Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 10(24): 7678-7683, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31755716

RESUMO

Molecular nanomagnets hold great promise for spintronics and quantum technologies, provided that their spin memory can be preserved above liquid-nitrogen temperatures. In the past few years, the magnetic hysteresis records observed for two related dysprosocenium-type complexes have highlighted the potential of molecular engineering to decouple vibrational excitations from spin states and thereby enhance magnetic memory. Herein, we study the spin-vibrational coupling in [(CpiPr5)Dy(Cp*)]+ (CpiPr5 = pentaisopropylcyclopentadienyl, Cp* = pentamethylcyclopentadienyl), which currently holds the hysteresis record (80 K), by means of a computationally affordable methodology that combines first-principles electronic structure calculations with a phenomenological ligand field model. Our analysis is in good agreement with the previously reported state-of-the-art ab initio calculations, with the advantage of drastically reducing the computation time. We then apply the proposed methodology to three alternative dysprosocenium-type complexes, extracting physical insights that demonstrate the usefulness of this strategy to efficiently engineer and screen magnetic molecules with the potential of retaining spin information at higher temperatures.

2.
Front Chem ; 7: 662, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632953

RESUMO

Quantum bits (qubits) constitute the most elementary building-blocks of any quantum technology, where information is stored and processed in the form of quantum superpositions between discrete energy levels. In particular, the fabrication of quantum processors is a key long-term goal that will allow us conducting specific tasks much more efficiently than the most powerful classical computers can do. Motivated by recent experiments in which three addressable spin qubits are defined on a potential single-molecule quantum processor, namely the [Gd(H2O)P5W30O110]12- polyoxometalate, we investigate the decohering effect of magnetic noise on the encoded quantum information. Our state-of-the-art model, which provides more accurate results than previous estimates, show a noticeable contribution of magnetic noise in limiting the survival timescale of the qubits. Yet, our results suggest that it might not be the only dephasing mechanism at play but other mechanisms, such as lattice vibrations and physical movement of magnetic nuclei, must be considered to understand the whole decoherence process.

3.
Inorg Chem ; 58(18): 11883-11892, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31490061

RESUMO

Molecular nanomagnets based on mononuclear metal complexes, also known as single-ion magnets (SIMs), are crossing challenging boundaries in molecular magnetism. From an experimental point of view, this class of magnetic molecules has expanded from lanthanoid complexes to both d-transition metal and actinoid complexes. From a theoretical point of view, more and more improved models have been developed, and we are now able not only to calculate the electronic structure of these systems on the basis of their molecular structures but also to unveil the role of vibrations in the magnetic relaxation processes, at least for lanthanoid and d-transition metal SIMs. This knowledge has allowed us to optimize the behavior of dysprosocenium-based SIMs until reaching magnetic hysteresis above liquid-nitrogen temperature. In this contribution, we offer a brief perspective of the progress of theoretical modeling in this field. We start by reviewing the developed methodologies to investigate the electronic structures of these systems and then move on focus to the open problem of understanding and optimizing the vibrationally induced spin relaxation, especially in uranium-based molecular nanomagnets. Finally, we discuss the differences in the design strategies for 4f and 5f SIMs, including an analysis of the metallocenium family.

4.
Nanoscale ; 11(32): 15131-15138, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31372609

RESUMO

The enhancement of toroic motifs through coupling toroidal moments within molecular nanomagnets is a new, interesting and relevant approach for both fundamental research and potential quantum computation applications. We investigate a Dy8 molecular cluster and discover it has a antiferrotoroic ground state with slow magnetic relaxation. The experimental characterization of the magnetic anisotropy axes of each magnetic center and their exchange interactions represents a considerable challenge due to the non-magnetic nature of the toroidal motif. To overcome this and obtain access to the low energy states of Dy8 we establish a multi-orientation single-crystal micro Hall sensor magnetometry approach. Using an effective Hamiltonian model we then unpick the microscopic spin structure of Dy8, leading to a canted antiferrotoroidic tetramer molecular ground state. These findings are supported with electrostatic calculations that independently confirm the experimentally determined magnetic anisotropy axes for each DyIII ion within the molecule.

5.
Chemistry ; 25(54): 12636-12643, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31350922

RESUMO

Tetrathiafulvalene-lanthanide (TTF-Ln) metal-organic frameworks (MOFs) are an interesting class of multifunctional materials in which porosity can be combined with electronic properties such as electrical conductivity, redox activity, luminescence and magnetism. Herein a new family of isostructural TTF-Ln MOFs is reported, denoted as MUV-5(Ln) (Ln=Gd, Tb, Dy, Ho, Er), exhibiting semiconducting properties as a consequence of the short intermolecular S⋅⋅⋅S contacts established along the chain direction between partially oxidised TTF moieties. In addition, this family shows photoluminescence properties and single-molecule magnetic behaviour, finding near-infrared (NIR) photoluminescence in the Yb/Er derivative and slow relaxation of the magnetisation in the Dy and Er derivatives. As such properties are dependent on the electronic structure of the lanthanide ion, the immense structural, electronic and functional versatility of this class of materials is emphasised.

6.
Dalton Trans ; 48(41): 15381-15385, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31276142

RESUMO

The reaction of Dy(O2CMe)3·xH2O and Ga(NO3)3·xH2O led to the isolation of (nBu4N)[GaDyIII(OH)4(shi)8] (1). The compound possesses a unique chemical structure enclosing the central magnetic DyIII ion between diamagnetic GaIII-based metallacrown 12-MC-4 ligands. The double-decker complex exhibits field-induced single-molecule magnet (SMM) behaviour with an effective energy barrier (Ueff) of 39 K (27.1 cm-1). Consistent with the observed slow relaxation of magnetization, theoretical calculations suggest a ground state mainly determined by |±11/2> in the easy axis direction.

7.
Chemistry ; 25(7): 1758-1766, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403293

RESUMO

Early actinide ions have large spin-orbit couplings and crystal field interactions, leading to large anisotropies. The success in using actinides as single-molecule magnets has so far been modest, underlining the need for rational strategies. Indeed, the electronic structure of actinide single-molecule magnets and its relation to their magnetic properties remains largely unexplored. A uranium(III) single-molecule magnet, [UIII {SiMe2 NPh}3 -tacn)(OPPh3 )] (tacn=1,4,7-triazacyclononane), has been investigated by means of a combination of magnetic, spectroscopic and theoretical methods to elucidate the origin of its static and dynamic magnetic properties.

8.
Dalton Trans ; 47(45): 16211-16217, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30387485

RESUMO

Three layered lanthanide hydroxides (LLHs), with the general formula Ln8(OH)20Cl4·nH2O (Ln = Tb (1), Ho (2), Er (3)), were prepared and magnetically characterized both as pure compounds and diluted within a yttrium diamagnetic matrix, LYH : xLn, LYH : 0.044Tb (1'), LYH : 0.045Ho (2'), and LYH : 0.065Er (3'). This study was complemented with theoretical calculations in order to understand the electronic configuration and the contributions to the slow relaxation behavior. In the pure compounds dominant 3D ferromagnetic interactions are observed, with a small magnetization hysteresis at 1.8 K for 1, while the magnetically diluted solid solutions display slow relaxation of magnetization at low temperatures.

9.
Inorg Chem ; 57(22): 14170-14177, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30378423

RESUMO

We report the design, preparation, and characterization of two families of thermally robust coordination complexes based on lanthanoid quinolinate compounds: [Ln(5,7-Br2q)4]- and [Ln(5,7-ClIq)4]-, where q = 8-hydroquinolinate anion and Ln = DyIII, TbIII, ErIII, and HoIII. The sodium salt of [Dy(5,7-Br2q)4]- decomposes upon sublimation, whereas the sodium salt of [Dy(5,7-ClIq)4]-, which displays subtly different crystalline interactions, is sublimable under gentle conditions. The resulting film presents low roughness with high coverage, and the molecular integrity of the coordination complex is verified through AFM, MALDI-TOF, FT-IR, and microanalysis. Crucially, the single-molecule magnet behavior exhibited by [Dy(5,7-ClIq)4]- in bulk remains detectable by ac magnetometry in the sublimated film.

10.
Dalton Trans ; 47(41): 14734-14740, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30283944

RESUMO

Here we report the structural flexibility of a Dy-based single-ion magnet MOF in which its magnetic properties can be modified through a ligand substitution process involving an increase of the charge density of the coordination environment.

11.
J Phys Chem Lett ; 9(16): 4522-4526, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30044106

RESUMO

The pursuit of novel functional building blocks for the emerging field of quantum computing is one of the most appealing topics in the context of quantum technologies. Herein we showcase the urgency of introducing peptides as versatile platforms for quantum computing. In particular, we focus on lanthanide-binding tags, originally developed for the study of protein structure. We use pulsed electronic paramagnetic resonance to demonstrate quantum coherent oscillations in both neodymium and gadolinium peptidic qubits. Calculations based on density functional theory followed by a ligand field analysis indicate the possibility of influencing the nature of the spin qubit states by means of controlled changes in the peptidic sequence. We conclude with an overview of the challenges and opportunities opened by this interdisciplinary field.


Assuntos
Metaloproteínas/química , Peptídeos/química , Teoria Quântica , Cátions/química , Espectroscopia de Ressonância de Spin Eletrônica , Elementos da Série dos Lantanídeos/química , Modelos Químicos
12.
Chem Sci ; 9(13): 3265-3275, 2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29780458

RESUMO

Very recently the closely related fields of molecular spin qubits, single ion magnets and single atom magnets have been shaken by unexpected results. We have witnessed a jump in the phase memory times of spin qubits from a few microseconds to almost a millisecond in a vanadium complex, magnetic hysteresis up to 60 K in a dysprosium-based magnetic molecule and magnetic memory up to 30 K in a holmium atom deposited on a surface. With single-molecule magnets being more than two decades old, this rapid improvement in the physical properties is surprising and its explanation deserves urgent attention. The general assumption of focusing uniquely on the energy barrier is clearly insufficient to model magnetic relaxation. Other factors, such as vibrations that couple to spin states, need to be taken into account. In fact, this coupling is currently recognised to be the key factor that accounts for the slow relaxation of magnetisation at higher temperatures. Herein we will present a critical perspective of the recent advances in molecular nanomagnetism towards the goal of integrating spin-phonon interactions into the current computational methodologies of spin relaxation. This presentation will be placed in the context of the well-known models developed in solid state physics, which, as we will explain, are severely limited for molecular systems.

13.
Chem Sci ; 9(1): 199-208, 2018 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-29629088

RESUMO

A new family of chloroquinolinate lanthanoid complexes of the formula A+[Ln(5,7Cl2q)4]-, with Ln = Y3+, Tb3+ and Dy3+ and A+ = Na+, NEt4+ and K0.5(NEt4)0.5+, is studied, both in bulk and as thin films. Several members of the family are found to present single-molecule magnetic behavior in bulk. Interestingly, the sodium salts can be sublimed under high vacuum conditions retaining their molecular structures and magnetic properties. These thermally stable compounds have been deposited on different substrates (Al2O3, Au and NiFe). The magnetic properties of these molecular films show the appearance of cusps in the zero-field cooled curves when they are deposited on permalloy (NiFe). This indicates a magnetic blocking caused by the interaction between the single-ion magnet and the ferromagnet. X-ray absorption spectroscopy confirms the formation of hybrid states at the molecule/metal interface.

14.
Inorg Chem ; 56(8): 4729-4739, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28375619

RESUMO

We report the syntheses and the magnetic characterization of a new series of lanthanide complexes, in which the Ce, Nd, Gd, Dy, Er, and Yb derivatives show single-molecule magnet behavior. These complexes, named Ln(trenovan), where H3trenovan is tris(((3-methoxysalicylidene)amino)ethyl)amine, exhibit trigonal symmetry and the Ln(III) ion is heptacoordinated. Their molecular structure is then very similar to that of the previously reported Ln(trensal) series, where H3trensal is 2,2',2″-tris(salicylideneimino)triethylamine. This prompted us to use the spectroscopic and magnetic properties of the Ln(trensal) family (Ln = Nd, Tb, Dy, Ho, Er, and Tm) to obtain a set of crystal-field parameters to be used as starting point to determine the electronic structures and magnetic anisotropy of the analogous Ln(trenovan) complexes using the CONDON computational package. The obtained results were then used to discuss the electron paramagnetic resonance (EPR) and ac susceptibility results. As a whole, the obtained results indicate for this type of complexes single-molecule magnet behavior is not related to the presence of an anisotropy barrier, due to a charge distribution of the ligand around the lanthanoid, which results in highly mixed ground states in terms of MJ composition of the states. The crucial parameter in determining the slow relaxation of the magnetization is then rather the number of unpaired electrons (only Kramers ions showing in-field slow relaxation) than the shape of the charge distribution for different Ln(III).

15.
Inorg Chem ; 56(9): 4911-4917, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28414438

RESUMO

Controlling the coordination sphere of lanthanoid complexes is a challenging critical step toward controlling their relaxation properties. Here we present the synthesis of hexacoordinated dysprosium single-molecule magnets, where tripodal ligands achieve a near-perfect octahedral coordination. We perform a complete experimental and theoretical investigation of their magnetic properties, including a full single-crystal magnetic anisotropy analysis. The combination of electrostatic and crystal-field computational tools (SIMPRE and CONDON codes) allows us to explain the static behavior of these systems in detail.

16.
Dalton Trans ; 45(42): 16653-16660, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27778004

RESUMO

Polyoxometalate (POM) chemistry has recently offered excellent examples of single ion magnets (SIMs) and molecular spin qubits. Compared with conventional coordination compounds, POMs provide rigid and highly symmetric coordination sites. However, all POM-based SIMs reported to date exhibit a very limited range of possibilities for chemical processability. We present herein two new families of POM-based SIMs which are soluble in organic solvents: [Ln(ß-Mo8O26)2]5- {LnIII = Tb, Dy, Ho, Er, Tm and Yb} and the functionalised POMs [Ln{Mo5O13(OMe)4NNC6H4-p-NO2}2]3- {LnIII = Tb, Dy, Ho, Er, Yb and Nd}. In addition, these two families represent the first SIMs based on polyoxomolybdates. A magneto-structural analysis of these families is presented, which is based on an effective crystal field model, and compared with the results reported in analogous lanthanoid SIMs based on polyoxotungstates.

17.
Chemistry ; 22(38): 13532-9, 2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27465352

RESUMO

We report two new single-ion magnets (SIMs) of a family of oxydiacetate lanthanide complexes with D3 symmetry to test the predictive capabilities of complete active space ab initio methods (CASSCF and CASPT2) and the semiempirical radial effective charge (REC) model. Comparison of the theoretical predictions of the energy levels, wave functions and magnetic properties with detailed spectroscopic and magnetic characterisation is used to critically discuss the limitations of these theoretical approaches. The need for spectroscopic information for a reliable description of the properties of lanthanide SIMs is emphasised.

18.
Inorg Chem ; 55(11): 5398-404, 2016 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-27186802

RESUMO

The symmetry around a Dy ion is recognized to be a crucial parameter dictating magnetization relaxation dynamics. We prepared two similar square-antiprismatic complexes, [Dy(LOMe)2(H2O)2](PF6) (1) and Dy(LOMe)2(NO3) (2), where LOMe = [CpCo{P(O)(O(CH3))2}3], including either two neutral water molecules (1) or an anionic nitrate ligand (2). We demonstrated that in this case relaxation dynamics is dramatically affected by the introduction of a charged ligand, stabilizing the easy axis of magnetization along the nitrate direction. We also showed that the application of either a direct-current field or chemical dilution effectively stops quantum tunneling in the ground state of 2, thereby increasing the relaxation time by over 3 orders of magnitude at 3.5 K.

19.
J Comput Chem ; 37(13): 1238-44, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26833799

RESUMO

SIMPRE is a fortran77 code which uses an effective electrostatic model of point charges to predict the magnetic behavior of rare-earth-based mononuclear complexes. In this article, we present SIMPRE1.2, which now takes into account two further phenomena. First, SIMPRE now considers the hyperfine and quadrupolar interactions within the rare-earth ion, resulting in a more complete and realistic set of energy levels and wave functions. Second, and to widen SIMPRE's predictive capabilities regarding potential molecular spin qubits, it now includes a routine that calculates an upper-bound estimate of the decoherence time considering only the dipolar coupling between the electron spin and the surrounding nuclear spin bath. Additionally, SIMPRE now allows the user to introduce the crystal field parameters manually. Thus, we are able to demonstrate the new features using as examples (i) a Gd-based mononuclear complex known for its properties both as a single ion magnet and as a coherent qubit and (ii) an Er-based mononuclear complex. © 2016 Wiley Periodicals, Inc.

20.
Chemistry ; 21(49): 17817-26, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26536849

RESUMO

A tetravalent uranium compound with a radical azobenzene ligand, namely, [{(SiMe2 NPh)3 -tacn}U(IV) (η(2) -N2 Ph2 (.) )] (2), was obtained by one-electron reduction of azobenzene by the trivalent uranium compound [U(III) {(SiMe2 NPh)3 -tacn}] (1). Compound 2 was characterized by single-crystal X-ray diffraction and (1) H NMR, IR, and UV/Vis/NIR spectroscopy. The magnetic properties of 2 and precursor 1 were studied by static magnetization and ac susceptibility measurements, which for the former revealed single-molecule magnet behaviour for the first time in a mononuclear U(IV) compound, whereas trivalent uranium compound 1 does not exhibit slow relaxation of the magnetization at low temperatures. A first approximation to the magnetic behaviour of these compounds was attempted by combining an effective electrostatic model with a phenomenological approach using the full single-ion Hamiltonian.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA