Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Comp Biochem Physiol C Toxicol Pharmacol ; 231: 108738, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32169414

RESUMO

The trend toward using plant-based ingredients in aquafeeds has raised important concerns for aquaculture owing to the negative impacts of mycotoxins on fish health; with emphasis for contamination by fumonisin B1 (FB1). The brain is an important target of FB1; however, study of the pathways linked to brain damage is limited to an analysis of histopathological alterations. Reports have demonstrated the protective effects of dietary supplementation with diphenyl diselenide (Ph2Se2) in the brains of fish subjected to several environmental insults; nevertheless, its neuroprotective effects in fish fed with diets contaminated with FB1 remain unknown. Therefore, the aim of this study was to evaluate whether oxidative damage may be a pathway associated with FB1-induced neurotoxicity, as well as to evaluate whether dietary supplementation with Ph2Se2 prevents or reduces FB1-mediated brain oxidative damage in silver catfish. Brain reactive oxygen species (ROS), lipid peroxidation (LOOH) and protein carbonylation increased on day 30 post-feeding in animals that received FB1-contaminated diets compared to the control group, while brain antioxidant capacity against peroxyl radicals (ACAP) levels and catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities were lower. Diphenyl diselenide dietary supplementation avoid increases in brain ROS levels, as well minimizing the augmentation of LOOH levels. Furthermore, Ph2Se2 prevented impairment of brain ACAP levels, as well as GPx and GST activities elicited by FB1-contaminated diets. These data suggest that dietary supplementation with 3 mg/kg Ph2Se2 prevented FB1-induced brain damage in silver catfish, and this protective effect occurred through avoided of excessive ROS production, as well as via prevention of brain lipid damage. Furthermore, Ph2Se2 exerted its neuroprotective effects via ameliorative effects on the enzymatic and non-enzymatic antioxidant defense systems, and may be an approach to prevent FB1-induced brain oxidative stress; however, is not an alternative to prevent the impairment on performance caused by FB1.

2.
Microb Pathog ; 142: 104070, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32081613

RESUMO

The head kidney is a lymphoid immune organ that plays a key role in the immune and inflammatory responses of teleost fish. It is associated with immunoglobulin G production and differentiation of B cells. The presence of a multi-enzymatic complex found anchored in the plasma membrane makes the head kidney an important purinergic-dependent tissue. Purinergic signaling has been associated with these responses under pathological conditions via regulation of extracellular adenosine triphosphate (ATP), the main damage molecular associated pattern agent released during bacterial infections. The aim of this study was to determine whether purinergic signaling is a pathway associated with impairment of immune responses in silver catfish (Rhamdia quelen) experimentally infected by Flavobacterium columnare, as well as to evaluate the role of P2 purine receptors in this response. Triphosphate diphosphohydrolase (NTPDase) activity in the head kidney was significantly lower in silver catfish experimentally-infected F. columnare 72 h post-infection (hpi) than in the control group, while no significant difference was observed with respect NTPDase activity on adenosine diphosphate, as well as on 5'-nucleotidase and adenosine deaminase activities. Extracellular ATP levels were significantly higher in the head kidney of experimentally-infected fish than in the control group at 72 hpi. Finally, p2ry11 and p2rx3 purine receptor levels were significantly higher in experimentally-infected fish than in the control group at 72 hpi. We conclude that purinergic signaling in the head kidney of silver catfish infected by F. columnare creates a pro-inflammatory profile that may contribute to impairment of immune and inflammatory responses via reduction of ATP hydrolysis and its accumulation in the extracellular milieu, accompanied by upregulation of p2ry11 and p2rx3 purine receptors, leading to pro-inflammatory status.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31953674

RESUMO

Nerolidol is a sesquiterpene found in essential oils of several plant species. It is found commonly in human and animal diets and is approved by the US Food and Drug Administration as a flavoring agent. Nevertheless, recent studies have suggested that nerolidol has potent hepatotoxic effects. Because use of plant-based products in human and animal food has expanded considerably, it is essential to develop approaches such as nanotechnology to avoid or reduce hepatic toxic effects. Therefore, the aim of the study was to determine whether nerolidol dietary supplementation elicited hepatic damage associated with impairment of energy homeostasis, as well as whether supplementation with nerolidol-loaded in nanospheres prevented hepatotoxic effects in Nile tilapia (Oreochromis niloticus). Nile tilapia were divided into five groups (A-E, n = 10 per group) with four replicates each, as follows: group A received basal feed (without supplementation); group B received feed containing 0.5 mL free nerolidol/kg; group C received feed containing 1.0 mL free nerolidol/kg; group D received feed containing 0.5 mL nanospheres nerolidol/kg; and group E received feed containing 1.0 mL nanospheres nerolidol/kg. All groups received experimental feed once a day (10% total biomass) at 2 p.m. for 60 consecutive days. Hepatic liver weight and relative liver weight were significantly lower in fish fed 1.0 mL free nerolidol/kg feed than in fish given basal diet (control group). Hepatic pyruvate kinase (1.0 mL free nerolidol/kg) and adenylate kinase (0.5 and 1.0 mL free nerolidol/kg) activities were significantly lower than in the control group, while hepatic reactive oxygen species and lipid damage levels were significantly higher. Finally, the comet assay revealed significant increases in the frequency of damage and the damage index in fish given 0.5 and 1.0 mL free nerolidol/kg in a dose-dependent manner. Nerolidol-loaded in nanospheres prevented all alterations elicited by free nerolidol. Based on these data, we concluded that dietary supplementation with free nerolidol elicited severe impairment of hepatic bioenergetics homeostasis that appeared to be mediated by excessive ROS production and lipid damage, contributing to a genotoxic effect. Dietary supplementation with nerolidol-loaded in nanospheres did not elicit hepatic damage, and therefore, should be considered as a replacement so as to limit toxicity, permitting its continued use as a dietary supplement.

4.
Pharmacol Biochem Behav ; 189: 172841, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31893526

RESUMO

Environmental pollution caused by antipsychotic residues is a relevant ecological problem. Studies revealed that residues of these drugs are present in a wide range of different ecosystems and can have adverse effects on non-target organisms even in low environmental concentrations. Among these antipsychotic drugs, aripiprazole (APPZ) is a second-generation atypical antipsychotic that is a partial agonist of dopaminergic and serotoninergic receptors. APPZ is used to treat schizophrenia, bipolar disorder, autism, obsessive-compulsive disorder, and anxiety or panic disorders. Thus, in this study we posed the following question: "What will be the behavioral effects of waterborne APPZ on fish?" To answer this question, we exposed adult zebrafish to different APPZ concentrations (0.556, 5.56, and 556 ng/L) for 15 min and evaluated their exploratory, anxiety-like, social, and anti-predatory behaviors. Our results showed that, despite the apparent beneficial reversal of stress-induced social impairment and anxiety-like behavior, APPZ exposure impaired the anti-predatory reaction of adult zebrafish. Taken altogether, our results show that APPZ-exposed zebrafish may have a decreased perception of predators, even at concentrations lower than those already detected in the environment. A failure to exhibit an antipredatory response may favor the predator, decrease the fitness of the prey species, and, consequently, affect the food chain. Our results highlight the risks and consequences associated with APPZ residues in water, which may affect aquatic life and endanger species that depend on appropriate behavioral responses for survival.

5.
Microb Pathog ; 141: 103989, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31982567

RESUMO

Rampant and uncontrolled use of antibiotics is a major concern for aquaculture; the practice foments the emergence of resistant strains of Streptococcus agalactiae, among other negative impacts. Constituents of plant essential oils such as nerolidol are being considered as replacements for synthetic drugs to support fish nutrition and health. There is evidence to suggest that nanotechnology may enhance the efficacy of natural bioactive compounds; this is a substantial advance for the development and sustainability of aquaculture. Against the backdrop of this evidence, we aimed determine whether dietary supplementation with free nerolidol and nerolidol-loaded nanospheres would exert bactericidal effects against S. agalactiae, as well as prevent S. agalactiae-induced brain oxidative damage. In Experiment I, we measured the antimicrobial properties of dietary supplementation of nerolidol and nerolidol nanosphere in terms of mortality, longevity and relative percent survival. Fish infected with S. agalactiae fed 0.5 and 1.0 mL nerolidol nanospheres kg/diet demonstrated lower mortality and higher relative percent survival than the control group, while longevity was higher in all infected plus supplementation groups. Experiment II showed significantly lower microbial loads in brains of fish infected with S. agalactiae that were fed 1.0 mL nerolidol nanospheres kg/diet than in the control group. Brain nerolidol levels were significantly higher in uninfected as well as infected fish supplemented with nerolidol nanospheres than in fish supplemented with free nerolidol. Finally, brain reactive oxygen species and lipid peroxidation levels were higher in infected fish supplemented with basal diet compared to uninfected fish and supplemented with basal diet, and the supplementation with 1.0 mL/kg nerolidol nanospheres prevented this augmentation caused by infection. These data suggest that dietary supplementation with nerolidol nanospheres (1.0 mL/kg diet) has potent bactericidal effects in terms of augmentation of fish longevity and survival, and reduction of brain microbial loads. Also, S. agalactiae-induced brain oxidative damage that contributed to disease pathogenesis, and the dietary supplementation with nerolidol nanospheres (1.0 mL/kg diet) prevented this alteration. In summary, nanotechnology is a compelling approach to enhancing the efficacy of nerolidol, giving rise to reduction of S. agalactiae loads in fish brains.

6.
Fish Physiol Biochem ; 46(1): 305-314, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31673997

RESUMO

Thymol is an herbal food additive used to improve animal performance. Thymol acts via its potential to enhance productive and reproductive performance, and by improving bioavailability of nutrients in fish. Nevertheless, the exact mechanisms associated with these phenomena remain poorly understood, although recent evidence has suggested the involvement of the phosphotransfer network and antioxidant status. Therefore, the aim of this study was to determine whether the improvement of the antioxidant/oxidant status and the phosphoryl transfer network may be involved in enhanced growth performance in grass carp (Ctenopharyngodon idella) fed with various levels of thymol (100, 200, and 300 mg/kg feed). Thymol-supplementation (100 mg/kg feed) produced higher body weight and weight gain for 60-day post-feeding compared to the control group. Specific growth rate was higher; while feed conversion ratio was lower in fish that consumed 100 mg of thymol/kg compared to other groups. Hepatic lactate dehydrogenase activity and lipid peroxidation levels were lower in the thymol-supplemented group (100 mg/kg feed) than in the control group, while reactive oxygen species were lower in all supplemented groups than in the control group. Hepatic superoxide dismutase (300 mg/kg feed) and glutathione peroxidase (100, 200, and 300 mg/kg feed) activities, as well as antioxidant capacity against peroxyl radicals (100 mg/kg feed) were higher in these groups than in the control group. Based on these data, we conclude that 100 mg thymol/kg dietary supplementation increased growth performance of fingerling grass carp. Finally, hepatic adenylate kinase activity was lower in the thymol supplemented group (100 mg/kg feed) than in the control group. Thymol supplementation (100 mg/kg feed) improved hepatic energy metabolism, while practically all tested concentrations of thymol enhanced hepatic antioxidant status, all of which may be pathways involved in increased growth performance in fingerling grass carp.

7.
Artigo em Inglês | MEDLINE | ID: mdl-31760078

RESUMO

Mercury (Hg) induces neurobehavioral disorders through reactive oxygen species (ROS) elevation and impairment of brain key enzyme activities. Nevertheless, the therapeutic and toxic selenium concentrations for fish are very close; diphenyl diselenide (Ph2Se2), an organoselenium compound with neuroprotective effects, may be an alternative to elemental Se. Therefore, the aim of this study was to determine whether dietary supplementation with Ph2Se2 prevented or reduced the neurobehavioral alterations and oxidative damage elicited by CH3HgCl in grass carp Ctenopharyngodon idella. Fish exposed to CH3HgCl exhibited significantly reduced distance travelled and swimming speed compared to the control group, as well as augmented cortisol and ROS levels and xanthine oxidase (XO) activities. CH3HgCl exposure significantly increased lipid peroxidation (LOOH) and protein carbonylation (PC) levels compared to those of the control group, while acetylcholinesterase (AChE) and sodium-potassium pump (Na+, K+-ATPase) activities were inhibited. Dietary supplementation with 3 mg/kg Ph2Se2 ameliorated locomotor activity impairment and prevented the augmented brain cortisol and ROS levels as well as XO activity. The supplement reduced lipid and protein damage elicited by CH3HgCl and exerted protective effects on brain AChE and Na+, K+-ATPase activities. Exposure to an environmental concentration of CH3HgCl elicited neurobehavioral alterations linked to reduced locomotor activity, a finding that can be explained by oxidative damage and reduced activity of AChE and Na+, K+-ATPase in telencephalon and mesencephalon structures. Dietary supplementation with Ph2Se2 prevented CH3HgCl-induced locomotor impairment. This effect appeared to be mediated by antioxidant action. Ph2Se2 may be a viable approach to prevention or reduction CH3HgCl-mediated neurotoxic effects.

8.
Microb Pathog ; 139: 103915, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31809794

RESUMO

We determined whether thymol supplementation of would minimize the negative effects of Aeromonas hydrophila infection on branchial energy metabolism, weight loss and mortality in grass carp (Ctenopharyngodon idella). We found that the infected fish all died, while 62.5% of those supplemented with 100 mg/kg thymol survived. Cytosolic and mitochondrial creatine kinase (CK) activities, as well as adenylate kinase (AK) and pyruvate kinase (PK) activities were significant lower in gills of A. hydrophila-infected fish than those of the control group, and adenosine triphosphate (ATP) levels were significant lower in the infected group. Finally, branchial reactive oxygen species (ROS) were significant higher in A. hydrophila-infected fish than in the control group. Supplementation with 100 and 300 mg thymol/kg diet prevented inhibition of branchial cytosolic and mitochondrial CK activities caused by infection, and also inhibited the reduction of branchial ATP levels. Supplementation with 100, 200 and 300 mg thymol/kg prevented the inhibition of branchial AK and PK activities induced by aeromonosis. Supplementation of 100 mg thymol/kg prevented weight loss after A. hydrophila infection. These data suggest that supplementation with 100 mg thymol/kg exerts potent bactericidal properties and augments longevity. Supplementation at all concentrations of thymol prevented A. hydrophila-induced branchial bioenergetics; nevertheless, higher concentrations were associated with side-effects.

9.
Fish Physiol Biochem ; 46(1): 405-416, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31784931

RESUMO

Hypoxia is among the most critical environmental stressors for fish in aquatic environments, and several energetic alterations have been associated with it. The aim of the present study was to evaluate the involvement of the phosphoryl transfer network and its effects on adenosine triphosphate (ATP)-dependent enzymes during hypoxia, as well as the role of oxidative stress in the activity of the phosphoryl transfer network in pacamã (Lophiosilurus alexandri) subjected to severe hypoxia. Branchial creatine kinase (CK; cytosolic and mitochondrial fractions), adenylate kinase (AK), and pyruvate kinase (PK) activities were inhibited after 72 h of exposure to hypoxia compared to their respective normoxia groups, and remained low (except for AK) after 24 and 72 h of re-oxygenation. Activities of the branchial sodium-potassium pump (Na+, K+-ATPase) and proton pump (H+-ATPase) were inhibited in fish exposed to 72 h of hypoxia compared to the normoxia group, remained inhibited after 24 h of re-oxygenation, and were restored to physiological levels after 72 h of re-oxygenation. Levels of branchial reactive oxygen species (ROS) were higher in fish exposed to hypoxia for 72 h compared to the normoxia group, and increased during re-oxygenation. Lipid peroxidation (LOOH) levels were higher in fish subjected to 72 h of hypoxia compared to the normoxia group, and remained higher during re-oxygenation. On the other hand, protein sulfhydryl (PSH) levels were lower in fish exposed to hypoxia for 72 h compared to the normoxia group, and remained low during re-oxygenation. Based on this evidence, inhibition of the activities of enzymes belonging to phosphoryl transfer network contributed to impairing energetic homeostasis linked to ATP production and ATP utilization in gills of pacamã subjected to hypoxia, and remained inhibited during re-oxygenation (except AK activity). Moreover, inhibition of the phosphoryl transfer network impaired activity of ATP-dependent enzymes, which can be mediated by ROS overproduction, lipid peroxidation, and oxidation of SH groups.

10.
Microb Pathog ; 138: 103817, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31672529

RESUMO

Flavobacterium columnare, the causative agent of columnaris disease, is a serious bacterial disease responsible for causing devastating mortality rates in several species of freshwater fish, leading to severe economic losses in the aquaculture industry. Notwithstanding the enormous impacts this disease can have, very little is known regarding the interaction between the host and bacterium in terms of the mortality rate of silver catfish (Rhamdia quelen), as well its linkage to gill energetic homeostasis. Therefore, we conducted independent experiments to evaluate the mortality rates caused by F. columnare in silver catfish, as well as whether columnaris disease impairs the enzymes of the phosphoryl transfer network in gills of silver catfish and the pathways involved in this inhibition. Experiment I revealed that clinical signs started to appear 72 h post-infection (hpi), manifesting as lethargy, skin necrosis, fin erosion and gill discoloration. Silver catfish began to die at 96 hpi, and 100% mortality was observed at 120 hpi. Experiment II revealed that creatine kinase (CK, cytosolic and mitochondrial) and pyruvate kinase (PK) activities were inhibited in silver catfish experimentally infected with F. columnare, while no significant difference was observed between experimental and control groups with respect to adenylate kinase activity. Activity of the branchial sodium-potassium pump (Na+, K+-ATPase) was inhibited while reactive oxygen species (ROS) and lipid peroxidation levels were higher in silver catfish experimentally infected with F. columnare than in the control group at 72 hpi. Based on these data, the impairment of CK activity elicited by F. columnare caused a disruption in branchial energetic balance, possibly reducing ATP availability in the gills and provoking impairment of Na+, K +ATPase activity. The inhibition of CK and PK activities appears to be mediated by ROS overproduction and lipid peroxidation, both of which contribute to disease pathogenesis associated with branchial tissue.

11.
Artigo em Inglês | MEDLINE | ID: mdl-31493584

RESUMO

Aflatoxin B1 (AFB1) is one of the most important mycotoxins due to its hepatotoxic and carcinogenic effects on animals. The effect of dietary supplementation with vegetable choline (VC) at 400, 800, and 1200 mg/kg against the deleterious effects of AFB1 (2 ppm/kg diet) in the liver of Nile tilapia (Oreochromis niloticus) was studied. The experimental period was 81 days, and the diet with VC was offered to the fish for 60 days prior to challenge with AFB1. Diets with AFB1 were tested in three replications and animals were analyzed at days 14 and 21 of dietary intake. The addition of VC to tilapia diet increased body weight (days 30 and 60 pre-challenge and day 21 post-challenge). The group fed aflatoxin-contaminated diet presented significantly reduced antioxidant enzymes and increased reactive oxygen species (ROS) levels, thiobarbituric acid reactive species (TBARS) levels, and protein carbonyl (PC) content in the liver. Dietary supplementation with VC at 800 and 1200 mg/kg demonstrated a significant protective effect, avoiding the increase of ROS, TBARS, and PC levels in the liver of tilapia from the aflatoxin contaminated groups. Thus, dietary VC supplementation may be used in tilapia to increase antioxidant status and reduce the negative effects caused by AFB1 toxicity. Based on the findings, it is recommended to use VC as a food supplement for Nile tilapia in order to avoid AFB1 toxication. In addition, decreased aflatoxin toxicity can be attributed to the VC antioxidant property.


Assuntos
Aflatoxina B1/toxicidade , Ração Animal/análise , Colina/farmacologia , Ciclídeos , Doenças dos Peixes/induzido quimicamente , Contaminação de Alimentos , Aflatoxina B1/administração & dosagem , Animais , Catalase/genética , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/veterinária , Colina/administração & dosagem , Dieta/veterinária , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Doenças dos Peixes/tratamento farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-31521749

RESUMO

The aim of this study was to determine whether purinergic signaling is a pathway associated with fumonisin B1 (FB1)-induced impairment of immune and hemostatic responses. We also determined whether dietary supplementation with diphenyl diselenide (Ph2Se2) prevents or reduces these effects. Splenic nucleoside triphosphate diphosphohydrolase (NTPDase) activity for adenosine triphosphate (ATP) and adenosine diphosphate (ADP) as substrates and total blood thrombocytes counts were significant lower in silver catfish fed with FB1-contaminated diets than in fish fed with a basal diet, while splenic adenosine deaminase (ADA) activity and metabolites of nitric oxide (NOx) levels were significant higher. Also, glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were significant lower in silver catfish fed with FB1-contaminated diets than in fish fed with a basal diet. Dietary supplementation with 3 mg Ph2Se2/kg of feed effectively modulated splenic NTPDase (ATP as substrate), ADA, GPx and SOD activities, as well as NOx levels, and was partially effective in the modulation of spleen NTPDase activity (ADP as substrate) and total blood thrombocytes count. These data suggest that splenic purinergic signaling of silver catfish fed with FB1-contaminated diets generates a pro-inflammatory profile that contributes to impairment of immune and inflammatory responses, via reduction of splenic ATP hydrolysis followed possible ATP accumulation in the extracellular environment. Reduction of ADP hydrolysis associated with possible accumulation in the extracellular environment can be a pathophysiological response that restricts the hemorrhagic process elicited by FB1 intoxication. Supplementation with Ph2Se2 effectively modulated splenic enzymes associated with control of extracellular nucleotides (except ADP; that was partially modulated) and nucleosides, thereby limiting inflammatory and hemorrhagic processes.


Assuntos
Ração Animal/análise , Derivados de Benzeno/farmacologia , Peixes-Gato , Doenças dos Peixes/induzido quimicamente , Fumonisinas/toxicidade , Compostos Organosselênicos/farmacologia , Baço/efeitos dos fármacos , Animais , Plaquetas , Dieta/veterinária , Contaminação de Alimentos , Glutationa Peroxidase/metabolismo , Nitratos/sangue , Nitritos/sangue , Transdução de Sinais , Superóxido Dismutase/metabolismo
13.
Microb Pathog ; 136: 103710, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31493503

RESUMO

Some evidence suggests the involvement of phosphotransfer network in the pathogenesis of fish bacterial diseases, catalyzed by creatine kinase (CK), pyruvate kinase (PK) and adenylate kinase (AK); nevertheless, the effects on fish affected by Aeromonas hydrophila remain unknown. Recent evidence suggested a potent protective effect of caffeine on the branchial phosphotransfer network of fish subjected to challenge conditions. Therefore, the aim of this study was to evaluate whether A. hydrophila infection impaired branchial bioenergetics. We also determined whether dietary supplementation with caffeine protected against A. hydrophila-induced gill bioenergetic imbalance. We found that branchial cytosolic CK and AK activities were significant lower in fish experimentally infected with A. hydrophila than in uninfected fish, while mitochondrial CK activity was significant higher. Branchial lactate dehydrogenase (LDH) activity and lactate levels were significant higher in fish experimentally infected by A. hydrophila than in uninfected fish, while sodium-potassium ion pump (Na+, K+-ATPase) activity and adenosine triphosphate (ATP) levels were significant lower. No significant difference was observed between groups with respect to branchial PK activity. The dietary supplementation with 8% caffeine improved the branchial CK (cytosolic and mitochondrial), AK, and LDH activities, as well as ATP levels, but did not prevent increases in branchial lactate levels or the inhibition of Na+, K+-ATPase activity elicited by aeromonosis. Based on this evidence, we believe that reduction of CK (cytosolic) and AK activities contributes to impairment of bioenergetic homeostasis, while augmentation of mitochondrial CK activity can be considered an attempt to prevent or reduce the energetic imbalance during aeromonosis caused by A. hydrophila. The use of 8% caffeine dietary supplementation improved the energetic metabolism via protective effects on CK and AK activities, avoiding the necessity of using anaerobic metabolism. In summary, 8% dietary caffeine can be used to improve branchial energetic homeostasis during aeromonosis caused by A. hydrophila.

14.
Microb Pathog ; 135: 103649, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31374321

RESUMO

Extracellular adenosine triphosphate (ATP) is as key mediator of immune and inflammatory responses. ATP is normally sequestered in the intracellular milieu and released by apoptotic and necrotic cells, where it acts as a pro-inflammatory mediator in the extracellular milieu. A limited number of studies have explored the involvement of purinergic signaling in oomycete infections, including Saprolegnia parasitica; this is a most destructive oomycete pathogen, associated with high mortality and severe economic losses for fish producers. The aim of this study was to determine whether purinergic signaling exerts anti- or pro-inflammatory effects in spleens of grass carp (Ctenopharyngodon idella) naturally infected by S. parasitica. Animals naturally infected with S. parasitica showed typical gross lesions characterized by cotton-wool tufts on the tail and fins, as well as severe histopathological lesions such as necrosis. Spleen ATP and metabolites of nitric oxide (NOx) levels were higher in fish naturally infected by S. parasitica compared to control on day 7 post-infection (PI). Spleen nucleoside triphosphate diphosphohydrolase (NTPDase) activity (ATP as substrate) was greater in fish naturally infected by S. parasitica than in uninfected on day 7 PI, while no significant differences were observed between groups with respect to NTPDase (adenosine diphosphate as substrate) and 5'-nucleotidase activities. Finally, adenosine deaminase (ADA) activity was lower in fish naturally infected by S. parasitica than in uninfected fish on day 7 PI. In summary, spleen tissue necrosis in the context of saprolegniosis provokes an intense release of ATP into the extracellular milieu, where it interacts with the P2X7 purine receptor and leads to a self-sustained pro-inflammatory deleterious cycle, contributing to an intense inflammatory process. In response to excessive ATP levels in the extracellular milieu, ATP and adenosine hydrolysis were modulated in an attempt to restrict the inflammatory process via upregulation of NTPDase and downregulation of ADA activities. We conclude that the purinergic signaling pathway modulates immune and inflammatory responses during natural infection with S. parasitica.


Assuntos
Trifosfato de Adenosina/metabolismo , Anti-Inflamatórios/metabolismo , Carpas/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Purinérgicos/metabolismo , Transdução de Sinais , Baço/metabolismo , Adenosina Desaminase/metabolismo , Animais , Carpas/metabolismo , Modelos Animais de Doenças , Doenças dos Peixes/patologia , Proteínas de Peixes/imunologia , Micoses , Necrose , Óxido Nítrico/metabolismo , Saprolegnia/patogenicidade , Baço/patologia
15.
An Acad Bras Cienc ; 91(3): e20180395, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31432900

RESUMO

The aquatic environment presents daily and/or seasonal variations in dissolved oxygen (DO) levels. Piava faces different DO levels in the water due to its distributional characteristics. The goal of this study was to describe the effects of low DO levels on plasma ion, biochemical and oxidative variables in piava juveniles. Fish were exposed to different DO levels, including 1.0, 2.0, 3.0, 4.0 and 5.0 mg L-1 of DO for 96 h, after which blood and tissue samples (liver, kidney, gill and muscle) were collected. The decrease in DO levels decreased plasma Na+, Cl-, K+ and NH3 levels as well as protein and glycogen levels in the liver, kidney and muscle; increased Na+/K+-ATPase activity in the gills and kidney as well as glucose and ammonia levels in the liver, kidney and muscle; and increased lactate levels in the kidney and muscle. Thiobarbituric acid-reacting substances, catalase and non-protein thiol levels decreased in the tissues of piavas exposed to low DO levels. It is concluded that piava can apparently cope with hypoxic conditions; however, low DO levels are a stressor, and the tolerance of piava to hypoxia involves iono-regulatory, metabolic and oxidative adjustments.


Assuntos
Adaptação Fisiológica/fisiologia , Caraciformes/fisiologia , Estresse Oxidativo/fisiologia , Oxigênio/fisiologia , Animais , Catalase/metabolismo , Caraciformes/metabolismo , Ácido Láctico/metabolismo , Oxigênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Superóxido Dismutase/metabolismo
16.
Physiol Behav ; 210: 112648, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31408639

RESUMO

Fish are useful animal models in research and have been employed in developing new pharmacological approaches. This study aimed to establish the use of silver catfish (Rhamdia quelen) as an animal model to evaluate antinociceptive activity. Initially, different concentrations of acetic acid (2.5-20%), formalin 1% (1-10 µL), menthol 0.5% (1-10 µL) or vehicle were injected in the lips to establish which concentration of each sample promotes nociceptive-like behavior in various parameters. The effect of morphine (0.5-10 mg/kg) on locomotion parameters was also evaluated for antinociceptive concentration determination. Morphine was administered intramuscularly immediately prior to algogen administration. The inhibition was evaluated with the antagonist naloxone (5 mg/kg), which was administered in the same way. Recording time varied according to the algogen used in each test and locomotor activity was evaluated by ANY-maze® software. Acid acetic at 15%, 10 µL of 1% formalin, and 1 µL of 0.5% menthol were chosen since they promoted nociceptive-like behavior in several parameters. Morphine (5 mg/kg) reversed the algogen-induced nociceptive-like behavior and naloxone inhibited this effect. Therefore, the proposed experimental model demonstrated specificity for nociception, since the reversion of the nociceptive-like behavior for a compound with well-described analgesic activity was observed. This new pharmacological model contributes to evaluating compounds with analgesic potential and developing new analgesic drugs, in addition to being a promising alternative to use with rodents.

17.
Behav Brain Res ; 376: 112178, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31454673

RESUMO

Studies using silver catfish (Rhamdia quelen) as experimental models are often applied to screen essential oils (EO) with GABAergic-mediated effects. However, the expression of GABAa receptors in the silver catfish brain remains unknown. Thus, we assessed whether silver catfish express GABAa receptor subunits associated with sedation/anesthetic process and/or neurological diseases. Additionally, we evaluated the brain expression of GABAa receptor subunits in fish sedated with Nectandra grandiflora EO and its isolated compounds, the fish anesthetic (+)-dehydrofukinone (DHF), and dehydrofukinone epoxide (DFX), eremophil-11-en-10-ol (ERM) and selin-11-en-4-α-ol (SEL), which have GABAa-mediated anxiolytic-like effects in mice. The expression of the subunits gabra1, gabra2, gabra3, gabrb1, gabrd and gabrg2 in the silver catfish brain were assessed after a 24h-sedation bath by real time PCR. Since qPCR data rarely describes mechanisms of action, which are usually found through interactions with receptors, we also performed an antagonist-driven experiment using flumazenil (FMZ). Real-time PCR detected the mRNA expression of all targeted genes in R. quelen brain. The expression of gabra1 was decreased in fish sedated with ERM; EO increased gabra2, gabra3, gabrb1 and gabrg2 expression; SEL increased gabrb1, gabrd and gabrg2 expression. EO and compounds DFX, SEL and ERM induced sustained sedation in fish and FMZ-bath prompted the recovery from ERM- and DFX-induced sedation. Our results suggest that the EO, SEL, ERM and DFX sedative effects involve interaction with the GABAergic system. Our findings support the use of the silver catfish as robust and reliable experimental model to evaluate the efficacy of drugs with putative GABAergic-mediated effects.

18.
Artigo em Inglês | MEDLINE | ID: mdl-31454703

RESUMO

This research aimed to assess the influence of dietary addition of rutin on inflammation, apoptosis and antioxidative responses in muscle of silver catfish (Rhamdia quelen) challenged with Aeromonas hydrophila (A. hydrophila). Fish were split into four groups as follows: control, 0.15% rutin, A. hydrophila, 0.15% rutin + A. hydrophila. After 2 weeks of feeding with standard or rutin diets, fish were challenged or not with A. hydrophila for 1 week. Rutin-added diet abrogates A. hydrophila induced-hemorrhage and inflammatory infiltration. It decreases A. hydrophila induced-apoptosis through decreasing the ratio of Bax to Bcl-2 and increasing phospho-Akt to Akt ratio. It diminishes the A. hydrophila induced-rise in nitric oxide and superoxide anion levels and reestablishes superoxide dismutase activity as well. Although such diet is unable to recover the levels of reduced glutathione (GSH), cysteine and glutamate cysteine ligase, which are depleted as a result of A. hydrophila infection, it diminishes the oxidized glutathione (GSSG) content, thus decreasing GSSG to GSH ratio. It increases the levels of cysteine residues of proteins and diminishes those of thiol-protein mixed disulfides, which were changed after A. hydrophila challenge. Finally, it reduces A. hydrophila induced-lipid peroxidation, markedly elevates ascorbic acid and thus reestablishes total antioxidant capacity, whose levels were decreased after A. hydrophila challenge. In conclusion, the dietary addition of rutin at 0.15% impairs A. hydrophila-induced inflammatory response, inhibits A. hydrophila-induced apoptosis and promotes cell survival. It also reduces the A. hydrophila-induced oxidative stress and stimulates the antioxidative responses in muscle of A. hydrophila-infected silver catfish.


Assuntos
Peixes-Gato/imunologia , Doenças dos Peixes/metabolismo , Infecções por Bactérias Gram-Negativas , Músculos/metabolismo , Rutina/farmacologia , Aeromonas hydrophila , Ração Animal , Animais , Antioxidantes/farmacologia , Apoptose , Suplementos Nutricionais , Infecções por Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/veterinária , Estresse Oxidativo , Substâncias Protetoras/farmacologia
19.
Front Physiol ; 10: 785, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281264

RESUMO

In fish, stressful events initiate a hormone cascade along the hypothalamus-pituitary-interrenal and hypothalamus-sympathetic-chromaffin (HSC) axis to evoke several physiological reactions in order to orchestrate and maintain homeostasis. Several biotic and abiotic factors, as well as aquaculture procedures (handling, transport, or stocking density), activated stress system inducing negative effects on different physiological processes in fish (growth, reproduction, and immunity). In order to reduce these consequences, the use of essential oils (EOs) derived from plants has been the focus of aquaculture studies due to their diverse properties (e.g., anesthetic, antioxidant, and antimicrobial), which have been shown to reduce biochemical and endocrine alterations and, consequently, to improve the welfare status. Recently, several studies have shown that biogenic compounds isolated from different EOs present excellent biological activities, as well as the nanoencapsulated form of these EOs may potentiate their effects. Overall, EOs presented less side effects than synthetic compounds, but their stress-reducing efficacy is related to their chemical composition, concentration or chemotype used. In addition, their species-specific actions must be clearly established since they can act as stressors by themselves if their concentrations and chemotypes used are not suitable. For this reason, it is necessary to assess the effect of these natural compound mixtures in different fish species, from marine to freshwater, in order to find the ideal concentration range and the way for their administration to obtain the desired biological activity, without any undesired side effects. In this review, the main findings regarding the use of different EOs as stress reducers will be presented to highlight the most important issues related to their use to improve fish welfare in aquaculture.

20.
Microb Pathog ; 135: 103633, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31326562

RESUMO

Vibrio harveyi causes severe loss to the aquaculture industry due to its virulence, which is mediated by Quorum sensing (QS) and biofilm formation. In the current study, we have explored the anti-virulent properties and biofilm disruption ability of luteolin (extracted from coconut shell) and linalool against this important aquaculture pathogen. HPLC analysis of the methanolic extract of coconut shells revealed a single major peak which matched to the standard luteolin which was further elucidated by NMR studies. Further, luteolin and linalool were screened for their ability to inhibit biofilms and various quorum sensing mediated virulence factors of V. harveyi. The Minimum Inhibitory Concentration (MIC) of the two compounds was determined and the sub-inhibitory concentrations of the compounds were able to inhibit biofilm formation. Both the compounds disrupted about 60-70% mature biofilms, which was also visually observed by light microscopy. Both linalool and luteolin exhibited a significant reduction in the production of EPS and alginate in the biofilms matrix of V. harveyi which was confirmed by Scanning Electron Microscopy (SEM). Both compounds inhibited the swarming and swimming motility, the crucial quorum sensing (QS) mediated virulence of V. harveyi. The present study shows the presence of valuable polyphenolic compound like luteolin in coconut shells that are discarded as a waste. From the present study we envisage that luteolin and linalool can serve as potent anti-virulent agents to combat QS mediated infections against aquaculture pathogens.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Alimentos , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Vibrio/efeitos dos fármacos , Virulência/efeitos dos fármacos , /isolamento & purificação , Alginatos/análise , Aquicultura , Sobrevivência Celular/efeitos dos fármacos , Hidroxibenzoatos/farmacologia , Luteolina/isolamento & purificação , Luteolina/farmacologia , Testes de Sensibilidade Microbiana , Percepção de Quorum/efeitos dos fármacos , Vibrio/crescimento & desenvolvimento , Vibrioses , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA