Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(39): 24116-24122, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178263

RESUMO

Neuromorphic computing requires materials able to yield electronic switching behavior in response to external stimuli. Transition-metal dichalcogenides surfaces covered by partial or full monolayers of molecular species have shown promise due to their potential for tunable interfacial charge transfer. Here, we demonstrate a class of molecules able to position MoS2 surfaces on the cusp of electronic instabilities. Density functional theory (DFT) calculations and ab initio molecular dynamics simulations are used to study the interaction of four reduced pyridinium-derived pi-conjugated molecules with the pristine basal planes of MoS2, by exploring the dynamical evolution of the system at room temperature with regards to the effective band gap, radius of gyration (rog), and charge transfer. Computed rog profiles show that low concentrations of small reduced methyl viologen molecules have high mobilities on top of the surface of the basal plane at room temperature leading to unstable surface deposition, whereas a full monolayer of larger fused-ring molecules deposited on the basal surface shows greater thermal stability. DFT analyses show these larger reduced pyridinium derivatives promote n-type doping on the basal plane due to a built-in electric field, which can be systematically tuned to induce a switching effect, opening and closing a bandgap and providing a fundamental means of driving electronic instabilities needed for emulating neuronal functionality.


Assuntos
Molibdênio , Paraquat , Eletrônica , Simulação de Dinâmica Molecular , Software
2.
Nanoscale ; 14(13): 5068-5078, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35293922

RESUMO

MXenes have shown great promise as electrocatalysts for the hydrogen evolution reaction (HER), but their mechanism is still poorly understood. Currently, the benchmark Ti3C2 MXene suffers from a large overpotential. In order to reduce this overpotential, modifications must be made to the structure to increase the reaction rate of the H+/e- coupled transfer steps. These modifications heavily depend on understanding the HER mechanism. To remedy this, in situ/operando Raman spectroelectrochemistry combined with density functional theory (DFT) calculations are utilized to probe the HER mechanism of the Ti3C2 MXene catalyst in aqueous media. In acidic electrolytes, the -O- termination groups are protonated to form Ti-OH bonds, followed by protonation of the adjacent Ti site, leading to H2 formation. DFT calculations show that the large overpotential is due to the lack of an optimum balance between O and Ti sites. In neutral electrolytes, H2O reduction occurs on the surface and leads to surface protonation, followed by H2 formation. This results in an overcharging of the structure that leads to the observed large HER overpotential. This study provides new insights into the HER mechanisms of MXene catalysts and a pathway forward to design efficient and cost-effective catalysts for HER and related electrochemical energy conversion systems.

3.
ACS Appl Mater Interfaces ; 14(2): 2817-2824, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34994191

RESUMO

The products of solvent polymerization and degradation are crucial components of the Li-metal battery solid-electrolyte interphase. However, in-depth mechanistic studies of these reactions are still scarce. Here, we model the polymerization of common lithium battery electrolyte solvents─ethylene carbonate (EC) and vinylene carbonate (VC)─near the anode surface. Being consistent with the molecular calculation, ab initio molecular dynamic (AIMD) simulations reveal fast solvent decompositions upon contact with the Li anode. Additionally, we assessed the thermochemical impacts of decarboxylation reactions as well as the lithium bonding with reaction intermediates. In both EC and VC polymerization pathways, lithium bonding demonstrated profound catalytic effects while different degrees of decarboxylation were observed. The VC polymerization pathways with and without ring-opening events were evaluated systematically, and the latter one which leads to poly(VC) formation was proven to dominate the oligomerization process. Both the decomposition and polymerization reactivities of VC are found to be higher than EC, while the cross-coupling between EC and VC has an even lower-energy barrier. These findings are in good agreement with experimental evidence and explanatory toward the enhanced performance of VC-added lithium-metal batteries.

4.
J Chem Phys ; 155(12): 124701, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598576

RESUMO

The solid-electrolyte interphase (SEI) layer is a critical constituent of battery technology, which incorporates the use of lithium metals. Since the formation of the SEI is difficult to avoid, the engineering and harnessing of the SEI are absolutely critical to advancing energy storage. One problem is that much fundamental information about SEI properties is lacking due to the difficulty in probing a chemically complex interfacial system. One such property that is currently unknown is the dissolution of the SEI. This process can have significant effects on the stability of the SEI, which is critical to battery performance but is difficult to probe experimentally. Here, we report the use of ab initio computational chemistry simulations to probe the solution state properties of SEI components LiF, Li2O, LiOH, and Li2CO3 in order to study their dissolution and other solution-based characteristics. Ab initio molecular dynamics was used to study the solvation structures of the SEI with a combination of radial distribution functions, discrete solvation structure maps, and vibrational density of states, which allows for the determination of free energies. From the change in free energy of dissolution, we determined that LiOH is the most likely component to dissolve in the electrolyte followed by LiF, Li2CO3, and Li2O although none were favored thermodynamically. This indicates that dissolution is not probable, but Li2O would make the most stable SEI with regard to dissolution in the electrolyte.

5.
J Phys Chem Lett ; 12(38): 9360-9367, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34550703

RESUMO

Delineating intricate interactions between highly reactive Li-metal electrodes and the diverse constituents of battery electrolytes has been a long-standing scientific challenge in materials design for advanced energy storage devices. Here, we isolated lithium polysulfide anions (LiS4-) from an electrolyte solution based on their mass-to-charge ratio and deposited them on Li-metal electrodes under clean vacuum conditions using ion soft landing (ISL), a highly controlled interface preparation technique. The molecular level precision in the construction of these model interfaces with ISL, coupled with in situ X-ray photoelectron spectroscopy and ab initio theoretical calculations, allowed us to obtain unprecedented insight into the parasitic reactions of well-defined polysulfides on Li-metal electrodes. Our study revealed that the oxide-rich surface layer, which is amenable to direct electron exchange, drives multielectron sulfur oxidation (S0 → S6+) processes. Our results have substantial implications for the rational design of future Li-S batteries with improved efficiency and durability.

6.
Angew Chem Int Ed Engl ; 60(34): 18845-18851, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34196094

RESUMO

Aqueous Zn batteries promise high energy density but suffer from Zn dendritic growth and poor low-temperature performance. Here, we overcome both challenges by using an eutectic 7.6 m ZnCl2 aqueous electrolyte with 0.05 m SnCl2 additive, which in situ forms a zincophilic/zincophobic Sn/Zn5 (OH)8 Cl2 ⋅H2 O bilayer interphase and enables low temperature operation. Zincophilic Sn decreases Zn plating/stripping overpotential and promotes uniform Zn plating, while zincophobic Zn5 (OH)8 Cl2 ⋅H2 O top-layer suppresses Zn dendrite growth. The eutectic electrolyte has a high ionic conductivity of ≈0.8 mS cm-1 even at -70 °C due to the distortion of hydrogen bond network by solvated Zn2+ and Cl- . The eutectic electrolyte enables Zn∥Ti half-cell a high Coulombic efficiency (CE) of >99.7 % for 200 cycles and Zn∥Zn cell steady charge/discharge for 500 h with a low overpotential of 8 mV at 3 mA cm-2 . Practically, Zn∥VOPO4 batteries maintain >95 % capacity with a CE of >99.9 % for 200 cycles at -50 °C, and retain ≈30 % capacity at -70 °C of that at 20 °C.

7.
Chem Commun (Camb) ; 57(50): 6189-6192, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34048526

RESUMO

Electrolyte structure and ion solvation dynamics determine ionic conductivities, and ion (de)solvation processes dominate interfacial chemistry and electrodeposition barriers. We elucidate electrolyte effects facilitating or impeding Li+ diffusion and deposition, and evaluate structural and energetic changes during the solvation complex pathway from the bulk to the anode surface.

8.
J Chem Phys ; 154(10): 104702, 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33722005

RESUMO

Localized high concentration electrolytes have been proposed as an effective route to construct stable solid-electrolyte interphase (SEI) layers near Li-metal anodes. However, there is still a limited understanding of the decomposition mechanisms of electrolyte components during SEI formation. In this work, we investigate reactivities of lithium bis(fluorosulfonyl)imide (LiFSI, salt), 1,2-dimethoxyethane (DME, solvent), and tris(2,2,2-trifluoroethyl)orthoformate (TFEO, diluent) species in DME + TFEO mixed solvents and 1M LiFSI/DME/TFEO solutions. By supplying an excess of electrons into the simulation cell, LiFSI is initially reduced via a four-electron charge transfer reaction yielding F- and N(SO2)2 3-. The local solvation environment has little effect on the subsequent TFEO reaction, which typically requires 6 |e| to decompose into F-, HCOO-, CH2CF-, and -OCH2CF3. Besides, the TFEO dehydrogenation reaction mechanism under an attack of anions is also identified. Unlike salt and diluent, DME shows good stability with any excess of electrons. The energetics of most relevant reactions are characterized. Most reactions are thermodynamically favorable with low activation barriers.

9.
ACS Appl Mater Interfaces ; 13(1): 491-502, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33377389

RESUMO

Like no other sulfur host material, polyacrylonitrile-derived sulfurized carbon (SPAN) promises improved electrochemical performance for lithium-sulfur batteries, based on its compatibility with carbonate solvents and ability to prevent self-discharge and shuttle effect. However, a complete understanding of the SPAN's lithiation mechanism is still missing because its structural features vary widely with synthesis conditions, and its electrochemical performance deviates from elemental sulfur. This study continues our research on the elucidation of the SPAN's structural characteristics and lithiation mechanisms via computational approaches. Our models reproduce most experimental data regarding carbon's graphitization level and conjugated ordering, sulfur-carbon covalent bonding, sulfur loading, and elemental composition. Our simulations emulate the discharge voltage observed in experiments for the first discharge, which reveals that sulfur follows multiple reduction pathways based on its interaction with the carbon backbone. Sulfur reduction takes place above 1.0 V vs Li/Li+ mostly in the SPAN-like material, with no long-chain lithium polysulfide formation. Below 1.0 V vs Li/Li+, the backbone's electrochemical activity occurs via multiple C-Li and N-Li interactions, mostly with edge carbon atoms and pyridinic nitrogen. Moreover, we identify Li+ binding sites throughout the graphitized backbone that might lead to prohibited energy costs for Li+ deintercalation, which may explain the irreversible capacity loss between the first and second discharges. This work improves understanding of lithiation mechanisms in sulfurized carbon, which is useful for rationally designing SPAN synthesis pathways tailored to increase sulfur loading and enhanced electrochemical performance.

10.
Nanoscale ; 12(42): 21923-21931, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33112348

RESUMO

The structure and phase transformation of a cobalt (Co) catalyst, during single walled carbon nanotube (SWCNT) growth, is elucidated for inactive, active and deactivated nanoparticles by in situ imaging using an environmental transmission electron microscope. During nanotube growth, the structure was analyzed using Miller indices to determine the types of planes that favor anchoring or liftoff of nanotubes from the Co catalyst. Density functional theory was further applied to model the catalyst interactions to compare the work of adhesion of the catalyst's faceted planes to understand the interactions of different Miller planes with the graphene structure. Through in-depth studies of multiple distinct Co nanoparticles, we established a dominant nanoparticle phase for SWCNT growth. In addition, we identified the preferred lattice planes and a threshold for work of adhesion to allow the anchoring and liftoff of SWCNTs.

11.
Phys Chem Chem Phys ; 22(37): 21369-21382, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32940313

RESUMO

Lithium metal is among the most promising anodes for the next generation of batteries due to its high theoretical energy density and high capacity. Challenges such as extreme reactivity and lithium dendrite formation have kept lithium metal anodes away from practical applications. However, the underlying mechanisms of Li ion deposition from the electrolyte solution onto the anode surface are still poorly understood due to their inherent complexity. In this work, density functional theory calculations and thermodynamic integration via constrained molecular dynamics simulations are conducted to study the electron and ion transfer between lithium metal slab and the electrolyte in absence of an external field. We explore the effect of the solvent chemistry and structure, distance of the solvated complex from the surface, anion-cation separation, and concentration of Li-salts on the deposition of lithium ions from the electrolyte phase onto the surface. Ethylene carbonate (EC), 1,2-dimethoxyethane (DME), 1,3-dioxolane (DOL), and mixtures of them are used as solvents. These species compete with the salt anion and the Li cation for electron transfer from the surface. It is found that the structure and properties of the solvation shell around the lithium cation has a great influence on the ability of the cation to diffuse as well as on its surrounding electron environment. DME molecules allow easier motion of the lithium ion compared with EC and DOL molecules. The slow growth approach allows the study of energy barriers for the ion diffusion and desolvation during the deposition pathway. This method helps elucidating the underlying mechanisms on lithium-ion deposition and provides a better understanding of the early stages of Li nucleation.

12.
Chemphyschem ; 21(12): 1310-1317, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32364643

RESUMO

The use of a lithium metal anode still presents a challenging chemistry and engineering problem that holds back next generation lithium battery technology. One of the issues facing lithium metal is the presence of the solid electrolyte interphase (SEI) layer that forms on the electrode creating a variety of chemical species that change the properties of the electrode and is closely related to the formation and growth of lithium dendrites. In order to advance the scientific progress of lithium metal more must be understood about the fundamentals of the SEI. One property of the SEI that is particularly critical is the passivating behavior of the different SEI components. This property is critical to the continued formation of SEI and stability of the electrolyte and electrode. Here we report the investigation of the passivation behavior of Li2 O, Li2 CO3, LiF and LiOH with the lithium salt LiFSI. We used large computational chemistry models that are able to capture the lithium/SEI interface as well as the SEI/electrolyte interface. We determined that LiF and Li2 CO3 are the most passivating of the SEI layers, followed by LiOH and Li2 O. These results match previous studies of other Li salts and provide further examination of LiFSI reduction.

13.
J Chem Phys ; 152(1): 014701, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914763

RESUMO

Lithium-sulfur batteries show remarkable potential for energy storage applications due to their high-specific capacity and the low cost of active materials, especially sulfur. However, whereas there is a consensus about the use of lithium metal as the negative electrode, there is not a clear and widely accepted architectural design for the positive electrode of sulfur batteries. The difficulties arise when trying to find a balance between high-surface-area architectures and practical utilization of the sulfur content. Intensive understanding of the interfacial mechanisms becomes then crucial to design optimized carbon-hosted sulfur architectures with enhanced electrochemical performance. In this work, we use density functional theory (DFT)-based first principles calculations to describe and characterize the growing mechanisms of Li2S active material on graphene, taken as an example of a nonencapsulated carbon host for the positive electrode of Li-S batteries. We first unravel the two growing mechanisms of Li2S supported nanostructures, which explain recent experimental findings on real-time monitoring of interfacial deposition of lithium sulfides during discharge, obtained by means of in situ atomic force microscopy. Then, using a combination of mathematical tools and DFT calculations, we obtain the first cycle voltage plot, explaining the three different regions observed that ultimately lead to the formation of high-order polysulfides upon charge. Finally, we show how the different Li2S supported nanostructures can be characterized in X-ray photoelectron spectroscopy measurements. Altogether, this work provides useful insights for the rational design of new carbon-hosted sulfur architectures with optimized characteristics for the positive electrode of lithium-sulfur batteries.

14.
Phys Chem Chem Phys ; 22(2): 575-588, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31845699

RESUMO

The use of lithium metal as an electrode for electrochemical energy storage will provide a significant impact on practical energy storage technology. Unfortunately, the use of lithium metal is plagued with challenging chemical problems. Specifically, the formation of a solid electrolyte interphase layer and the nucleation and growth of lithium dendrites: both must be addressed and controlled in order to achieve a practically useable pure lithium metal electrode. Currently sophisticated experimental techniques and computationally expensive simulations are being used to probe these problems but these methods are arduous and time consuming which delays timely evaluation and insight into the rapidly changing field of advanced energy storage. Here, we report the use of DFT simulations of lithium nanoclusters to investigate and explore lithium metal chemistry with inexpensive computational methods to gain greater insight into electrochemical reductions and the nucleation and growth of dendrites. DME, LiTFSI, and LiFSI reduction energetics and structures with electrode effects from lithium metal are reported providing better physical description of the absolute reduction potential characterization. The electronic structure of the lithium nanoclusters were used to investigate the nucleation and growth of lithium dendrites from an ab initio perspective. The results demonstrate that kinetic processes have more control over non uniform growth than thermodynamic processes. Based on this information, a non ab initio model was created in Matlab that shows the initial stages of dendrite nucleation considering approximately 2000 atoms.

15.
Phys Chem Chem Phys ; 21(44): 24543-24553, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31663578

RESUMO

We aim at elucidating the mechanism of the trimethyl aluminum (TMA) decomposition on oxidized nickel (NiO) and metallic nickel (Ni) facets in the absence of a source of hydroxyl groups. This TMA decomposition mechanism constitutes the earliest stage of growth of Al2O3 coatings with the atomic layer decomposition (ALD) method, which stabilizes nickel catalysts in energy-intensive processes such as the dry reforming of methane. Our first-principles calculations suggest thermodynamic favorability for the TMA decomposition on metallic nickel compared to oxidized nickel. Moreover, the decomposition of TMA on metallic nickel showed almost no differences in terms of energy barriers between flat and stepped surfaces. Regarding the impact of the CH3 radicals formed after TMA decomposition, we calculated stronger adsorption on metallic nickel facets than on oxidized nickel, and these adsorption energies are comparable to the adsorption energies calculated in earlier works on Al2O3 ALD growth on palladium surfaces. These results lead us to believe in the growth of porous Al2O3 coatings triggered by CH3 contamination rather than due to preferential TMA decomposition on stepped and/or defective facets. The CH3 radicals are likely to be thermally stable at temperatures used during Al2O3 ALD processes, partially passivating the surface towards further TMA decomposition.

16.
ACS Appl Mater Interfaces ; 11(34): 31467-31476, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31368685

RESUMO

Lithium metal is an ideal anode for rechargeable lithium-battery technology. However, the extreme reactivity of Li metal with electrolytes leads to solid electrolyte interphase (SEI) layers that often impede Li+ transport across interfaces. The challenge is to predict the chemical, structural, and topographical heterogeneities of SEI layers arising from a multitude of interfacial constituents. Traditionally, the pathways and products of electrolyte decomposition processes were analyzed with the basic and simplifying presumption of an initial pristine Li-metal surface. However, ubiquitous inorganic passivation layers on Li metal can reduce electronic charge transfer to the electrolyte and significantly alter the SEI layer evolution. In this study, we analyzed the effect of nanometric Li2O, LiOH, and Li2CO3 as surface passivation layers on the interfacial reactivity of Li metal, using ab initio molecular dynamics (AIMD) calculations and X-ray photoelectron spectroscopy (XPS) measurements. These nanometric layers impede the electronic charge transfer to the electrolyte and thereby provide some degree of passivation (compared to pristine lithium metal) by altering the redox-based decomposition process. The Li2O, LiOH, and Li2CO3 layers admit varying levels of electron transfer from a Li-metal slab and subsequent storage of the electronic charges within their structures. As a result, their ability to transfer electrons to the electrolyte molecules, as well as the extent of decomposition of bis(trifluoromethanesulfonyl)imide anions, is significantly reduced compared to similar processes on pristine Li metal. The XPS experiments revealed that when Li2O is the major component on the altered surface, LiF phases formed to a greater extent. The presence of a dominant LiOH layer, however, results in enhanced sulfur decomposition processes. From AIMD studies, these observations can be explained based on the calculated quantities of electronic charge transfer found for each of the passivating films.

17.
ACS Appl Mater Interfaces ; 11(14): 13326-13333, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30892866

RESUMO

The polysulfide shuttle phenomenon substantially deteriorates the electrochemical performance of lithium-sulfur (Li-S) batteries, resulting in continued self-discharge and capacity fade during cycling. In this study, a mesoscale analysis is presented to explore the mechanisms of self-discharge behavior in the Li-S battery during the resting state. It is found that the self-discharge rate is determined by the sulfur solubility, desorption capability, diffusion kinetics, and reaction rate on the anode surface. Three regimes have been identified: desorption control, diffusion control, and charge transfer control. Correspondingly, strategies are suggested to increase the capacity retention, such as enhancing the binding of sulfur molecules to the host, reducing dissolved sulfur diffusivity, and improving the chemical stability of active materials with a Li metal anode. Furthermore, the use of an interlayer with high diffusion barriers can effectively suppress the self-discharge rate due to the confinement effect.

18.
Artigo em Inglês | MEDLINE | ID: mdl-33029278

RESUMO

The need of designing and controlling single-walled carbon nanotube (SWCNT) properties is a challenge in a growing nanomaterials-related industry. Recently, great progress has been made experimentally to selectively control SWCNT diameter and chirality. However, there is not yet a complete understanding of the synthesis process and there is a lack of mathematical models that explain nucleation and diameter selectivity of stable carbon allotropes. Here, in-situ analysis of chemical vapor deposition SWCNT synthesis confirms that the nanoparticle to nanotube diameter ratio varies with the catalyst particle size. It is found that the tube diameter is larger than that of the particle below a specific size (dc ≈ 2nm) and above this value is smaller than particle diameters. To explain these observations, we develop a statistical mechanics based model that correlates possible energy states of a nascent tube with the catalyst particle size. This model incorporates the equilibrium distance between the nucleating SWCNT layer and the metal catalyst (e.g. Fe, Co, Ni) evaluated with density functional theory (DFT) calculations. The theoretical analysis explains and predicts the observed correlation between tube and solid particle diameters during growth of supported SWCNTs. This work also brings together previous observations related to the stability condition for SWCNT nucleation. Tests of the model against various published data sets and our own experimental results show good agreement, making it a promising tool for evaluating SWCNT synthesis processes.

19.
ACS Nano ; 12(12): 11756-11784, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30516055

RESUMO

Advances in the synthesis and scalable manufacturing of single-walled carbon nanotubes (SWCNTs) remain critical to realizing many important commercial applications. Here we review recent breakthroughs in the synthesis of SWCNTs and highlight key ongoing research areas and challenges. A few key applications that capitalize on the properties of SWCNTs are also reviewed with respect to the recent synthesis breakthroughs and ways in which synthesis science can enable advances in these applications. While the primary focus of this review is on the science framework of SWCNT growth, we draw connections to mechanisms underlying the synthesis of other 1D and 2D materials such as boron nitride nanotubes and graphene.

20.
Phys Chem Chem Phys ; 20(27): 18811-18827, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29964286

RESUMO

Oxidation potentials of electrolyte molecules in Li-sulfur (Li/S) batteries and their variations in various solvent environments are investigated using first-principles calculations in order to understand oxidative decomposition reactions of electrolytes for cathode passivation. Electrolyte solvents, Li salts, and various additives in Li/S batteries along with some Li-ion battery additives are studied. Oxidation potentials of isolated electrolyte molecules are found to be out of the operating range of typical Li/S batteries. The complexation of electrolyte molecules with Li+, salt anion, salt, S8, and pyrene alters oxidation potentials compared to those of the isolated systems. The salt anion lowers oxidation potentials of electrolyte molecules by at least 4.7% while the complexes with Li+ have higher oxidation potentials than the isolated molecules by at least 10.4%. S8 and pyrene, used as model compounds for sulfur and sulfur/carbon composite cathode materials, also affect oxidation potentials of electrolyte molecules, but their influence is negligible and the oxidation trends differ from those of the Li+ and salt anion. Although complexations change the oxidation potentials of electrolyte molecules, they are still higher than the operating voltage range of Li/S batteries, which indicates that oxidation of the studied electrolytes in Li/S batteries is not expected under ambient conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...