Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39215382

RESUMO

Full-area passivating contacts based on SiOx/poly-Si stacks are key for the new generation of industrial silicon solar cells substituting the passivated emitter and rear cell (PERC) technology. Demonstrating a potential efficiency increase of 1 to 2% compared to PERC, the utilization of n-type wafers with an n-type contact at the back and a p-type diffused boron emitter has become the industry standard in 2024. In this work, variations of this technology are explored, considering p-type passivating contacts on p-type Si wafers formed via a rapid thermal processing (RTP) step. These contacts could be useful in conjunction with n-type contacts for realizing solar cells with passivating contacts on both sides. Here, a particular focus is set on investigating the influence of the applied thermal treatment on the interfacial silicon oxide (SiOx) layer. Thin SiOx layers formed via ultraviolet (UV)-O3 exposure are compared with layers obtained through a plasma treatment with nitrous oxide (N2O). This process is performed in the same plasma enhanced chemical vapor deposition (PECVD) chamber used to grow the Si-based passivating layer, resulting in a streamlined process flow. For both oxide types, the influence of the RTP thermal budget on passivation quality and contact resistivity is investigated. Whereas the UV-O3 oxide shows a pronounced degradation when using high thermal budget annealing (T > 860 °C), the N2O-plasma oxide exhibits instead an excellent passivation quality under these conditions. Simultaneously, the contact resistivity achieved with the N2O-plasma oxide layer is comparable to that yielded by UV-O3-grown oxides. To unravel the mechanisms behind the improved performance obtained with the N2O-plasma oxide at high thermal budget, characterization by high-resolution (scanning) transmission electron microscopy (HR-(S)TEM), X-ray reflectometry (XRR) and X-ray photoelectron spectroscopy (XPS) is conducted on layer stacks featuring both N2O and UV-O3 oxides after RTP. A breakup of the UV-O3 oxide at high thermal budget is observed, whereas the N2O oxide is found to maintain its structural integrity along the interface. Furthermore, chemical analysis reveals that the N2O oxide is richer in oxygen and contains a higher amount of nitrogen compared to the UV-O3 oxide. These distinguishing characteristics can be directly linked to the enhanced stability exhibited by the N2O oxide under higher annealing temperatures and extended dwell times.

2.
ACS Appl Mater Interfaces ; 16(28): 36557-36566, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38949536

RESUMO

Up-scalable coating processes need to be developed to manufacture efficient and stable perovskite-based solar modules. In this work, we combine two Lewis base additives (N,N'-dimethylpropyleneurea and thiourea) to fabricate high-quality Cs0.15FA0.85PbI3 perovskite films by blade-coating on large areas. Selected-area electron diffraction patterns reveal a minimization of stacking faults in the α-FAPbI3 phase for this specific cesium-formamidinium composition in both spin-coated and blade-coated perovskite films, demonstrating its scaling potential. The underlying mechanism of the crystallization process and the specific role of thiourea are characterized by Fourier transform infrared spectroscopy and in situ optical absorption, showing clear interaction between thiourea and perovskite precursors and halved film-formation activation energy (from 114 to 49 kJ/mol), which contribute to the obtained specific morphology with the formation of large domain sizes on a short time scale. The blade-coated perovskite solar cells demonstrate a maximum efficiency of approximately 16.9% on an aperture area of 1 cm2.

3.
Energy Environ Sci ; 17(11): 3832-3847, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38841317

RESUMO

The technique of alloying FA+ with Cs+ is often used to promote structural stabilization of the desirable α-FAPbI3 phase in halide perovskite devices. However, the precise mechanisms by which these alloying approaches improve the optoelectronic quality and enhance the stability have remained elusive. In this study, we advance that understanding by investigating the effect of cationic alloying in CsxFA1-xPbI3 perovskite thin-films and solar-cell devices. Selected-area electron diffraction patterns combined with microwave conductivity measurements reveal that fine Cs+ tuning (Cs0.15FA0.85PbI3) leads to a minimization of stacking faults and an increase in the photoconductivity of the perovskite films. Ultra-sensitive external quantum efficiency, kelvin-probe force microscopy and photoluminescence quantum yield measurements demonstrate similar Urbach energy values, comparable surface potential fluctuations and marginal impact on radiative emission yields, respectively, irrespective of Cs content. Despite this, these nanoscopic defects appear to have a detrimental impact on inter-grains'/domains' carrier transport, as evidenced by conductive-atomic force microscopy and corroborated by drastically reduced solar cell performance. Importantly, encapsulated Cs0.15FA0.85PbI3 devices show robust operational stability retaining 85% of the initial steady-state power conversion efficiency for 1400 hours under continuous 1 sun illumination at 35 °C, in open-circuit conditions. Our findings provide nuance to the famous defect tolerance of halide perovskites while providing solid evidence about the detrimental impact of these subtle structural imperfections on the long-term operational stability.

4.
Adv Mater ; 36(21): e2311745, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38300183

RESUMO

The primary performance limitation in inverted perovskite-based solar cells is the interface between the fullerene-based electron transport layers and the perovskite. Atomic layer deposited thin aluminum oxide (AlOX) interlayers that reduce nonradiative recombination at the perovskite/C60 interface are developed, resulting in >60 millivolts improvement in open-circuit voltage and 1% absolute improvement in power conversion efficiency. Surface-sensitive characterizations indicate the presence of a thin, conformally deposited AlOx layer, functioning as a passivating contact. These interlayers work universally using different lead-halide-based absorbers with different compositions where the 1.55 electron volts bandgap single junction devices reach >23% power conversion efficiency. A reduction of metallic Pb0 is found and the compact layer prevents in- and egress of volatile species, synergistically improving the stability. AlOX-modified wide-bandgap perovskite absorbers as a top cell in a monolithic perovskite-silicon tandem enable a certified power conversion efficiency of 29.9% and open-circuit voltages above 1.92 volts for 1.17 square centimeters device area.

5.
Energy Adv ; 2(11): 1818-1822, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38013933

RESUMO

Silicon solar cells based on high temperature passivating contacts are becoming mainstream in the photovoltaic industry. Here, we developed a high-quality boron-doped poly-silicon hole contact. When combined with a co-processed phosphorus-doped poly-silicon electron contact, high-voltage silicon bottom cells could be demonstrated and included in 28.25%-efficient perovskite/Si tandems. The active area was 4 cm2 active area and the front electrode was screen-printed.

6.
Science ; 381(6653): 59-63, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410835

RESUMO

Silicon solar cells are approaching their theoretical efficiency limit of 29%. This limitation can be exceeded with advanced device architectures, where two or more solar cells are stacked to improve the harvesting of solar energy. In this work, we devise a tandem device with a perovskite layer conformally coated on a silicon bottom cell featuring micrometric pyramids-the industry standard-to improve its photocurrent. Using an additive in the processing sequence, we regulate the perovskite crystallization process and alleviate recombination losses occurring at the perovskite top surface interfacing the electron-selective contact [buckminsterfullerene (C60)]. We demonstrate a device with an active area of 1.17 square centimeters, reaching a certified power conversion efficiency of 31.25%.

7.
ACS Appl Mater Interfaces ; 15(23): 27941-27951, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37255346

RESUMO

The development of stable materials, processable on a large area, is a prerequisite for perovskite industrialization. Beyond the perovskite absorber itself, this should also guide the development of all other layers in the solar cell. In this regard, the use of NiOx as a hole transport material (HTM) offers several advantages, as it can be deposited with high throughput on large areas and on flat or textured surfaces via sputtering, a well-established industrial method. However, NiOx may trigger the degradation of perovskite solar cells (PSCs) when exposed to environmental stressors. Already after 100 h of damp heat stressing, a strong fill factor (FF) loss appears in conjunction with a characteristic S-shaped J-V curve. By performing a wide range of analysis on cells and materials, completed by device simulation, the cause of the degradation is pinpointed and mitigation strategies are proposed. When NiOx is heated in an air-tight environment, its free charge carrier density drops, resulting in a band misalignment at the NiOx/perovskite interface and in the formation of a barrier impeding hole extraction. Adding an organic layer between the NiOx and the perovskite enables higher performances but not long-term thermal stability, for which reducing the NiOx thickness is necessary.

8.
ACS Omega ; 7(49): 45582-45589, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530338

RESUMO

Thermal runaway is a major safety concern in the applications of Li-ion batteries, especially in the electric vehicle (EV) market. A key component to mitigate this risk is the separator membrane, a porous polymer film that prevents physical contact between the electrodes. Traditional polyolefin-based separators display significant thermal shrinkage (TS) above 100 °C, which increases the risk of battery failure; hence, suppressing the TS up to 180 °C is critical to enhancing the cell's safety. In this article, we deposited thin-film coatings (less than 10 nm) of aluminum oxide by atomic layer deposition (ALD) on three different types of separator membranes. The deposition conditions and the plasma pretreatment were optimized to decrease the number of ALD cycles necessary to suppress TS without hindering the battery performance for all of the studied separators. A dependency on the separator composition and porosity was found. After 100 ALD cycles, the thermal shrinkage of a 15 µm thick polyethylene membrane with 50% porosity was measured to be below 1% at 180 °C, with ionic conductivity >1 mS/cm. Full battery cycling with NMC532 cathodes demonstrates no hindrance to the battery's rate capability or the capacity retention rate compared to that of bare membranes during the first 100 cycles. These results display the potential of separators functionalized by ALD to enhance battery safety and improve battery performance without increasing the separator thickness and hence preserving excellent volumetric energy.

9.
ACS Appl Mater Interfaces ; 14(14): 16413-16423, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357122

RESUMO

The integration of passivating contacts based on a highly doped polycrystalline silicon (poly-Si) layer on top of a thin silicon oxide (SiOx) layer has been identified as the next step to further increase the conversion efficiency of current mainstream crystalline silicon (c-Si) solar cells. However, the interrelation between the final properties of poly-Si/SiOx contacts and their fabrication process has not yet been fully unraveled, which is mostly due to the challenge of characterizing thin-film stacks with features in the nanometric range. Here, we apply in situ X-ray reflectometry and diffraction to investigate the multiscale (1 Å-100 nm) structural evolution of poly-Si contacts during annealing up to 900 °C. This allows us to quantify the densification and thinning of the poly-Si layer during annealing as well as to monitor the disruption of the thin SiOx layer at high temperature >800 °C. Moreover, results obtained on a broader range of thermal profiles, including firing with dwell times of a few seconds, emphasize the impact of high thermal budgets on poly-Si contacts' final properties and thus the importance of ensuring a good control of such high-temperature processes when fabricating c-Si solar cells integrating such passivating contacts. Overall, this study demonstrates the robustness of combining different X-ray elastic scattering techniques (here XRR and GIXRD), which present the unique advantage of being rapid, nondestructive, and applicable on a large sample area, to unravel the multiscale structural evolution of poly-Si contacts in situ during high-temperature processes.

10.
Adv Mater ; 34(24): e2106540, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35060205

RESUMO

This review focuses on monolithic 2-terminal perovskite-silicon tandem solar cells and discusses key scientific and technological challenges to address in view of an industrial implementation of this technology. The authors start by examining the different crystalline silicon (c-Si) technologies suitable for pairing with perovskites, followed by reviewing recent developments in the field of monolithic 2-terminal perovskite-silicon tandems. Factors limiting the power conversion efficiency of these tandem devices are then evaluated, before discussing pathways to achieve an efficiency of >32%, a value that small-scale devices will likely need to achieve to make tandems competitive. Aspects related to the upscaling of these device active areas to industry-relevant ones are reviewed, followed by a short discussion on module integration aspects. The review then focuses on stability issues, likely the most challenging task that will eventually determine the economic viability of this technology. The final part of this review discusses alternative monolithic perovskite-silicon tandem designs. Finally, key areas of research that should be addressed to bring this technology from the lab to the fab are highlighted.

11.
ACS Energy Lett ; 6(6): 2293-2304, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34307879

RESUMO

Halide perovskite/crystalline silicon (c-Si) tandem solar cells promise power conversion efficiencies beyond the limits of single-junction cells. However, the local light-matter interactions of the perovskite material embedded in this pyramidal multijunction configuration, and the effect on device performance, are not well understood. Here, we characterize the microscale optoelectronic properties of the perovskite semiconductor deposited on different c-Si texturing schemes. We find a strong spatial and spectral dependence of the photoluminescence (PL) on the geometrical surface constructs, which dominates the underlying grain-to-grain PL variation found in halide perovskite films. The PL response is dependent upon the texturing design, with larger pyramids inducing distinct PL spectra for valleys and pyramids, an effect which is mitigated with small pyramids. Further, optimized quasi-Fermi level splittings and PL quantum efficiencies occur when the c-Si large pyramids have had a secondary smoothing etch. Our results suggest that a holistic optimization of the texturing is required to maximize light in- and out-coupling of both absorber layers and there is a fine balance between the optimal geometrical configuration and optoelectronic performance that will guide future device designs.

12.
Front Big Data ; 4: 586481, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124649

RESUMO

In the past few years, the importance of electric mobility has increased in response to growing concerns about climate change. However, limited cruising range and sparse charging infrastructure could restrain a massive deployment of electric vehicles (EVs). To mitigate the problem, the need for optimal route planning algorithms emerged. In this paper, we propose a mathematical formulation of the EV-specific routing problem in a graph-theoretical context, which incorporates the ability of EVs to recuperate energy. Furthermore, we consider a possibility to recharge on the way using intermediary charging stations. As a possible solution method, we present an off-policy model-free reinforcement learning approach that aims to generate energy feasible paths for EV from source to target. The algorithm was implemented and tested on a case study of a road network in Switzerland. The training procedure requires low computing and memory demands and is suitable for online applications. The results achieved demonstrate the algorithm's capability to take recharging decisions and produce desired energy feasible paths.

13.
ACS Appl Mater Interfaces ; 13(8): 9994-10000, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33591174

RESUMO

We investigate hole-selective passivating contacts that consist of an interfacial layer of silicon oxide (SiOx) and a layer of boron-doped SiCx(p). The fabrication process of these contacts involves an annealing step at temperatures above 750 °C which crystallizes the initially amorphous layer and diffuses dopants across the interfacial oxide into the wafer to facilitate charge transport, but it can also disrupt the SiOx layer necessary for wafer-surface passivation. To investigate the transport mechanism of the charge carriers through the selective contact and its changes during the annealing process, we utilize various characterization methods, such as transmission electron microscopy, micro Raman spectroscopy, and conductive atomic force microscopy. Combining the latter with a sequential removal of material, we assemble a tomographic reconstruction of the crystallized layer that reveals the presence of preferential vertical transport channels.

14.
ACS Nano ; 14(10): 13645-13651, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32955859

RESUMO

Thin two-dimensional (2D) material absorbers have the potential to reduce volume-dependent thermal noise in infrared detectors. However, any reduction in noise must be balanced against lower absorption from the thin layer, which necessitates advanced optical architectures. Such architectures can be particularly effective for applications that require detection only within a specific narrow wavelength range. This study presents a Fabry-Pérot cavity enhanced bP/MoS2 midwave infrared (MWIR) photodiode. This simple structure enables tunable narrow-band (down to 0.42 µm full width at half-maximum) photodetection in the 2-4 µm range by adjusting the thickness of the Fabry-Pérot cavity resonator. This is achieved while maintaining room-temperature performance metrics comparable to previously reported 2D MWIR detectors. Zero bias specific detectivity and responsivity values of up to 1.7 × 109 cm Hz1/2 W-1 and 0.11 A W-1 at λ = 3.0 µm are measured with a response time of less than 3 ns. These results introduce a promising family of 2D detectors with applications in MWIR spectroscopy.

15.
J Phys Chem Lett ; 10(11): 3159-3170, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31117674

RESUMO

The remarkable recent progress in perovskite photovoltaics affords a novel opportunity to advance the power conversion efficiency of market-dominating crystalline silicon (c-Si) solar cells. A severe limiting factor in the development of perovskite/c-Si tandems to date has been their inferior light-harvesting ability compared to single-junction c-Si solar cells, but recent innovations have made impressive headway on this front. Here, we provide a quantitative perspective on future steps to advance perovskite/c-Si tandem photovoltaics from a light-management point of view, addressing key challenges and available strategies relevant to both the 2-terminal and 4-terminal perovskite/c-Si tandem architectures. In particular, we discuss the challenge of achieving low optical reflection in 2-terminal cells, optical shortcomings in state-of-the-art devices, the impact of transparent electrode performance, and a variety of factors which influence the optimal bandgap for perovskite top-cells. Focused attention in each of these areas will be required to make the most of the tandem opportunity.

16.
J Phys Chem C Nanomater Interfaces ; 122(31): 17612-17620, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30258525

RESUMO

Transparent conductive oxides (TCOs) are essential in technologies coupling light and electricity. For Sn-based TCOs, oxygen deficiencies and undercoordinated Sn atoms result in an extended density of states below the conduction band edge. Although shallow states provide free carriers necessary for electrical conductivity, deeper states inside the band gap are detrimental to transparency. In zinc tin oxide (ZTO), the overall optoelectronic properties can be improved by defect passivation via annealing at high temperatures. Yet, the high thermal budget associated with such treatment is incompatible with many applications. Here, we demonstrate an alternative, low-temperature passivation method, which relies on cosputtering Sn-based TCOs with silicon dioxide (SiO2). Using amorphous ZTO and amorphous/polycrystalline tin dioxide (SnO2) as representative cases, we demonstrate through optoelectronic characterization and density functional theory simulations that the SiO2 contribution is twofold. First, oxygen from SiO2 passivates the oxygen deficiencies that form deep defects in SnO2 and ZTO. Second, the ionization energy of the remaining deep defect centers is lowered by the presence of silicon atoms. Remarkably, we find that these ionized states do not contribute to sub-gap absorptance. This simple passivation scheme significantly improves the optical properties without affecting the electrical conductivity, hence overcoming the known transparency-conductivity trade-off in Sn-based TCOs.

17.
Nat Mater ; 17(9): 820-826, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29891887

RESUMO

Tandem devices combining perovskite and silicon solar cells are promising candidates to achieve power conversion efficiencies above 30% at reasonable costs. State-of-the-art monolithic two-terminal perovskite/silicon tandem devices have so far featured silicon bottom cells that are polished on their front side to be compatible with the perovskite fabrication process. This concession leads to higher potential production costs, higher reflection losses and non-ideal light trapping. To tackle this issue, we developed a top cell deposition process that achieves the conformal growth of multiple compounds with controlled optoelectronic properties directly on the micrometre-sized pyramids of textured monocrystalline silicon. Tandem devices featuring a silicon heterojunction cell and a nanocrystalline silicon recombination junction demonstrate a certified steady-state efficiency of 25.2%. Our optical design yields a current density of 19.5 mA cm-2 thanks to the silicon pyramidal texture and suggests a path for the realization of 30% monolithic perovskite/silicon tandem devices.

18.
J Phys Chem Lett ; 9(2): 446-458, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29303583

RESUMO

Multijunction cells may offer a cost-effective route to boost the efficiency of industrial photovoltaics. For any technology to be deployed in the field, its performance under actual operating conditions is extremely important. In this perspective, we evaluate the impact of spectrum, light intensity, and module temperature variations on the efficiency of tandem devices with crystalline silicon bottom cells with a particular focus on perovskite top cells. We consider devices with different efficiencies and calculate their energy yields using field data from Denver. We find that annual losses due to differences between operating conditions and standard test conditions are similar for single-junction and four-terminal tandem devices. The additional loss for the two-terminal tandem configuration caused by current mismatch reduces its performance ratio by only 1.7% when an optimal top cell bandgap is used. Additionally, the unusual bandgap temperature dependence of perovskites is shown to have a positive, compensating effect on current mismatch.

19.
ACS Appl Mater Interfaces ; 9(8): 7241-7248, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28151638

RESUMO

Two fundamental requirements of transparent conductive oxides are high conductivity and low optical absorptance, properties strongly dependent on the free-carrier concentration of the film. The free-carrier concentration is usually tuned by the addition of dopant atoms; which are commonly assumed to be uniformly distributed in the films or partially segregated at grain boundaries. Here, the combination of secondary ion mass spectroscopy at the nanometric scale (NanoSIMS) and Kelvin probe force microscopy (KPFM) allows direct imaging of boron-dopant distribution in polycrystalline zinc oxide (ZnO) films. This work demonstrates that the boron atoms have a bimodal spatial distribution within each grain of the ZnO films. NanoSIMS analysis shows that boron atoms are preferentially incorporated into one of the two sides of each ZnO grain. KPFM measurements confirm that boron atoms are electrically active, locally increasing the free-carrier concentration in the film. The proposed cause of this nonuniform dopant distribution is the different sticking coefficient of Zn adatoms on the two distinct surface terminations of the ZnO grains. The higher sticking coefficient of Zn on the c+ surface restricts the boron incorporation on this side of the grains, resulting in preferential boron incorporation on the c- side and causing the bimodal distribution.

20.
J Phys Chem Lett ; 8(4): 838-843, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28121155

RESUMO

Optical absorptance spectroscopy of polycrystalline CH3NH3PbI3 films usually indicates the presence of a PbI2 phase, either as a preparation residue or due to film degradation, but gives no insight on how this may affect electrical properties. Here, we apply photocurrent spectroscopy to both perovskite solar cells and coplanar-contacted layers at various stages of degradation. In both cases, we find that the presence of a PbI2 phase restricts charge-carrier transport, suggesting that PbI2 encapsulates CH3NH3PbI3 grains. We also find that PbI2 injects holes into the CH3NH3PbI3 grains, increasing the apparent photosensitivity of PbI2. This phenomenon, known as modulation doping, is absent in the photocurrent spectra of solar cells, where holes and electrons have to be collected in pairs. This interpretation provides insights into the photogeneration and carrier transport in dual-phase perovskites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA