featured elevated cardiac expression of nr4a1. CONCLUSIONS: The LH paradigm uncovered a subtle predisposition to depressive-like behaviour after MI, whereas testing for anhedonia and despair was insufficient to show a behavioural shift in mice. Therefore, we suggest an accumulating risk profile and a multiple-hits hypothesis regarding the pathogenesis of co-morbid depression after MI. Symptoms of LH may present a marker of subclinical depression after MI, the impact of which remains to be investigated. The proposed sequence of behavioural testing enables the mechanistic dissection of cardio-psychogenic signalling in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA