Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(24): 4990-4997, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32515597

RESUMO

Free cationic manganese atoms and clusters Mnx+ (x = 1-3) have been reacted with small carboxylic acids (formic, acetic, and propionic acids) and methyl acetate in a flow tube reactor held at room temperature. The geometry of the thus formed complexes has subsequently been studied via infrared multiple-photon dissociation (IR-MPD) spectroscopy and density-functional theory (DFT) calculations. The IR-MPD spectra of the acid complexes show two signals in the C═O stretch region indicating the coexistence of two conformers. In agreement, the DFT calculations reveal that the-intrinsically less stable-cis-conformer of the carboxylic acids binds more strongly to Mn+ than the trans-conformer, which leads to the energetic stabilization of the former. This stronger binding is attributed to a stronger electrostatic interaction with the manganese cation. A similar stabilization is also predicted for the cis-conformer of methyl acetate; however, the resulting change of the C═O stretch eigenfrequency is too small to be resolved in the experiment. This finding can open up completely new routes for the future room-temperature preparation of the cis-conformers of carboxylic acids and their derivatives.

2.
Phys Chem Chem Phys ; 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32400803

RESUMO

Determining the precise structures of small gold clusters is an essential step towards understanding their chemical and physical properties. Due to the relativistic nature of gold, its clusters remain planar (2D) up to appreciable sizes. Ion mobility experiments have suggested that positively charged gold clusters adopt three-dimensional (3D) structures from n = 8 onward. Computations predict, depending on the level of theory, 2D or 3D structures as putative energy-minimum for n = 8. In this work, far-infrared multiple photon dissociation spectroscopy, using Ar as tagging element, is combined with density-functional theory calculations to determine the structures of Aun+ (n ≤ 9) clusters formed by laser ablation. While the Au frameworks in Au6Arm+ and Au7Arm+ complexes are confirmed to be planar and that in Au9Arm+ three-dimensional, we demonstrate the coexistence of 3D and planar Au8Arm+ (m = 1-3) isomers. Thus, it is revealed that at finite temperatures, the formal 2D to 3D transition takes place at n = 8 but is not sharp.

3.
J Phys Chem Lett ; : 4408-4412, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32396005

RESUMO

Iridium and rhodium are group IX elements that can both catalytically reduce NO. To understand the difference in their reactivity toward NO, the adsorption forms of NO onto clusters of Ir and Rh are compared using vibrational spectra, recorded via infrared multiple-photon dissociation spectroscopy. The spectra give evidence for the existence of at least two specific adsorption forms. The main Ir6+NO isomer is one in which NO is dissociated, whereas one other is a local minimum structure in the reaction pathway leading to dissociative adsorption. In contrast to adsorption onto Rh6+, where less than 10% of the isomeric population was found in the global minimum associated with dissociative adsorption, a substantial fraction (about 50%) of NO dissociates on Ir6+. This higher efficiency is attributed to a considerably reduced activation barrier for dissociation on Ir6+. The key chemical property identified for dissociation efficiency is the cluster's affinity to atomic oxygen.

4.
J Phys Chem A ; 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31994885

RESUMO

The interaction of manganese oxide clusters MnxOy+ (x = 2-5, y ≥ x) with CO2 is studied via infrared multiple-photon dissociation spectroscopy (IR-MPD) in the spectral region of 630-1860 cm-1. Along with vibrational modes of the manganese oxide cluster core, two bands are observed around 1200-1450 cm-1 and they are assigned to the characteristic Fermi resonance of CO2 arising from anharmonic coupling between the symmetric stretch vibration and the overtone of the bending mode. The spectral position of the lower frequency band depends on the cluster size and the number of adsorbed CO2 molecules, whereas the higher frequency band is largely unaffected. Despite these effects, the observation of the Fermi dyad indicates only a small perturbation of the CO2 molecule. This finding is confirmed by the theoretical investigation of Mn2O2(CO2)+ revealing only small orbital mixing between the dimanganese oxide cluster and CO2, indicative of mainly electrostatic interaction.

5.
Phys Chem Chem Phys ; 21(43): 23922-23930, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31661104

RESUMO

Infrared multiple-photon dissociation (IR-MPD) spectroscopy and density functional theory (DFT) calculations have been employed to elucidate the geometric structure of a series of di-manganese oxide clusters Mn2Ox+ (x = 4-7). The theoretical exploration predicts that all investigated clusters contain a rhombus-like Mn2O2 core with up to four, terminally bound, oxygen atoms. The short Mn-O bond length of the terminal oxygen atoms of ≤1.58 Å indicates triple bond character instead of oxyl radical formation. However, the IR-MPD spectra reveal that higher energy isomers with up to two O2 molecules η2-coordinated to the cluster core can be kinetically trapped under the given experimental conditions. In these complexes, all O2 units are activated to superoxide species. In addition, the sequential increase of the oxygen content in the cluster allows for a controlled increase of the positive charge localized on the Mn atoms reaching a maximum for Mn2O7+.

6.
J Phys Chem A ; 123(41): 8932-8941, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31542925

RESUMO

The present work explores the structure of the gold carbene cation, AuCH2+, using infrared multiple photon dissociation action spectroscopy and density functional theory (DFT). Unlike several other 5d transition-metal cations (M+ = Ta+, W+, Os+, Ir+, and Pt+) that react with methane by dehydrogenation to form MCH2+ species, gold cations are unreactive with methane at thermal energies. Instead, the metal carbene is formed by reacting atomic gold cations formed in a laser ablation source with ethylene oxide (cC2H4O) pulsed into a reaction channel downstream. The resulting [Au,C,2H]+ product photofragmented by loss of H2 as induced by radiation provided by the free-electron laser for intracavity experiments in the 300-1800 cm-1 range. Comparison of the experimental spectrum, obtained by monitoring the appearance of AuC+, and DFT calculated spectra leads to the identification of the ground-state carbene, AuCH2+ (1A1), as the species formed, as previously postulated theoretically. Unlike the covalent double bonds formed by the lighter, open-shell 5d transition metals, the closed-shell Au+ (1S, 5d10) atom binds to methylene by donation of a pair of electrons from CH2(1A1) into the empty 6s orbital of gold coupled with π back-bonding, i.e., dative bonding, as explored computationally. Contributions to the AuC+ appearance spectrum from larger complexes are also considered, and H2CAu+(c-C2H4O) seems likely to contribute one band observed.

7.
J Am Soc Mass Spectrom ; 30(10): 1895-1905, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31300975

RESUMO

Infrared multiple photon dissociation (IR-MPD) spectroscopy in conjunction with density functional theory (DFT) calculations has been employed to study the activation of molecular oxygen and ethylene co-adsorbed on a free gold dimer cation Au2+. Both studied complexes, Au2O2(C2H4)+ and Au2O2(C2H4)2+, show distinct features of both intact O2 and ethylene co-adsorbed on the cluster. However, the ethylene C=C double bond is activated, increasing in length by up to 0.07 Å compared with the free molecule, and the red shift of the O-O vibration frequency increases with the number of adsorbed ethylene molecules, indicating a small but increasing activation of the O-O bond. The small O2 activation and the rather weak interaction between O2 and C2H4 are also reflected in the calculated electronic structure of the co-adsorption complexes which shows only a small occupation of the empty anti-bonding O2 2π*2p orbital as well as the localization of most of the Kohn-Sham orbitals on O2 and C2H4, respectively, with only limited mixing between O2 and C2H4 orbitals. The results are compared with theoretical studies on neutral AuxO2(C2H4) (x = 3, 5, 7, 9) complexes.

8.
J Phys Chem Lett ; 10(9): 2151-2155, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30977666

RESUMO

Coinage metal clusters are of great importance for a wide range of scientific fields, ranging from microscopy to catalysis. Despite their clear fundamental and technological importance, the experimental structural determination of copper clusters has attracted little attention. We fill this gap by elucidating the structure of cationic copper clusters through infrared (IR) photodissociation spectroscopy of Cu n+-Ar m complexes. Structures of Cu n+ ( n = 3-10) are unambiguously assigned based on the comparison of experimental IR spectra in the 70-280 cm-1 spectral range with spectra calculated using density functional theory. Whereas Cu3+ and Cu4+ are planar, starting from n = 5, Cu n+ clusters adopt 3D structures. Each successive cluster size is composed of its predecessor with a single atom adsorbed onto the face, giving evidence of a stepwise growth.

9.
J Phys Condens Matter ; 30(50): 504001, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30465551

RESUMO

The interaction of ethylene with free gold clusters of different sizes and charge states has been previously shown theoretically to involve two different adsorption modes of the C2H4 molecule, namely: the di-σ- and π-bonded ethylene adsorption configurations. Here, we present the first experimental investigation of the structure of a series of gas-phase gold-ethylene complexes, [Formula: see text]. By employing infrared multiple-photon dissociation spectroscopy in conjunction with first-principles calculations it is revealed that up to three C2H4 molecules preferably bind to gold cations in a π-bonded configuration. The binding of all ethylene molecules is found to be dominated by partial electron donation from the ethylene molecules to the gold clusters leading to an activation of the C-C bond. The cooperative action of multiple coadsorbed C2H4 on [Formula: see text] is shown to enable additional charge back-donation and an enhanced C-C bond activation. In contrast, the strong C-H bond is not weakened and the experimental spectra do not give any indication for C-H bond dissociation. The possible correlations of the C-C bond stretch vibration with the C-C bond length and the net charge transfer are discussed.

10.
J Phys Condens Matter ; 30(47): 474002, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30403192

RESUMO

Small cobalt clusters [Formula: see text] and their single chromium atom doped counterparts Co n-1Cr+ (n = 3-5) were studied mass spectrometrically by measuring the infrared multiple photon dissociation (IRMPD) spectra of the corresponding argon tagged complexes. The geometric and electronic structures of the [Formula: see text] and Co n-1Cr+ (n = 3-5) clusters as well as their Ar complexes were optimized by density functional theory (DFT) calculations. The obtained lowest energy structures were confirmed by comparing the IRMPD spectra of [Formula: see text] and [Formula: see text] (n = 3-5, m = 3 and 4) with the corresponding calculated IR spectra. The calculations reveal that the doped Co n-1Cr+ clusters retain the geometric structures of the most stable [Formula: see text] clusters. However, the coupling of the local magnetic moments within the clusters is altered in a size-dependent way: the Cr atom is ferromagnetically coupled in Co2Cr+ and Co3Cr+, while it is antiferromagnetically coupled in Co4Cr+.

11.
J Am Soc Mass Spectrom ; 29(9): 1781-1790, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29633220

RESUMO

The present work explores the structures of species formed by dehydrogenation of methane (CH4) and perdeuterated methane (CD4) by the 5d transition metal cation osmium (Os+). Using infrared multiple photon dissociation (IRMPD) action spectroscopy and density functional theory (DFT), the structures of the [Os,C,2H]+ and [Os,C,2D]+ products are explored. This study complements previous work on the related species formed by dehydrogenation of methane by four other 5d transition metal cations (M+ = Ta+, W+, Ir+, and Pt+). Osmium cations are formed in a laser ablation source, react with methane pulsed into a reaction channel downstream, and the resulting products spectroscopically characterized through photofragmentation using the Free-Electron Laser for IntraCavity Experiments (FELICE) in the 300-1800 cm-1 range. Photofragmentation was monitored by the loss of H2/D2. Comparison of the experimental spectra and DFT calculated spectra leads to identification of the ground state carbyne hydride, HOsCH+ (2A') as the species formed, as previously postulated theoretically. Further, a full description of the systematic spectroscopic shifts observed for deuterium labeling of these complexes, some of the smallest systems to be studied using IRMPD action spectroscopy, is achieved. A full rotational contour analysis explains the observed linewidths as well as the observation of doublet structures in several bands, consistent with previous observations for HIrCH+ (2A'). Graphical Abstract ᅟ.

12.
Chemphyschem ; 19(12): 1424-1427, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29571224

RESUMO

The electronic structure of metal clusters is notoriously difficult to detect spectroscopically, due to rapid relaxation into the ground state following excitation. We have used IR multiple photon excitation to identify a low-lying electronic state in a tantalum carbide cluster. The electronic excitation is found at 458 cm-1 , and is confirmed by experiments on isotopically labeled clusters. Time-dependent density functional theory (TD-DFT) calculations confirm the current assignment, but a second predicted electronic state was not observed.

13.
J Chem Phys ; 148(4): 044307, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29390852

RESUMO

A previous infrared multiple photon dissociation (IRMPD) action spectroscopy and density functional theory (DFT) study explored the structures of the [M,C,2H]+ products formed by dehydrogenation of methane by four, gas-phase 5d transition metal cations (M+ = Ta+, W+, Ir+, and Pt+). Complicating the analysis of these spectra for Ir and Pt was observation of an extra band in both spectra, not readily identified as a fundamental vibration. In an attempt to validate the assignment of these additional peaks, the present work examines the gas phase [M,C,2D]+ products of the same four metal ions formed by reaction with perdeuterated methane (CD4). As before, metal cations are formed in a laser ablation source and react with methane pulsed into a reaction channel downstream, and the resulting products are spectroscopically characterized through photofragmentation using the free-electron laser for intracavity experiments in the 350-1800 cm-1 range. Photofragmentation was monitored by the loss of D for [Ta,C,2D]+ and [W,C,2D]+ and of D2 in the case of [Pt,C,2D]+ and [Ir,C,2D]+. Comparison of the experimental spectra and DFT calculated spectra leads to structural assignments for all [M,C,2H/2D]+ systems that are consistent with previous identifications and allows a full description of the systematic spectroscopic shifts observed for deuterium labeling of these complexes, some of the smallest systems to be studied using IRMPD action spectroscopy. Further, full rotational contours are simulated for each vibrational band and explain several observations in the present spectra, such as doublet structures in several bands as well as the observed linewidths. The prominent extra bands in the [Pt,C,2D/2H]+ spectra appear to be most consistent with an overtone of the out-of-plane bending vibration of the metal carbene cation structure.

14.
Angew Chem Int Ed Engl ; 56(43): 13406-13410, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28869784

RESUMO

Methane represents the major constituent of natural gas. It is primarily used only as a source of energy by means of combustion, but could also serve as an abundant hydrocarbon feedstock for high quality chemicals. One of the major challenges in catalysis research nowadays is therefore the development of materials that selectively cleave one of the four C-H bonds of methane and thus make it amenable for further chemical conversion into valuable compounds. By employing infrared spectroscopy and first-principles calculations it is uncovered herein that the interaction of methane with small gold cluster cations leads to selective C-H bond dissociation and the formation of hydrido methyl complexes, H-Aux+ -CH3 . The distinctive selectivity offered by these gold clusters originates from a fine interplay between the closed-shell nature of the d states and relativistic effects in gold. Such fine balance in fundamental interactions could prove to be a tunable feature in the rational design of a catalyst.

15.
Phys Chem Chem Phys ; 19(29): 19360-19368, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28707685

RESUMO

The structures of small cationic silver clusters Agn+ (n = 3-13) are investigated by comparing measured far-infrared multiple photon dissociation spectra of cluster-argon complexes with the calculated harmonic vibrational spectra of different low-energy structural isomers. A global structure search was carried out using the CALYPSO structure prediction method, after which isomers were locally optimized with the meta GGA functional TPSS. The obtained structures of the cationic silver clusters are mostly consistent with earlier ion mobility measurements and photodissociation spectroscopy studies for Agn+ (n = 3-11) and allowed excluding several structural isomers that were considered in those earlier studies, which illustrates the strength of combining multiple experimental techniques for conclusive structural identification. The growth pattern of the cationic silver clusters is discussed and differences with other cationic coinage metal clusters are highlighted.

16.
J Immunol ; 197(12): 4829-4837, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27807190

RESUMO

Human IgG1 type I CD20 Abs, such as rituximab and ofatumumab (OFA), efficiently induce complement-dependent cytotoxicity (CDC) of CD20+ B cells by binding of C1 to hexamerized Fc domains. Unexpectedly, we found that type I CD20 Ab F(ab')2 fragments, as well as C1q-binding-deficient IgG mutants, retained an ability to induce CDC, albeit with lower efficiency than for whole or unmodified IgG. Experiments using human serum depleted of specific complement components demonstrated that the observed lytic activity, which we termed "accessory CDC," remained to be dependent on C1 and the classical pathway. We hypothesized that CD20 Ab-induced clustering of the IgM or IgG BCR was involved in accessory CDC. Indeed, accessory CDC was consistently observed in B cell lines expressing an IgM BCR and in some cell lines expressing an IgG BCR, but it was absent in BCR- B cell lines. A direct relationship between BCR expression and accessory CDC was established by transfecting the BCR into CD20+ cells: OFA-F(ab')2 fragments were able to induce CDC in the CD20+BCR+ cell population, but not in the CD20+BCR- population. Importantly, OFA-F(ab')2 fragments were able to induce CDC ex vivo in malignant B cells isolated from patients with mantle cell lymphoma and Waldenström macroglobulinemia. In summary, accessory CDC represents a novel effector mechanism that is dependent on type I CD20 Ab-induced BCR clustering. Accessory CDC may contribute to the excellent capacity of type I CD20 Abs to induce CDC, and thereby to the antitumor activity of such Abs in the clinic.


Assuntos
Anticorpos Monoclonais/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Antígenos CD20/metabolismo , Linfócitos B/efeitos dos fármacos , Via Clássica do Complemento , Imunoterapia Adotiva/métodos , Linfoma de Células B/terapia , Rituximab/metabolismo , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Antígenos CD20/imunologia , Linfócitos B/imunologia , Linhagem Celular Tumoral , Complemento C1/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Imunoglobulina M/genética , Imunoglobulina M/metabolismo , Linfoma de Células B/imunologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Rituximab/genética , Rituximab/uso terapêutico
17.
J Phys Chem A ; 120(43): 8599-8605, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27736071

RESUMO

Infrared multiple photon dissociation (IRMPD) spectra of Rh6Om+ (m = 4-10) are obtained in the 300-1000 cm-1 spectral range using the free electron laser for infrared experiments (FELIX) via dissociation of Rh6Om+ or Rh6Om+-Ar complexes. The spectra are compared with the calculated spectra of several stable geometries obtained by density functional theory (DFT) structural optimization. The spectrum for Rh6O4+ shows prominent bands at 620 and 690 cm-1 and is assigned to a capped-square pyramidal Rh atom geometry with three bridging O atoms and one O atom in a hollow site. Rh6O5+ displays bands at 460, 630, 690, and 860 cm-1 and has a prismatic Rh geometry with three bridging O atoms and two O atoms in a hollow site. Rh6O6+ shows three intense bands around 600-750 cm-1 and multiple weak bands in the range of 350-550 cm-1. This species has a prismatic Rh geometry with four bridging O atoms and two O atoms in a hollow site. Considering that Rh6Om+ (m ≤ 3) adopts tetragonal bipyramidal Rh6 structures, the change at m = 4 to capped bipyramidal and at m = 5 to prismatic geometries results in a reduction of the number of triangular hollow sites. Since NO preferentially binds on a triangular hollow site through the N atom, the geometry change lowers the possibility of NO dissociative adsorption.

18.
J Phys Chem A ; 120(31): 6216-27, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27438025

RESUMO

Activation of C-H bonds in the sequential reactions of Pt(+) + x(CH4/CD4), where x = 1-4, have been investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and theoretical calculations. Pt(+) cations are formed by laser ablation and exposed to controlled amounts of CH4/CD4 leading to [Pt,xC,(4x-2)H/D](+) dehydrogenation products. Irradiation of these products in the 400-2100 cm(-1) range leads to CH4/CD4 loss from the x = 3 and 4 products, whereas PtCH2(+)/PtCD2(+) products do not decompose at all, and x = 2 products dissociate only when formed from a higher order product. The structures of these complexes were explored theoretically at several levels of theory with three different basis sets. Comparison of the experimental and theoretical results indicate that the species formed have a Pt(CH3)2(+)(CH4)x-2/Pt(CD3)2(+)(CD4)x-2 binding motif for x = 2-4. Thus, reaction of Pt(+) with methane occurs by C-H bond activation to form PtCH2(+), which reacts with an additional methane molecule by C-H bond activation to form the platinum dimethyl cation. This proposed reaction mechanism is consistent with theoretical explorations of the potential energy surface for reactions of Pt(+) with one and two methane molecules.

19.
J Phys Chem Lett ; 7(13): 2381-7, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27266896

RESUMO

Cationic iron clusters, produced through laser ablation and subsequently complexed with a water molecule Fen(+)-H2O (n = 6-15) are mass-selectively investigated via infrared multiple photon dissociation (IR-MPD) spectroscopy in the 300-1700 cm(-1) spectral range. The experimental data are complemented by density functional theory calculations at the OPBE/TZP level for the Fe13(+)-H2O system. The observed spectra can be explained by a mixture of clusters where for a majority water is adsorbed molecularly but for a small but significant fraction also dissociation of water molecules occurs. The bands observed at frequencies 300-700 cm(-1) exhibit regular, size-dependent frequency shifts, showing that (a) dissociation takes places on all cluster sizes and (b) the interaction of water with the cluster surface is not influenced much by the particular cluster structure. The intensity evolution of the absorption bands suggests that dissociation is increasingly probable for larger cluster sizes.

20.
Phys Chem Chem Phys ; 18(23): 15727-37, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27226138

RESUMO

In the quest for cheap and earth abundant but highly effective and energy efficient water splitting catalysts, manganese oxide represents one of the materials of choice. In the framework of a new hierarchical modeling strategy we employ free non-ligated manganese oxide clusters MnxOx+y(+) (x = 2-5, y = -1, 0, 1, 2) as simplified molecular models to probe the interaction of water with nano-scale manganese oxide materials. Infrared multiple-photon dissociation (IR-MPD) spectroscopy in conjunction with first-principles spin density functional theory calculations is applied to study several series of MnxOx+y(H2O)n(+) complexes and reveal that the reaction of water with MnxOx+y(+) leads to the deprotonation of the water molecules via hydroxylation of the cluster oxo-bridges. This process is independent of the formal Mn oxidation state and occurs already for the first adsorbed water molecule and it proceeds until all oxo-bridges are hydroxylated. Additional water molecules are bound intact and favorably form H3O2 units with the hydroxylated oxo-bridges. Water adsorption and deprotonation is also found to induce structural transformations of the cluster core, including dimensionality crossover. Furthermore, the IR-MPD measurements reveal that clusters with one oxygen atom in excess MnxOx+1(+) contain a terminal O atom while clusters with two oxygen atoms in excess MnxOx+2(+) contain an intact O2 molecule which, however, dissociates upon adsorption of a minimum number of water molecules. These basic concepts could aid the future design of artificial water-splitting molecular catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA