Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Int J Cancer ; 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31609476

RESUMO

Interval breast cancers (those diagnosed between recommended mammography screens) generally have poorer outcomes and are more common among women with dense breasts. We aimed to develop a risk model for interval breast cancer. We conducted a nested case-control study within the Melbourne Collaborative Cohort Study involving 168 interval breast cancer patients and 498 matched control subjects. We measured breast density using the CUMULUS software. We recorded first-degree family history by questionnaire, measured body mass index (BMI) and calculated age-adjusted breast tissue ageing, a novel measure of exposure to estrogen and progesterone based on the Pike model. We fitted conditional logistic regression to estimate odds ratio (OR) or odds ratio per adjusted standard deviation (OPERA) and calculated the area under the receiver operating characteristic curve (AUC). The stronger risk associations were for unadjusted percent breast density (OPERA = 1.99; AUC = 0.66), more so after adjusting for age and BMI (OPERA = 2.26; AUC = 0.70), and for family history (OR = 2.70; AUC = 0.56). When the latter two factors and their multiplicative interactions with age-adjusted breast tissue ageing (P = 0.01 and 0.02, respectively) were fitted, the AUC was 0.73 (95% CI 0.69 to 0.77), equivalent to a nine-fold inter-quartile risk ratio. In summary, compared to using dense breasts alone, risk discrimination for interval breast cancers, could be doubled by instead using breast density, BMI, family history and hormonal exposure. This would also give women with dense breasts, and their physicians, more information about the major consequence of having dense breasts - an increased risk of developing an interval breast cancer. This article is protected by copyright. All rights reserved.

2.
Int J Epidemiol ; 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31549173

RESUMO

BACKGROUND: DNA methylation changes in peripheral blood have recently been identified in relation to lung cancer risk. Some of these changes have been suggested to mediate part of the effect of smoking on lung cancer. However, limitations with conventional mediation analyses mean that the causal nature of these methylation changes has yet to be fully elucidated. METHODS: We first performed a meta-analysis of four epigenome-wide association studies (EWAS) of lung cancer (918 cases, 918 controls). Next, we conducted a two-sample Mendelian randomization analysis, using genetic instruments for methylation at CpG sites identified in the EWAS meta-analysis, and 29 863 cases and 55 586 controls from the TRICL-ILCCO lung cancer consortium, to appraise the possible causal role of methylation at these sites on lung cancer. RESULTS: Sixteen CpG sites were identified from the EWAS meta-analysis [false discovery rate (FDR) < 0.05], for 14 of which we could identify genetic instruments. Mendelian randomization provided little evidence that DNA methylation in peripheral blood at the 14 CpG sites plays a causal role in lung cancer development (FDR > 0.05), including for cg05575921-AHRR where methylation is strongly associated with both smoke exposure and lung cancer risk. CONCLUSIONS: The results contrast with previous observational and mediation analysis, which have made strong claims regarding the causal role of DNA methylation. Thus, previous suggestions of a mediating role of methylation at sites identified in peripheral blood, such as cg05575921-AHRR, could be unfounded. However, this study does not preclude the possibility that differential DNA methylation at other sites is causally involved in lung cancer development, especially within lung tissue.

3.
Epigenetics ; : 1-11, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31552803

RESUMO

We conducted a genome-wide association study of blood DNA methylation and smoking, attempted replication of previously discovered associations, and assessed the reversibility of smoking-associated methylation changes. DNA methylation was measured in baseline peripheral blood samples for 5,044 participants in the Melbourne Collaborative Cohort Study. For 1,032 participants, these measures were repeated using blood samples collected at follow-up, a median of 11 years later. A cross-sectional analysis of the association between smoking and DNA methylation and a longitudinal analysis of changes in smoking status and changes in DNA methylation were conducted. We used our cross-sectional analysis to replicate previously reported associations for current (N = 3,327) and former (N = 172) smoking. A comprehensive smoking index accounting for the biological half-life of smoking compounds and several aspects of smoking history was constructed to assess the reversibility of smoking-induced methylation changes. This measure of lifetime exposure to smoking allowed us to detect more associations than comparing current with never smokers. We identified 4,496 cross-sectional associations at P < 10-7, including 3,296 annotated to 1,326 genes that were not previously implicated in smoking-associated DNA methylation changes at this significance threshold. We replicated the majority of previously reported associations (P < 10-7) for current and former smokers. In our data, we observed for former smokers a substantial degree of return to the methylation levels of never smokers, compared with current smokers (median: 74%, IQR = 63-86%), corresponding to small values (median: 2.75, IQR = 1.5-5.25) for the half-life parameter of the comprehensive smoking index. Longitudinal analyses identified 368 sites at which methylation changed upon smoking cessation. Our study demonstrates the usefulness of the comprehensive smoking index to detect associations between smoking and DNA methylation at CpGs across the genome, replicates the vast majority of previously reported associations, and quantifies the reversibility of smoking-induced methylation changes.

4.
Int J Cancer ; 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31187481

RESUMO

Adiposity increases estrogen receptor (ER)-positive postmenopausal breast cancer risk. While mechanisms underlying this relationship are uncertain, dysregulated sex-steroid hormone production and insulin signaling are likely pathways. Our aim was to quantify mediating effects of fasting insulin and free estradiol in the adiposity and ER-positive postmenopausal breast cancer association. We used data from a case-cohort study of sex hormones and insulin signaling nested within the Melbourne Collaborative Cohort Study. Eligible women, at baseline, were not diagnosed with cancer, were postmenopausal, did not use hormone therapy and had no history of diabetes or diabetes medication use. Women with ER-negative disease or breast cancer diagnosis within the first follow-up year were excluded. We analyzed the study as a cumulative sampling case-control study with 149 cases and 1,029 controls. Missing values for insulin and free estradiol were multiply imputed with chained equations. Interventional direct (IDE) and indirect (IIE) effects were estimated using regression-based multiple-mediator approach. For women with body mass index (BMI) >30 kg/m2 compared to women with BMI 18.5-25 kg/m2 , the risk ratio (RR) of breast cancer was 1.75 (95% confidence interval [CI] 1.05-2.91). The estimated IDE (RR) not through the mediators was 1.03 (95% CI 0.43-2.48). Percentage mediated effect through free estradiol was 72% (IIE-RR 1.56; 95% CI 1.11-2.19). There was no evidence for an indirect effect through insulin (IIE-RR 1.12; 95% CI 0.68-1.84; 28% mediated). Our results suggest that circulating free estradiol plays an important mediating role in the adiposity-breast cancer relationship but does not explain all of the association.

5.
Clin Epigenetics ; 11(1): 66, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31039828

RESUMO

BACKGROUND: It is well established that estrogens and other hormonal factors influence breast cancer susceptibility. We hypothesized that a woman's total lifetime estrogen exposure accumulates changes in DNA methylation, detectable in the blood, which could be used in risk assessment for breast cancer. METHODS: An estimated lifetime estrogen exposure (ELEE) model was defined using epidemiological data from EPIC-Italy (n = 31,864). An epigenome-wide association study (EWAS) of ELEE was performed using existing Illumina HumanMethylation450K Beadchip (HM450K) methylation data obtained from EPIC-Italy blood DNA samples (n = 216). A methylation index (MI) of ELEE based on 31 CpG sites was developed using HM450K data from EPIC-Italy and the Generations Study and evaluated for association with breast cancer risk in an independent dataset from the Generations Study (n = 440 incident breast cancer cases matched to 440 healthy controls) using targeted bisulfite sequencing. Lastly, a meta-analysis was conducted including three additional cohorts, consisting of 1187 case-control pairs. RESULTS: We observed an estimated 5% increase in breast cancer risk per 1-year longer ELEE (OR = 1.05, 95% CI 1.04-1.07, P = 3 × 10-12) in EPIC-Italy. The EWAS identified 694 CpG sites associated with ELEE (FDR Q < 0.05). We report a DNA methylation index (MI) associated with breast cancer risk that is validated in the Generations Study targeted bisulfite sequencing data (ORQ4_vs_Q1 = 1.77, 95% CI 1.07-2.93, P = 0.027) and in the meta-analysis (ORQ4_vs_Q1 = 1.43, 95% CI 1.05-2.00, P = 0.024); however, the correlation between the MI and ELEE was not validated across study cohorts. CONCLUSION: We have identified a blood DNA methylation signature associated with breast cancer risk in this study. Further investigation is required to confirm the interaction between estrogen exposure and DNA methylation in the blood.

6.
Breast Cancer Res ; 21(1): 62, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101124

RESUMO

BACKGROUND: Environmental and genetic factors play an important role in the etiology of breast cancer. Several small blood-based DNA methylation studies have reported risk associations with methylation at individual CpGs and average methylation levels; however, these findings require validation in larger prospective cohort studies. To investigate the role of blood DNA methylation on breast cancer risk, we conducted a meta-analysis of four prospective cohort studies, including a total of 1663 incident cases and 1885 controls, the largest study of blood DNA methylation and breast cancer risk to date. METHODS: We assessed associations with methylation at 365,145 CpGs present in the HumanMethylation450 (HM450K) Beadchip, after excluding CpGs that did not pass quality controls in all studies. Each of the four cohorts estimated odds ratios (ORs) and 95% confidence intervals (CI) for the association between each individual CpG and breast cancer risk. In addition, each study assessed the association between average methylation measures and breast cancer risk, adjusted and unadjusted for cell-type composition. Study-specific ORs were combined using fixed-effect meta-analysis with inverse variance weights. Stratified analyses were conducted by age at diagnosis (< 50, ≥ 50), estrogen receptor (ER) status (+/-), and time since blood collection (< 5, 5-10, > 10 years). The false discovery rate (q value) was used to account for multiple testing. RESULTS: The average age at blood draw ranged from 52.2 to 62.2 years across the four cohorts. Median follow-up time ranged from 6.6 to 8.4 years. The methylation measured at individual CpGs was not associated with breast cancer risk (q value > 0.59). In addition, higher average methylation level was not associated with risk of breast cancer (OR = 0.94, 95% CI = 0.85, 1.05; P = 0.26; P for study heterogeneity = 0.86). We found no evidence of modification of this association by age at diagnosis (P = 0.17), ER status (P = 0.88), time since blood collection (P = 0.98), or CpG location (P = 0.98). CONCLUSIONS: Our data indicate that DNA methylation measured in the blood prior to breast cancer diagnosis in predominantly postmenopausal women is unlikely to be associated with substantial breast cancer risk on the HM450K array. Larger studies or with greater methylation coverage are needed to determine if associations exist between blood DNA methylation and breast cancer risk.

7.
Breast Cancer Res ; 21(1): 68, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118087

RESUMO

BACKGROUND: Mammographic breast density, adjusted for age and body mass index, and a polygenic risk score (PRS), comprised of common genetic variation, are both strong risk factors for breast cancer and increase discrimination of risk models. Understanding their joint contribution will be important to more accurately predict risk. METHODS: Using 3628 breast cancer cases and 5126 controls of European ancestry from eight case-control studies, we evaluated joint associations of a 77-single nucleotide polymorphism (SNP) PRS and quantitative mammographic density measures with breast cancer. Mammographic percent density and absolute dense area were evaluated using thresholding software and examined as residuals after adjusting for age, 1/BMI, and study. PRS and adjusted density phenotypes were modeled both continuously (per 1 standard deviation, SD) and categorically. We fit logistic regression models and tested the null hypothesis of multiplicative joint associations for PRS and adjusted density measures using likelihood ratio and global and tail-based goodness of fit tests within the subset of six cohort or population-based studies. RESULTS: Adjusted percent density (odds ratio (OR) = 1.45 per SD, 95% CI 1.38-1.52), adjusted absolute dense area (OR = 1.34 per SD, 95% CI 1.28-1.41), and the 77-SNP PRS (OR = 1.52 per SD, 95% CI 1.45-1.59) were associated with breast cancer risk. There was no evidence of interaction of the PRS with adjusted percent density or dense area on risk of breast cancer by either the likelihood ratio (P > 0.21) or goodness of fit tests (P > 0.09), whether assessed continuously or categorically. The joint association (OR) was 2.60 in the highest categories of adjusted PD and PRS and 0.34 in the lowest categories, relative to women in the second density quartile and middle PRS quintile. CONCLUSIONS: The combined associations of the 77-SNP PRS and adjusted density measures are generally well described by multiplicative models, and both risk factors provide independent information on breast cancer risk.

8.
Int J Cancer ; 145(7): 1768-1773, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30694562

RESUMO

Age- and body mass index (BMI)-adjusted mammographic density is one of the strongest breast cancer risk factors. DNA methylation is a molecular mechanism that could underlie inter-individual variation in mammographic density. We aimed to investigate the association between breast cancer risk-predicting mammographic density measures and blood DNA methylation. For 436 women from the Australian Mammographic Density Twins and Sisters Study and 591 women from the Melbourne Collaborative Cohort Study, mammographic density (dense area, nondense area and percentage dense area) defined by the conventional brightness threshold was measured using the CUMULUS software, and peripheral blood DNA methylation was measured using the HumanMethylation450 (HM450) BeadChip assay. Associations between DNA methylation at >400,000 sites and mammographic density measures adjusted for age and BMI were assessed within each cohort and pooled using fixed-effect meta-analysis. Associations with methylation at genetic loci known to be associated with mammographic density were also examined. We found no genome-wide significant (p < 10-7 ) association for any mammographic density measure from the meta-analysis, or from the cohort-specific analyses. None of the 299 methylation sites located at genetic loci associated with mammographic density was associated with any mammographic density measure after adjusting for multiple testing (all p > 0.05/299 = 1.7 × 10-4 ). In summary, our study did not find evidence for associations between blood DNA methylation, as measured by the HM450 assay, and conventional mammographic density measures that predict breast cancer risk.

9.
Ann Intern Med ; 170(1): 22-30, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30534999

RESUMO

Background: Parity is widely recognized as protective for breast cancer, but breast cancer risk may be increased shortly after childbirth. Whether this risk varies with breastfeeding, family history of breast cancer, or specific tumor subtype has rarely been evaluated. Objective: To characterize breast cancer risk in relation to recent childbirth. Design: Pooled analysis of individual-level data from 15 prospective cohort studies. Setting: The international Premenopausal Breast Cancer Collaborative Group. Participants: Women younger than 55 years. Measurements: During 9.6 million person-years of follow-up, 18 826 incident cases of breast cancer were diagnosed. Hazard ratios (HRs) and 95% CIs for breast cancer were calculated using Cox proportional hazards regression. Results: Compared with nulliparous women, parous women had an HR for breast cancer that peaked about 5 years after birth (HR, 1.80 [95% CI, 1.63 to 1.99]) before decreasing to 0.77 (CI, 0.67 to 0.88) after 34 years. The association crossed over from positive to negative about 24 years after birth. The overall pattern was driven by estrogen receptor (ER)-positive breast cancer; no crossover was seen for ER-negative cancer. Increases in breast cancer risk after childbirth were pronounced when combined with a family history of breast cancer and were greater for women who were older at first birth or who had more births. Breastfeeding did not modify overall risk patterns. Limitations: Breast cancer diagnoses during pregnancy were not uniformly distinguishable from early postpartum diagnoses. Data on human epidermal growth factor receptor 2 (HER2) oncogene overexpression were limited. Conclusion: Compared with nulliparous women, parous women have an increased risk for breast cancer for more than 20 years after childbirth. Health care providers should consider recent childbirth a risk factor for breast cancer in young women. Primary Funding Source: The Avon Foundation, the National Institute of Environmental Health Sciences, Breast Cancer Now and the UK National Health Service, and the Institute of Cancer Research.


Assuntos
Neoplasias da Mama/epidemiologia , Parto , Adolescente , Adulto , Aleitamento Materno , Neoplasias da Mama/diagnóstico , Feminino , Predisposição Genética para Doença , Humanos , Idade Materna , Pessoa de Meia-Idade , Paridade , Gravidez , Pré-Menopausa , Modelos de Riscos Proporcionais , Estudos Prospectivos , Receptores Estrogênicos/análise , Fatores de Risco , Adulto Jovem
10.
Breast Cancer Res ; 20(1): 152, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545395

RESUMO

BACKGROUND: Case-control studies show that mammographic density is a better risk factor when defined at higher than conventional pixel-brightness thresholds. We asked if this applied to interval and/or screen-detected cancers. METHOD: We conducted a nested case-control study within the prospective Melbourne Collaborative Cohort Study including 168 women with interval and 422 with screen-detected breast cancers, and 498 and 1197 matched controls, respectively. We measured absolute and percent mammographic density using the Cumulus software at the conventional threshold (Cumulus) and two increasingly higher thresholds (Altocumulus and Cirrocumulus, respectively). Measures were transformed and adjusted for age and body mass index (BMI). Using conditional logistic regression and adjusting for BMI by age at mammogram, we estimated risk discrimination by the odds ratio per adjusted standard deviation (OPERA), calculated the area under the receiver operating characteristic curve (AUC) and compared nested models using the likelihood ratio criterion and models with the same number of parameters using the difference in Bayesian information criterion (ΔBIC). RESULTS: For interval cancer, there was very strong evidence that the association was best predicted by Cumulus as a percentage (OPERA = 2.33 (95% confidence interval (CI) 1.85-2.92); all ΔBIC > 14), and the association with BMI was independent of age at mammogram. After adjusting for percent Cumulus, no other measure was associated with risk (all P > 0.1). For screen-detected cancer, however, the associations were strongest for the absolute and percent Cirrocumulus measures (all ΔBIC > 6), and after adjusting for Cirrocumulus, no other measure was associated with risk (all P > 0.07). CONCLUSION: The amount of brighter areas is the best mammogram-based measure of screen-detected breast cancer risk, while the percentage of the breast covered by white or bright areas is the best mammogram-based measure of interval breast cancer risk, irrespective of BMI. Therefore, there are different features of mammographic images that give clinically important information about different outcomes.


Assuntos
Densidade da Mama , Neoplasias da Mama/diagnóstico por imagem , Detecção Precoce de Câncer/métodos , Processamento de Imagem Assistida por Computador/métodos , Mamografia/métodos , Idoso , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Medição de Risco/métodos , Fatores de Risco , Software
11.
JAMA Oncol ; 4(11): e181771, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931120

RESUMO

Importance: The association between increasing body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) and risk of breast cancer is unique in cancer epidemiology in that a crossover effect exists, with risk reduction before and risk increase after menopause. The inverse association with premenopausal breast cancer risk is poorly characterized but might be important in the understanding of breast cancer causation. Objective: To investigate the association of BMI with premenopausal breast cancer risk, in particular by age at BMI, attained age, risk factors for breast cancer, and tumor characteristics. Design, Setting, and Participants: This multicenter analysis used pooled individual-level data from 758 592 premenopausal women from 19 prospective cohorts to estimate hazard ratios (HRs) of premenopausal breast cancer in association with BMI from ages 18 through 54 years using Cox proportional hazards regression analysis. Median follow-up was 9.3 years (interquartile range, 4.9-13.5 years) per participant, with 13 082 incident cases of breast cancer. Participants were recruited from January 1, 1963, through December 31, 2013, and data were analyzed from September 1, 2013, through December 31, 2017. Exposures: Body mass index at ages 18 to 24, 25 to 34, 35 to 44, and 45 to 54 years. Main Outcomes and Measures: Invasive or in situ premenopausal breast cancer. Results: Among the 758 592 premenopausal women (median age, 40.6 years; interquartile range, 35.2-45.5 years) included in the analysis, inverse linear associations of BMI with breast cancer risk were found that were stronger for BMI at ages 18 to 24 years (HR per 5 kg/m2 [5.0-U] difference, 0.77; 95% CI, 0.73-0.80) than for BMI at ages 45 to 54 years (HR per 5.0-U difference, 0.88; 95% CI, 0.86-0.91). The inverse associations were observed even among nonoverweight women. There was a 4.2-fold risk gradient between the highest and lowest BMI categories (BMI≥35.0 vs <17.0) at ages 18 to 24 years (HR, 0.24; 95% CI, 0.14-0.40). Hazard ratios did not appreciably vary by attained age or between strata of other breast cancer risk factors. Associations were stronger for estrogen receptor-positive and/or progesterone receptor-positive than for hormone receptor-negative breast cancer for BMI at every age group (eg, for BMI at age 18 to 24 years: HR per 5.0-U difference for estrogen receptor-positive and progesterone receptor-positive tumors, 0.76 [95% CI, 0.70-0.81] vs hormone receptor-negative tumors, 0.85 [95% CI: 0.76-0.95]); BMI at ages 25 to 54 years was not consistently associated with triple-negative or hormone receptor-negative breast cancer overall. Conclusions and Relevance: The results of this study suggest that increased adiposity is associated with a reduced risk of premenopausal breast cancer at a greater magnitude than previously shown and across the entire distribution of BMI. The strongest associations of risk were observed for BMI in early adulthood. Understanding the biological mechanisms underlying these associations could have important preventive potential.

12.
Breast Cancer Res ; 20(1): 29, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29665866

RESUMO

BACKGROUND: Leukocyte telomere length (LTL) and mitochondrial genome (mtDNA) copy number and deletions have been proposed as risk markers for various cancer types, including breast cancer (BC). METHODS: To gain a more comprehensive picture on how these markers can modulate BC risk, alone or in conjunction, we performed simultaneous measurements of LTL and mtDNA copy number in up to 570 BC cases and 538 controls from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. As a first step, we measured LTL and mtDNA copy number in 96 individuals for which a blood sample had been collected twice with an interval of 15 years. RESULTS: According to the intraclass correlation (ICC), we found very good stability over the time period for both measurements, with ICCs of 0.63 for LTL and 0.60 for mtDNA copy number. In the analysis of the entire study sample, we observed that longer LTL was strongly associated with increased risk of BC (OR 2.71, 95% CI 1.58-4.65, p = 3.07 × 10- 4 for highest vs. lowest quartile; OR 3.20, 95% CI 1.57-6.55, p = 1.41 × 10- 3 as a continuous variable). We did not find any association between mtDNA copy number and BC risk; however, when considering only the functional copies, we observed an increased risk of developing estrogen receptor-positive BC (OR 2.47, 95% CI 1.05-5.80, p = 0.04 for highest vs. lowest quartile). CONCLUSIONS: We observed a very good correlation between the markers over a period of 15 years. We confirm a role of LTL in BC carcinogenesis and suggest an effect of mtDNA copy number on BC risk.

13.
Clin Epigenetics ; 10: 38, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29588806

RESUMO

Background: Methylation measures quantified by microarray techniques can be affected by systematic variation due to the technical processing of samples, which may compromise the accuracy of the measurement process and contribute to bias the estimate of the association under investigation. The quantification of the contribution of the systematic source of variation is challenging in datasets characterized by hundreds of thousands of features.In this study, we introduce a method previously developed for the analysis of metabolomics data to evaluate the performance of existing normalizing techniques to correct for unwanted variation. Illumina Infinium HumanMethylation450K was used to acquire methylation levels in over 421,000 CpG sites for 902 study participants of a case-control study on breast cancer nested within the EPIC cohort. The principal component partial R-square (PC-PR2) analysis was used to identify and quantify the variability attributable to potential systematic sources of variation. Three correcting techniques, namely ComBat, surrogate variables analysis (SVA) and a linear regression model to compute residuals were applied. The impact of each correcting method on the association between smoking status and DNA methylation levels was evaluated, and results were compared with findings from a large meta-analysis. Results: A sizeable proportion of systematic variability due to variables expressing 'batch' and 'sample position' within 'chip' was identified, with values of the partial R2 statistics equal to 9.5 and 11.4% of total variation, respectively. After application of ComBat or the residuals' methods, the contribution was 1.3 and 0.2%, respectively. The SVA technique resulted in a reduced variability due to 'batch' (1.3%) and 'sample position' (0.6%), and in a diminished variability attributable to 'chip' within a batch (0.9%). After ComBat or the residuals' corrections, a larger number of significant sites (k = 600 and k = 427, respectively) were associated to smoking status than the SVA correction (k = 96). Conclusions: The three correction methods removed systematic variation in DNA methylation data, as assessed by the PC-PR2, which lent itself as a useful tool to explore variability in large dimension data. SVA produced more conservative findings than ComBat in the association between smoking and DNA methylation.

14.
BMC Cancer ; 18(1): 171, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426294

RESUMO

BACKGROUND: In addition to tumor characteristics and lifestyle factors, cancer relapses are often related to the risk of death but have not been jointly studied. We investigate the prognostic factors of recurrent events and death after a diagnosis of breast cancer and predict individual deaths including a history of recurrences. METHODS: The E3N (Etude Epidémiologique auprès de Femmes de la Mutuelle Générale de l'Education Nationale) study is a prospective cohort study that was initiated in 1990 to investigate factors associated with the most common types of cancer. Overall survival and three types of recurrent events were considered: locoregional recurrence, metastasis, and second primary breast cancer. Recurrent events and death were analyzed using a joint frailty model. RESULTS: The analysis included 4926 women from the E3N cohort diagnosed with a first primary invasive breast cancer between June 1990 and June 2008; during the follow-up, 1334 cases had a recurrence (median time of follow-up is 7.2 years) and 469 women died. Cases with high grade, large tumor size, axillary nodal involvement, and negative estrogen and progesterone receptors had a higher risk of recurrence or death. Furthermore, smoking increased the risk of relapse. For cases with a medium risk profile in terms of tumor characteristics and lifestyle factors, the probability of dying between 5 and 10 years after diagnosis was 6, 20 and 36% for 0, 1 or 2 recurrences within the first 5 years after diagnosis, respectively. CONCLUSIONS: Our study showed the importance of considering baseline lifestyle characteristics and history of relapses to dynamically predict the risk of death in breast cancer cases. Medical experience coupled with an estimate of a patient's survival probability that considers all available information for this patient would enable physicians to make better informed decisions regarding their actions and thus improve clinical output.


Assuntos
Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Adulto , Idoso , Estudos de Coortes , Feminino , França/epidemiologia , Humanos , Estilo de Vida , Pessoa de Meia-Idade , Prognóstico , Fatores de Risco
15.
Curr Opin Oncol ; 30(1): 61-67, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29076965

RESUMO

PURPOSE OF REVIEW: In this article, we describe how recent advances in the study of mutational and epigenetic signatures in tumours provide new opportunities to understand the role of the environment and lifestyle in cancer development. RECENT FINDINGS: Cancer-related mutational events have been investigated for decades but only recently the wide availability of genomic sequences and epigenomic data from thousands of cancer genomes has made it possible to identify numerous distinct mutational and epigenetic signatures through the application of advanced mathematical models. Some of these signatures have been linked to endogenous factors such as defective DNA repair or the action of APOBEC cytidine deaminases and to exogenous factors such as tobacco smoke, ultraviolet light, aflatoxins, aristolochic acid and ionizing radiation. More recently, it has been shown that exposure to factors such as tobacco smoke may also leave marks in the DNA methylation profile of both normal and tumour tissue in target organs. SUMMARY: The analysis of mutational and epigenetic signatures is a novel and useful tool to study cancer. Their application to experimental studies and to studies with detailed data on environmental exposures and lifestyle is likely to improve our understanding of how the environment and lifestyle influence cancer development and its evolution.


Assuntos
Exposição Ambiental , Estilo de Vida , Neoplasias/etiologia , Neoplasias/genética , Animais , Análise Mutacional de DNA , Predisposição Genética para Doença , Humanos , Mutação
16.
Int J Cancer ; 142(2): 262-270, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28921520

RESUMO

Animal and experimental data suggest that anti-Müllerian hormone (AMH) serves as a marker of ovarian reserve and inhibits the growth of ovarian tumors. However, few epidemiologic studies have examined the association between AMH and ovarian cancer risk. We conducted a nested case-control study of 302 ovarian cancer cases and 336 matched controls from nine cohorts. Prediagnostic blood samples of premenopausal women were assayed for AMH using a picoAMH enzyme-linked immunosorbent assay. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using multivariable-adjusted conditional logistic regression. AMH concentration was not associated with overall ovarian cancer risk. The multivariable-adjusted OR (95% CI), comparing the highest to the lowest quartile of AMH, was 0.99 (0.59-1.67) (Ptrend : 0.91). The association did not differ by age at blood draw or oral contraceptive use (all Pheterogeneity : ≥0.26). There also was no evidence for heterogeneity of risk for tumors defined by histologic developmental pathway, stage, and grade, and by age at diagnosis and time between blood draw and diagnosis (all Pheterogeneity : ≥0.39). In conclusion, this analysis of mostly late premenopausal women from nine cohorts does not support the hypothesized inverse association between prediagnostic circulating levels of AMH and risk of ovarian cancer.


Assuntos
Adenocarcinoma de Células Claras/etiologia , Adenocarcinoma Mucinoso/etiologia , Biomarcadores/sangue , Cistadenocarcinoma Seroso/etiologia , Neoplasias do Endométrio/etiologia , Neoplasias Ovarianas/etiologia , Adenocarcinoma de Células Claras/sangue , Adenocarcinoma de Células Claras/epidemiologia , Adenocarcinoma Mucinoso/sangue , Adenocarcinoma Mucinoso/epidemiologia , Adulto , Hormônio Antimülleriano/sangue , Estudos de Casos e Controles , Estudos de Coortes , Cistadenocarcinoma Seroso/sangue , Cistadenocarcinoma Seroso/epidemiologia , Neoplasias do Endométrio/sangue , Neoplasias do Endométrio/epidemiologia , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/epidemiologia , Pré-Menopausa , Prognóstico , Adulto Jovem
17.
Am J Epidemiol ; 187(3): 529-538, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29020168

RESUMO

Measures of biological age based on blood DNA methylation, referred to as age acceleration (AA), have been developed. We examined whether AA was associated with health risk factors and overall and cause-specific mortality. At baseline (1990-1994), blood samples were drawn from 2,818 participants in the Melbourne Collaborative Cohort Study (Melbourne, Victoria, Australia). DNA methylation was determined using the Infinium HumanMethylation450 BeadChip array (Illumina Inc., San Diego, California). Mixed-effects models were used to examine the association of AA with health risk factors. Cox models were used to assess the association of AA with mortality. A total of 831 deaths were observed during a median 10.7 years of follow-up. Associations of AA were observed with male sex, Greek nationality (country of birth), smoking, obesity, diabetes, lower education, and meat intake. AA measures were associated with increased mortality, and this was only partly accounted for by known determinants of health (hazard ratios were attenuated by 20%-40%). Weak evidence of heterogeneity in the association was observed by sex (P = 0.06) and cause of death (P = 0.07) but not by other factors. DNA-methylation-based AA measures are associated with several major health risk factors, but these do not fully explain the association between AA and mortality. Future research should investigate what genetic and environmental factors determine AA.

18.
BMC Cancer ; 17(1): 859, 2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-29246131

RESUMO

BACKGROUND: In a previous paper, we had assumed that the risk of screen-detected breast cancer mostly reflects inherent risk, and the risk of whether a breast cancer is interval versus screen-detected mostly reflects risk of masking. We found that inherent risk was predicted by body mass index (BMI) and dense area (DA) or percent dense area (PDA), but not by non-dense area (NDA). Masking, however, was best predicted by PDA but not BMI. In this study, we aimed to investigate if these associations vary by tumor characteristics and mode of detection. METHODS: We conducted a case-control study nested within the Melbourne Collaborative Cohort Study of 244 screen-detected cases matched to 700 controls and 148 interval cases matched to 446 controls. DA, NDA and PDA were measured using the Cumulus software. Tumor characteristics included size, grade, lymph node involvement, and ER, PR, and HER2 status. Conditional and unconditional logistic regression were applied as appropriate to estimate the Odds per Adjusted Standard Deviation (OPERA) adjusted for age and BMI, allowing the association with BMI to be a function of age at diagnosis. RESULTS: For screen-detected cancer, both DA and PDA were associated to an increased risk of tumors of large size (OPERA ~ 1.6) and positive lymph node involvement (OPERA ~ 1.8); no association was observed for BMI and NDA. For risk of interval versus screen-detected breast cancer, the association with risk for any of the three mammographic measures did not vary by tumor characteristics; an association was observed for BMI for positive lymph nodes (OPERA ~ 0.6). No associations were observed for tumor grade and ER, PR and HER2 status of tumor. CONCLUSIONS: Both DA and PDA were predictors of inherent risk of larger breast tumors and positive nodal status, whereas for each of the three mammographic density measures the association with risk of masking did not vary by tumor characteristics. This might raise the hypothesis that the risk of breast tumours with poorer prognosis, such as larger and node positive tumours, is intrinsically associated with increased mammographic density and not through delay of diagnosis due to masking.


Assuntos
Densidade da Mama , Neoplasias da Mama/diagnóstico por imagem , Mama/patologia , Detecção Precoce de Câncer/métodos , Sistema de Registros/estatística & dados numéricos , Idoso , Austrália/epidemiologia , Índice de Massa Corporal , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Mamografia , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco
19.
Sci Rep ; 7(1): 16266, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176660

RESUMO

Low socioeconomic status (SES) is associated with earlier onset of age-related chronic conditions and reduced life-expectancy, but the underlying biomolecular mechanisms remain unclear. Evidence of DNA-methylation differences by SES suggests a possible association of SES with epigenetic age acceleration (AA). We investigated the association of SES with AA in more than 5,000 individuals belonging to three independent prospective cohorts from Italy, Australia, and Ireland. Low SES was associated with greater AA (ß = 0.99 years; 95% CI 0.39,1.59; p = 0.002; comparing extreme categories). The results were consistent across different SES indicators. The associations were only partially modulated by the unhealthy lifestyle habits of individuals with lower SES. Individuals who experienced life-course SES improvement had intermediate AA compared to extreme SES categories, suggesting reversibility of the effect and supporting the relative importance of the early childhood social environment. Socioeconomic adversity is associated with accelerated epigenetic aging, implicating biomolecular mechanisms that may link SES to age-related diseases and longevity.

20.
Environ Health Perspect ; 125(10): 107005, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29033383

RESUMO

BACKGROUND: Epidemiological evidence on the association between ambient air pollution and breast cancer risk is inconsistent. OBJECTIVE: We examined the association between long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in European women. METHODS: In 15 cohorts from nine European countries, individual estimates of air pollution levels at the residence were estimated by standardized land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE) and Transport related Air Pollution and Health impacts ­ Integrated Methodologies for Assessing Particulate Matter (TRANSPHORM) projects: particulate matter (PM) ≤2.5µm, ≤10µm, and 2.5­10µm in diameter (PM2.5, PM10, and PMcoarse, respectively); PM2.5 absorbance; nitrogen oxides (NO2 and NOx); traffic intensity; and elemental composition of PM. We estimated cohort-specific associations between breast cancer and air pollutants using Cox regression models, adjusting for major lifestyle risk factors, and pooled cohort-specific estimates using random-effects meta-analyses. RESULTS: Of 74,750 postmenopausal women included in the study, 3,612 developed breast cancer during 991,353 person-years of follow-up. We found positive and statistically insignificant associations between breast cancer and PM2.5 {hazard ratio (HR)=1.08 [95% confidence interval (CI): 0.77, 1.51] per 5 µg/m3}, PM10 [1.07 (95% CI: 0.89, 1.30) per 10 µg/m3], PMcoarse[1.20 (95% CI: 0.96, 1.49 per 5 µg/m3], and NO2 [1.02 (95% CI: 0.98, 1.07 per 10 µg/m3], and a statistically significant association with NOx [1.04 (95% CI: 1.00, 1.08) per 20 µg/m3, p=0.04]. CONCLUSIONS: We found suggestive evidence of an association between ambient air pollution and incidence of postmenopausal breast cancer in European women. https://doi.org/10.1289/EHP1742.


Assuntos
Poluição do Ar/estatística & dados numéricos , Neoplasias da Mama/epidemiologia , Exposição Ambiental/estatística & dados numéricos , Pós-Menopausa/fisiologia , Idoso , Poluentes Atmosféricos/análise , Estudos de Coortes , Europa (Continente)/epidemiologia , Feminino , Humanos , Incidência , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA