*J Chem Phys ; 152(16): 161103, 2020 Apr 30.*

##### RESUMO

Efficient Boltzmann-sampling using first-principles methods is challenging for extended systems due to the steep scaling of electronic structure methods with the system size. Stochastic approaches provide a gentler system-size dependency at the cost of introducing "noisy" forces, which could limit the efficiency of the sampling. When the forces are deterministic, the first-order Langevin dynamics (FOLD) offers efficient sampling by combining a well-chosen preconditioning matrix S with a time-step-bias-mitigating propagator [G. Mazzola and S. Sorella, Phys. Rev. Lett. 118, 015703 (2017)]. However, when forces are noisy, S is set equal to the force-covariance matrix, a procedure that severely limits the efficiency and the stability of the sampling. Here, we develop a new, general, optimal, and stable sampling approach for FOLD under noisy forces. We apply it for silicon nanocrystals treated with stochastic density functional theory and show efficiency improvements by an order-of-magnitude.

*J Chem Theory Comput ; 16(2): 1064-1072, 2020 Feb 11.*

##### RESUMO

Generalized Kohn-Sham density functional theory is a popular computational tool for the ground state of extended systems, particularly within range-separated hybrid (RSH) functionals that capture the long-range electronic interaction. Unfortunately, the heavy computational cost of the nonlocal exchange operator in RSH-DFT usually confines the approach to systems with at most a few hundred electrons. A significant reduction in the computational cost is achieved by representing the density matrix with stochastic orbitals and a stochastic decomposition of the Coulomb convolution (J. Phys. Chem. A 2016, 120, 3071). Here, we extend the stochastic RSH approach to excited states within the framework of linear-response generalized Kohn-Sham time-dependent density functional theory (GKS-TDDFT) based on the plane-wave basis. As a validation of the stochastic GKS-TDDFT method, the excitation energies of small molecules N2 and CO are calculated and compared to the deterministic results. The computational efficiency of the stochastic method is demonstrated with a two-dimensional MoS2 sheet (â¼1500 electrons), whose excitation energy, exciton charge density, and (excited state) geometric relaxation are determined in the absence and presence of a point defect.

*J Chem Phys ; 151(17): 174115, 2019 Nov 07.*

##### RESUMO

Over this past decade, we combined the idea of stochastic resolution of identity with a variety of electronic structure methods. In our stochastic Kohn-Sham density functional theory (DFT) method, the density is an average over multiple stochastic samples, with stochastic errors that decrease as the inverse square root of the number of sampling orbitals. Here, we develop a stochastic embedding density functional theory method (se-DFT) that selectively reduces the stochastic error (specifically on the forces) for a selected subsystem(s). The motivation, similar to that of other quantum embedding methods, is that for many systems of practical interest, the properties are often determined by only a small subsystem. In stochastic embedding DFT, two sets of orbitals are used: a deterministic one associated with the embedded subspace and the rest, which is described by a stochastic set. The method agrees exactly with deterministic calculations in the limit of a large number of stochastic samples. We apply se-DFT to study a p-nitroaniline molecule in water, where the statistical errors in the forces on the system (the p-nitroaniline molecule) are reduced by an order of magnitude compared with nonembedding stochastic DFT.

*J Chem Theory Comput ; 15(12): 6703-6711, 2019 Dec 10.*

##### RESUMO

We develop a stochastic resolution of identity approach to the real-time second-order Green's function (real-time sRI-GF2) theory, extending our recent work for imaginary-time Matsubara Green's function [ Takeshita et al. J. Chem. Phys. 2019 , 151 , 044114 ]. The approach provides a framework to obtain the quasi-particle spectra across a wide range of frequencies and predicts ionization potentials and electron affinities. To assess the accuracy of the real-time sRI-GF2, we study a series of molecules and compare our results to experiments as well as to a many-body perturbation approach based on the GW approximation, where we find that the real-time sRI-GF2 is as accurate as self-consistent GW. The stochastic formulation reduces the formal computatinal scaling from O(Ne5) down to O(Ne3) where Ne is the number of electrons. This is illustrated for a chain of hydrogen dimers, where we observe a slightly lower than cubic scaling for systems containing up to Ne ≈ 1000 electrons.

*J Chem Phys ; 151(11): 114116, 2019 Sep 21.*

##### RESUMO

Linear scaling density functional theory is important for understanding electronic structure properties of nanometer scale systems. Recently developed stochastic density functional theory can achieve linear or even sublinear scaling for various electronic properties without relying on the sparsity of the density matrix. The basic idea relies on projecting stochastic orbitals onto the occupied space by expanding the Fermi-Dirac operator and repeating this for Nχ stochastic orbitals. Often, a large number of stochastic orbitals are required to reduce the statistical fluctuations (which scale as Nχ -1/2) below a tolerable threshold. In this work, we introduce a new stochastic density functional theory that can efficiently reduce the statistical fluctuations for certain observable and can also be integrated with an embedded fragmentation scheme. The approach is based on dividing the occupied space into energy windows and projecting the stochastic orbitals with a single expansion onto all windows simultaneously. This allows for a significant reduction of the noise as illustrated for bulk silicon with a large supercell. We also provide theoretical analysis to rationalize why the noise can be reduced only for a certain class of ground state properties, such as the forces and electron density.

*J Chem Phys ; 151(4): 044114, 2019 Jul 28.*

##### RESUMO

We develop a stochastic resolution of identity representation to the second-order Matsubara Green's function (sRI-GF2) theory. Using a stochastic resolution of the Coulomb integrals, the second order Born self-energy in GF2 is decoupled and reduced to matrix products/contractions, which reduces the computational cost from O(N5) to O(N3) (with N being the number of atomic orbitals). The current approach can be viewed as an extension to our previous work on stochastic resolution of identity second order Møller-Plesset perturbation theory [T. Y. Takeshita et al., J. Chem. Theory Comput. 13, 4605 (2017)] and offers an alternative to previous stochastic GF2 formulations [D. Neuhauser et al., J. Chem. Theory Comput. 13, 5396 (2017)]. We show that sRI-GF2 recovers the deterministic GF2 results for small systems, is computationally faster than deterministic GF2 for N > 80, and is a practical approach to describe weak correlations in systems with 103 electrons and more.

*J Chem Phys ; 150(18): 184118, 2019 May 14.*

##### RESUMO

We develop a stochastic approach to time-dependent density functional theory with optimally tuned range-separated hybrids containing nonlocal exchange, for calculating optical spectra. The attractive electron-hole interaction, which leads to the formation of excitons, is included through a time-dependent linear-response technique with a nonlocal exchange interaction which is computed very efficiently through a stochastic scheme. The method is inexpensive and scales quadratically with the number of electrons, at almost the same (low) cost of time dependent Kohn-Sham with local functionals. Our results are in excellent agreement with experimental data, and the efficiency of the approach is demonstrated on large finite phosphorene sheets containing up to 1958 valence electrons.

*J Phys Chem Lett ; 10(10): 2341-2348, 2019 May 16.*

##### RESUMO

The conjecture that, as in bulk semiconductors, hot multiexcitons in nanocrystals cool rapidly to the lowest available energy levels is tested here by recording the effects of a single cold "spectator" exciton on the relaxation dynamics of a subsequently deposited hot counterpart. Results in CdSe/CdS nanodots show that a preexisting cold "spectator exciton" allows only half of the photoexcited electrons to relax directly to the band-edge. The rest are blocked in an excited quantum state due to conflicts in spin orientation. The latter fully relax in this sample only after â¼25 ps as the blocked electrons spins flip, prolonging the temporal window of opportunity for harvesting the retained energy more than 100 fold! Common to all quantum-confined nanocrystals, this process will delay cooling and impact the spectroscopic signatures of hot multiexcitons in all envisioned generation scenarios. How the spin-flipping rate scales with particle size and temperature remains to be determined.

*J Phys Chem Lett ; 10(6): 1361-1367, 2019 Mar 21.*

##### RESUMO

A multifaceted agreement between ab initio theoretical predictions and experimental measurements, including branching ratios, channel-specific kinetic energy release, and three-body momentum correlation spectra, leads to the identification of new mechanisms in Coulomb-explosion (CE) induced two- and three-body breakup processes in methanol. These identified mechanisms include direct nonadiabatic Coulomb explosion responsible for CO bond-breaking, a long-range " inverse harpooning" dominating the production of H2+ + HCOH+, a transient proton migration leading to surprising energy partitioning in three-body fragmentation and other complex dynamics forming products such as H2O+ and H3+. These mechanisms provide general concepts that should be useful for analyzing future time-resolved Coulomb explosion imaging of methanol as well as other molecular systems. These advances are enabled by a combination of recently developed experimental and computational techniques, using weak ultrafast EUV pulses to initiate the CE and a high-level quantum chemistry approach to follow the resulting field-free nonadiabatic molecular dynamics.

*J Chem Phys ; 150(3): 034106, 2019 Jan 21.*

##### RESUMO

The stochastic density functional theory (DFT) [R. Baer et al., Phys. Rev. Lett. 111, 106402 (2013)] is a valuable linear-scaling approach to Kohn-Sham DFT that does not rely on the sparsity of the density matrix. Linear (and often sub-linear) scaling is achieved by introducing a controlled statistical error in the density, energy, and forces. The statistical error (noise) is proportional to the inverse square root of the number of stochastic orbitals and thus decreases slowly; however, by dividing the system into fragments that are embedded stochastically, the statistical error can be reduced significantly. This has been shown to provide remarkable results for non-covalently-bonded systems; however, the application to covalently bonded systems had limited success, particularly for delocalized electrons. Here, we show that the statistical error in the density correlates with both the density and the density matrix of the system and propose a new fragmentation scheme that elegantly interpolates between overlapped fragments. We assess the performance of the approach for bulk silicon of varying supercell sizes (up to Ne = 16 384 electrons) and show that overlapped fragments reduce significantly the statistical noise even for systems with a delocalized density matrix.

*J Chem Phys ; 149(17): 174107, 2018 Nov 07.*

##### RESUMO

We show that a rigid scissors-like GW self-consistency approach, labeled here Δ ¯ G W 0 , can be trivially implemented at zero additional cost for large scale one-shot G 0 W 0 calculations. The method significantly improves one-shot G 0 W 0 and for large systems is very accurate. Δ ¯ G W 0 is similar in spirit to evGW 0 where the self-consistency is only applied on the eigenvalues entering Green's function, while both W and the eigenvectors of Green's function are held fixed. Δ ¯ G W 0 further assumes that the shift of the eigenvalues is rigid scissors-like so that all occupied states are shifted by the same amount and analogously for all the unoccupied states. We show that this results in a trivial modification of the time-dependent G 0 W 0 self-energy, enabling an a posteriori self-consistency cycle. The method is applicable for our recent stochastic-GW approach, thereby enabling self-consistent calculations for giant systems with thousands of electrons. The accuracy of Δ ¯ G W 0 increases with the system size. For molecules, it is up to 0.4-0.5 eV away from coupled-cluster single double triple (CCSD(T)), but for tetracene and hexacene, it matches the ionization energies from both CCSD(T) and evGW 0 to better than 0.05 eV. For solids, as exemplified here by periodic supercells of semiconductors and insulators with 6192 valence electrons, the method matches evGW 0 quite well and both methods are in good agreement with the experiment.

*J Chem Phys ; 146(22): 224111, 2017 Jun 14.*

##### RESUMO

An ab initio Langevin dynamics approach is developed based on stochastic density functional theory (sDFT) within a new embedded saturated fragment formalism, applicable to covalently bonded systems. The forces on the nuclei generated by sDFT contain a random component natural to Langevin dynamics, and its standard deviation is used to estimate the friction term on each atom by satisfying the fluctuation-dissipation relation. The overall approach scales linearly with the system size even if the density matrix is not local and is thus applicable to ordered as well as disordered extended systems. We implement the approach for a series of silicon nanocrystals (NCs) of varying size with a diameter of up to 3 nm corresponding to Ne = 3000 electrons and generate a set of configurations that are distributed canonically at a fixed temperature, ranging from cryogenic to room temperature. We also analyze the structure properties of the NCs and discuss the reconstruction of the surface geometry.

*J Chem Theory Comput ; 13(11): 5396-5403, 2017 Nov 14.*

##### RESUMO

The second-order Matsubara Green's function method (GF2) is a robust temperature-dependent quantum chemistry approach, extending beyond the random-phase approximation. However, until now the scope of GF2 applications was quite limited as they require computer resources that rise steeply with system size. In each step of the self-consistent GF2 calculation there are two parts: estimating of the self-energy from the previous step's Green's function and updating the Green's function from the self-energy. The first part formally scales as the fifth power of the system size, while the second has a much gentler cubic scaling. Here, we develop a stochastic approach to GF2 (sGF2), which reduces the fifth power scaling of the first step to merely quadratic, leaving the overall sGF2 scaling as cubic. We apply the method to linear hydrogen chains with up to 1000 electrons, showing that the approach is numerically stable, efficient, and accurate. The stochastic errors are very small, on the order of 0.1% or less of the correlation energy for large systems, with only a moderate computational effort. The first iteration of GF2 is an MP2 calculation that is done in linear scaling; hence we obtain an extremely fast stochastic MP2 (sMP2) method as a byproduct. While here we consider finite systems with large band gaps where at low temperatures effects are negligible, the sGF2 formalism is temperature dependent and general and can be applied to finite or periodic systems with small gaps at finite temperatures.

*J Chem Theory Comput ; 13(10): 4605-4610, 2017 Oct 10.*

##### RESUMO

A stochastic orbital approach to the resolution of identity (RI) approximation for 4-index electron repulsion integrals (ERIs) is presented. The stochastic RI-ERIs are then applied to second order Møller-Plesset perturbation theory (MP2) utilizing a multiple stochastic orbital approach. The introduction of multiple stochastic orbitals results in an O(NAO3) scaling for both the stochastic RI-ERIs and stochastic RI-MP2, NAO being the number of basis functions. For a range of water clusters we demonstrate that this method exhibits a small prefactor and observed scalings of O(Ne2.4) for total energies and O(Ne3.1) for forces (Ne being the number of correlated electrons), outperforming MP2 for clusters with as few as 21 water molecules.

*J Chem Theory Comput ; 13(10): 4997-5003, 2017 Oct 10.*

##### RESUMO

Quasiparticle (QP) excitations are extremely important for understanding and predicting charge transfer and transport in molecules, nanostructures, and extended systems. Since density functional theory (DFT) within the Kohn-Sham (KS) formulation does not provide reliable QP energies, many-body perturbation techniques such as the GW approximation are essential. The main practical drawback of GW implementations is the high computational scaling with system size, prohibiting its use in extended, open boundary systems with many dozens of electrons or more. Recently, a stochastic formulation of GW (sGW) was presented (Phys. Rev. Lett. 2014, 113, 076402) with a near-linear-scaling complexity, illustrated for a series of silicon nanocrystals reaching systems of more than 3000 electrons. This advance provides a route for many-body calculations on very large systems that were impossible with previous approaches. While earlier we have shown the gentle scaling of sGW, its accuracy was not extensively demonstrated. Therefore, we show that this new sGW approach is very accurate by calculating the ionization energies of a group of sufficiently small molecules where a comparison to other GW codes is still possible. Using a set of 10 such molecules, we demonstrate that sGW provides reliable vertical ionization energies in close agreement with benchmark deterministic GW results (J. Chem. Theory Comput, 2015, 11, 5665), with mean (absolute) deviation of 0.05 and 0.09 eV. For completeness, we also provide a detailed review of the sGW theory and numerical implementation.

*Phys Chem Chem Phys ; 19(21): 13488-13495, 2017 May 31.*

##### RESUMO

Single-photon Coulomb explosion of methanol is instigated using the broad bandwidth pulse achieved through high-order harmonics generation. Using 3D coincidence fragment imaging of one molecule at a time, the kinetic energy release (KER) and angular distributions of the products are measured in different Coulomb explosion (CE) channels. Two-body CE channels breaking either the C-O or the C-H bonds are described as well as a proton migration channel forming H2O+, which is shown to exhibit higher KER. The results are compared to intense-field Coulomb explosion measurements in the literature. The interpretation of broad bandwidth single-photon CE data is discussed and supported by ab initio calculations of the predominant C-O bond breaking CE channel. We discuss the importance of these findings for achieving time resolved imaging of ultrafast dynamics.

*Nat Commun ; 7: 13178, 2016 10 11.*

##### RESUMO

Multiexciton generation, by which more than a single electron-hole pair is generated on optical excitation, is a promising paradigm for pushing the efficiency of solar cells beyond the Shockley-Queisser limit of 31%. Utilizing this paradigm, however, requires the onset energy of multiexciton generation to be close to twice the band gap energy and the efficiency to increase rapidly above this onset. This challenge remains unattainable even using confined nanocrystals, nanorods or nanowires. Here, we show how both goals can be achieved in a nanorod heterostructure with type-II band offsets. Using pseudopotential atomistic calculation on a model type-II semiconductor heterostructure we predict the optimal conditions for controlling multiexciton generation efficiencies at twice the band gap energy. For a finite band offset, this requires a sharp interface along with a reduction of the exciton cooling and may enable a route for breaking the Shockley-Queisser limit.

*J Chem Theory Comput ; 12(8): 3431-5, 2016 Aug 09.*

##### RESUMO

Kohn-Sham (KS) density functional theory (DFT) describes well the atomistic structure of molecular junctions and their coupling to the semi-infinite metallic electrodes but severely overestimates conductance due to the spuriously large density of charge-carrier states of the KS system. Previous works show that inclusion of appropriate amounts of nonlocal exchange in the functional can fix the problem and provide realistic conductance estimates. Here however we discover that nonlocal exchange can also lead to deleterious effects which artificially overestimate transmittance even beyond the KS-DFT prediction. The effect is a result of exchange coupling between nonoverlapping states of diradical character. We prescribe a practical recipe for eliminating such artifacts.

*Phys Rev Lett ; 116(18): 186401, 2016 May 06.*

##### RESUMO

Charge carrier localization in extended atomic systems has been described previously as being driven by disorder, point defects, or distortions of the ionic lattice. Here we show for the first time by means of first-principles computations that charge carriers can spontaneously localize due to a purely electronic effect in otherwise perfectly ordered structures. Optimally tuned range-separated density functional theory and many-body perturbation calculations within the GW approximation reveal that in trans-polyacetylene and polythiophene the hole density localizes on a length scale of several nanometers. This is due to exchange-induced translational symmetry breaking of the charge density. Ionization potentials, optical absorption peaks, excitonic binding energies, and the optimally tuned range parameter itself all become independent of polymer length as it exceeds the critical localization length. Moreover, we find that lattice disorder and the formation of a polaron result from the charge localization in contrast to the traditional view that lattice distortions precede charge localization. Our results can explain experimental findings that polarons in conjugated polymers form instantaneously after exposure to ultrafast light pulses.

*J Phys Chem A ; 120(19): 3071-8, 2016 May 19.*

##### RESUMO

We develop a stochastic formulation of the optimally tuned range-separated hybrid density functional theory that enables significant reduction of the computational effort and scaling of the nonlocal exchange operator at the price of introducing a controllable statistical error. Our method is based on stochastic representations of the Coulomb convolution integral and of the generalized Kohn-Sham density matrix. The computational cost of the approach is similar to that of usual Kohn-Sham density functional theory, yet it provides a much more accurate description of the quasiparticle energies for the frontier orbitals. This is illustrated for a series of silicon nanocrystals up to sizes exceeding 3000 electrons. Comparison with the stochastic GW many-body perturbation technique indicates excellent agreement for the fundamental band gap energies, good agreement for the band edge quasiparticle excitations, and very low statistical errors in the total energy for large systems. The present approach has a major advantage over one-shot GW by providing a self-consistent Hamiltonian that is central for additional postprocessing, for example, in the stochastic Bethe-Salpeter approach.