Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Clin Neurophysiol ; 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34510090

RESUMO

INTRODUCTION: This study aimed to determine the ability of multimodality intraoperative neurophysiologic monitoring, including somatosensory evoked potentials (SSEP) and EEG, to predict perioperative clinical stroke and stroke-related mortality after open-heart surgery in high-risk patients. METHODS: The records of all consecutive patients who underwent coronary artery bypass grafting, and cardiac valve repair/replacement with high risk for stroke who underwent both SSEP and EEG recording at the University of Pittsburgh Medical Center between 2009 and 2015 were reviewed. Sensitivity and specificity of these modalities to predict in-hospital clinical strokes and stroke-related mortality were calculated. RESULTS: A total of 531 patients underwent open cardiac procedures monitored using SSEP and EEG. One hundred thirty-one patients (24.67%) experienced significant changes in either modality. Fourteen patients (2.64%) suffered clinical strokes within 24 hours after surgery, and eight patients (1.50%) died during their hospitalization. The incidence of in-hospital clinical stroke and stroke-related mortality among patients who experienced a significant change in monitoring compared with those with no significant change was 11.45% versus 1.75%. The sensitivity and specificity of significant changes in either SSEP or EEG to predict in-hospital major stroke and stroke-related mortality were 0.93 and 0.77, respectively. CONCLUSIONS: Intraoperative neurophysiologic monitoring with SSEP and EEG has high sensitivity and specificity in predicting perioperative stroke and stroke-related mortality after open cardiac procedures. These results support the benefits of multimodality neuromonitoring during cardiac surgery.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34384591

RESUMO

OBJECTIVE: To evaluate the ability of intraoperative neurophysiologic monitoring (IONM) during aortic arch reconstruction with hypothermic circulatory arrest (HCA) to predict early (<48 hours) adverse neurologic events (ANE; stroke or transient ischemic attack) and operative mortality. METHODS: This was an observational study of aortic arch surgeries requiring HCA from 2010 to 2018. Patients were monitored with electroencephalogram (EEG) and somatosensory evoked potentials (SSEP). Baseline characteristics and postoperative outcomes were compared according to presence or absence of IONM changes, which were defined as any acute variation in SSEP or EEG, compared with baseline. Multivariable logistic regression analysis was used to assess the association of IONM changes with operative mortality and early ANE. RESULTS: A total of 563 patients underwent aortic arch reconstruction with HCA and IONM. Of these, 119 (21.1%) patients had an IONM change, whereas 444 (78.9%) did not. Patients with IONM changes had increased operative mortality (22.7% vs 4.3%) and increased early ANE (10.9% vs 2.9%). In multivariable analysis, SSEP changes were correlated with early ANE (odds ratio [OR], 4.68; 95% confidence interval [CI], 1.51-14.56; P = .008), whereas EEG changes were not (P = .532). Permanent SSEP changes were correlated with early ANE (OR, 4.56; 95% CI, 1.51-13.77; P = .007), whereas temperature-related SSEP changes were not (P = .997). Finally, any IONM change (either SSEP or EEG) was correlated with operative mortality (OR, 5.82; 95% CI, 2.72-12.49; P < .001). CONCLUSIONS: Abnormal IONM events during aortic arch reconstruction with HCA portend worse neurologic outcomes and operative mortality and have a negative predictive value of 97.1%. SSEP might be more sensitive than EEG for predicting early ANE, especially when SSEP changes are permanent.

3.
J Neurol Surg B Skull Base ; 82(Suppl 3): e342-e348, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34306959

RESUMO

Objective This study proposes to present reference parameters for trigeminal (V) and facial (VII) cranial nerves (CNs)-triggered electromyography (tEMG) during endoscopic endonasal approach (EEA) skull base surgeries to allow more precise and accurate mapping of these CNs. Study Design We retrospectively reviewed EEA procedures performed at the University of Pittsburgh Medical Center between 2009 and 2015. tEMG recorded in response to stimulation of CN V and VII was analyzed. Analysis of tEMG waveforms included latencies and amplitudes. Medical records were reviewed to determine the presence of perioperative neurologic deficits. Results A total of 28 patients were included. tEMG from 34 CNs (22 V and 12 VII) were analyzed. For CN V, the average onset latency was 2.9 ± 1.1 ms and peak-to-peak amplitude was 525 ± 436.94 µV ( n = 22). For CN VII, the average onset latency and peak-to-peak amplitude were 5.1 ± 1.43 ms and 315 ± 352.58 µV for the orbicularis oculi distribution ( n = 09), 5.9 ± 0.67 ms and 517 ± 489.07 µV on orbicularis oris ( n = 08), and 5.3 ± 0.98 ms 303.1 ± 215.3 µV on mentalis ( n = 07), respectively. Conclusion Our data support the notion that onset latency may be a feasible parameter in the differentiation between the CN V and VII during the crosstalk phenomenon in EEA surgeries but the particularities of this type of procedure should be taken into consideration. A prospective analysis with a larger data set is necessary.

4.
Global Spine J ; : 21925682211018472, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34013769

RESUMO

STUDY DESIGN: Systematic review and meta-analysis. OBJECTIVES: Malposition of pedicle screws during instrumentation in the lumbar spine is associated with complications secondary to spinal cord or nerve root injury. Intraoperative triggered electromyographic monitoring (t-EMG) may be used during instrumentation for early detection of malposition. The association between lumbar pedicle screws stimulated at low EMG thresholds and postoperative neurological deficits, however, remains unknown. The purpose of this study is to assess whether a low threshold t-EMG response to lumbar pedicle screw stimulation can serve as a predictive tool for postoperative neurological deficit. METHODS: The present study is a meta-analysis of the literature from PubMed, Web of Science, and Embase identifying prospective/retrospective studies with outcomes of patients who underwent lumbar spinal fusion with t-EMG testing. RESULTS: The total study cohort consisted of 2,236 patients and the total postoperative neurological deficit rate was 3.04%. 10.78% of the patients incurred at least 1 pedicle screw that was stimulated below the respective EMG alarm threshold intraoperatively. The incidence of postoperative neurological deficits in patients with a lumbar pedicle screw stimulated below EMG alarm threshold during placement was 13.28%, while only 1.80% in the patients without. The pooled DOR was 10.14. Sensitivity was 49% while specificity was 88%. CONCLUSIONS: Electrically activated lumbar pedicle screws resulting in low t-EMG alarm thresholds are highly specific but weakly sensitive for new postoperative neurological deficits. Patients with new postoperative neurological deficits after lumbar spine surgery were 10 times more likely to have had a lumbar pedicle screw stimulated at a low EMG threshold.

5.
Spine (Phila Pa 1976) ; 46(24): E1343-E1352, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33958542

RESUMO

STUDY DESIGN: This study is a meta-analysis of prospective and retrospective studies identified in PubMed, Web of Science, and Embase with outcomes of patients who received intraoperative somatosensory-evoked potential (SSEP) monitoring during lumbar spine surgery. OBJECTIVE: The objective of this study is to determine the diagnostic accuracy of intraoperative lower extremity SSEP changes for predicting postoperative neurological deficit. As a secondary analysis, we evaluated three subtypes of intraoperative SSEP changes: reversible, irreversible, and total signal loss. SUMMARY OF BACKGROUND DATA: Lumbar decompression and fusion surgery can treat lumbar spinal stenosis and spondylolisthesis but carry a risk for nerve root injury. Published neurophysiological monitoring guidelines provide no conclusive evidence for the clinical utility of intraoperative SSEP monitoring during lumbar spine surgery. METHODS: A systematic review was conducted to identify studies with outcomes of patients who underwent lumbar spine surgeries with intraoperative SSEP monitoring. The sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated and presented with forest plots and a summary receiver operating characteristic curve. RESULTS: The study cohort consisted of 5607 patients. All significant intraoperative SSEP changes had a sensitivity of 44% and specificity of 97% with a DOR of 22.13 (95% CI, 11.30-43.34). Reversible and irreversible SSEP changes had sensitivities of 28% and 33% and specificities of 97% and 97%, respectively. The DORs for reversible and irreversible SSEP changes were 13.93 (95% CI, 4.60-40.44) and 57.84 (95% CI, 15.95-209.84), respectively. Total loss of SSEPs had a sensitivity of 9% and specificity of 99% with a DOR of 23.91 (95% CI, 7.18-79.65). CONCLUSION: SSEP changes during lumbar spine surgery are highly specific but moderately sensitive for new postoperative neurological deficits. Patients who had postoperative neurological deficit were 22 times more likely to have exhibited intraoperative SSEP changes.Level of Evidence: 2.


Assuntos
Potenciais Somatossensoriais Evocados , Monitorização Neurofisiológica Intraoperatória , Humanos , Monitorização Intraoperatória , Procedimentos Neurocirúrgicos , Estudos Prospectivos , Estudos Retrospectivos
6.
World Neurosurg ; 151: e250-e256, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872842

RESUMO

OBJECTIVE: Previous studies have shown that pedicle screw stimulation thresholds ≤6-8 mA yield a high diagnostic accuracy of detecting misplaced screws. Our objective was to determine the optimal "low" stimulation threshold to predict new postoperative neurologic deficits and identify additional risk factors associated with deficits. METHODS: We included patients with complete pedicle screw stimulation testing who underwent posterior lumbar spinal fusion surgeries from 2010-2012. We calculated the diagnostic accuracy of pedicle screw responses of ≤4 mA, ≤6 mA, ≤8 mA, ≤10 mA, ≤12 mA, and ≤20 mA to predict new postoperative lower-extremity (LE) neurologic deficits. We used multivariate modeling to determine the best logistic regression model to predict LE deficits and identify additional risk factors. Statistics software packages used were Python3.8.5, NumPy 1.19.1, Pandas 1.1.1, and SPSS26. RESULTS: We studied 1179 patients who underwent 8584 pedicle screw stimulations with somatosensory evoked potential and free-run electromyographic monitoring for posterior lumbar spinal fusion. Twenty-five (2.1%) patients had new LE neurologic deficits. A stimulation threshold of ≤8 mA had a sensitivity/specificity of 32%/90% and a diagnostic odds ratio/area under the curve of 4.34 [95% confidence interval: 1.83, 10.27]/0.61 [0.49, 0.74] in predicting postoperative deficit. Multivariate analysis showed that patients who had pedicle screws with stimulation thresholds ≤8 mA are 3.15 [1.26, 7.83]× more likely to have postoperative LE deficits while patients who have undergone a revision lumbar spinal fusion surgery are 3.64 [1.38, 9.61]× more likely. CONCLUSIONS: Our results show that low thresholds are indicative of not only screw proximity to the nerve but also an increased likelihood of postoperative neurologic deficit. Thresholds ≤8 mA prove to be the optimal "low" threshold to help guide a correctly positioned pedicle screw placement and detect postoperative deficits.


Assuntos
Vértebras Lombares/cirurgia , Parafusos Pediculares/efeitos adversos , Complicações Pós-Operatórias/diagnóstico , Fusão Vertebral/efeitos adversos , Idoso , Estimulação Elétrica/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/etiologia , Período Pós-Operatório , Sensibilidade e Especificidade
7.
Spine J ; 21(4): 555-570, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33460808

RESUMO

BACKGROUND CONTEXT: Cervical decompression and fusion surgery remains a mainstay of treatment for a variety of cervical pathologies. Potential intraoperative injury to the spinal cord and nerve roots poses nontrivial risk for consequent postoperative neurologic deficits. Although neuromonitoring with intraoperative somatosensory evoked potentials (SSEPs) is often used in cervical spine surgery, its therapeutic value remains controversial. PURPOSE: The purpose of the present study was to evaluate whether significant SSEP changes can predict postoperative neurologic complications in cervical spine surgery. A subgroup analysis was performed to compare the predictive power of SSEP changes in both anterior and posterior approaches. STUDY DESIGN: The present study was a meta-analysis of the literature from PubMed, Web of Science, and Embase to identify prospective/retrospective studies with outcomes of patients who underwent cervical spine surgeries with intraoperative SSEP monitoring. PATIENT SAMPLE: The total cohort consisted of 7,747 patients who underwent cervical spine surgery with intraoperative SSEP monitoring. METHODS: Inclusion criteria for study selection were as follows: (1) prospective or retrospective cohort studies, (2) studies conducted in patients undergoing elective cervical spine surgery not due to aneurysm, tumor, or trauma with intraoperative SSEP monitoring, (3) studies that reported postoperative neurologic outcomes, (4) studies conducted with a sample size ≥20 patients, (5) studies with only adult patients ≥18 years of age, (6) studies published in English, (7) studies inclusive of an abstract. OUTCOME MEASURES: The sensitivity, specificity, diagnostic odds ratio (DOR), and likelihood ratios of overall SSEP changes, reversible SSEP changes, irreversible SSEP changes, and SSEP loss for predicting postoperative neurological deficit were calculated. RESULTS: The total rate of postoperative neurological deficits was 2.50% (194/7,747) and the total rate of SSEP changes was 7.36% (570/7,747). The incidence of postoperative neurological deficit in patients with intraoperative SSEP changes was 16.49% (94/570) while only 1.39% (100/7,177) in patients without. All significant intraoperative SSEP changes had a sensitivity of 46.0% and specificity of 96.7% with a DOR of 27.32. Reversible and irreversible SSEP changes had sensitivities of 17.7% and 37.1% and specificities of 97.5% and 99.5%, respectively. The DORs for reversible and irreversible SSEP changes were 9.01 and 167.90, respectively. SSEP loss had a DOR of 51.39, sensitivity of 17.3% and specificity 99.6%. In anterior procedures, SSEP changes had a DOR of 9.60, sensitivity of 34.2%, and specificity of 94.7%. In posterior procedures, SSEP changes had a DOR of 13.27, sensitivity of 42.6%, and specificity of 94.0%. CONCLUSIONS: SSEP monitoring is highly specific but weakly sensitive for postoperative neurological deficit following cervical spine surgery. The analysis found that patients with new postoperative neurological deficits were nearly 27 times more likely to have had significant intraoperative SSEP change. Loss of SSEP signals and irreversible SSEP changes seem to indicate a much higher risk of injury than reversible SSEP changes.


Assuntos
Potenciais Somatossensoriais Evocados , Monitorização Neurofisiológica Intraoperatória , Adulto , Vértebras Cervicais/cirurgia , Potencial Evocado Motor , Humanos , Estudos Prospectivos , Estudos Retrospectivos
8.
World Neurosurg ; 148: e43-e57, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33301995

RESUMO

OBJECTIVE: In the present study, we investigated the role of intraoperative neuromonitoring (IONM) in internal carotid artery (ICA) injury during endoscopic endonasal skull base surgery (EESBS). METHODS: The study group included all 13 patients who had experienced an ICA injury during EESBS with IONM from 2004 to 2017. The medical records were reviewed for the perioperative data. The IONM reports were reviewed to evaluate the baseline somatosensory evoked potentials (SSEP), electroencephalography (EEG), and brainstem auditory evoked potentials (BAEP) and their significant changes related to ICA injury and/or the subsequent surgical/endovascular interventions. RESULTS: All 13 patients had undergone SSEP and 7 patients had BAEP monitoring during surgery. EEG was added during emergent angiography following the surgery for 5 patients. Two patients showed significant SSEP changes, and one showed significant SSEP and EEG changes, indicating cerebral hypoperfusion. Of these 3 patients, patient 1 had experienced irreversible SSEP loss with postoperative stroke. Patients 2 and 3 had SSEP and/or EEG changes that had recovered to baseline after interventions without postoperative deficits. Despite ICA injury, 10 patients showed no significant SSEP and/or EEG changes, and all 7 patients with BAEP monitoring showed no significant BAEP changes, indicating adequate cerebral and brainstem perfusion, respectively. The injured ICA was sacrificed in 4 patients, of whom 3 showed stable SSEP and 1 had experienced irreversible SSEP loss. IONM correlated with the postoperative neurologic examination findings in all cases, adequately predicting the neurologic outcomes after ICA injury. CONCLUSION: SSEP and EEG monitoring can accurately detect cerebral hypoperfusion and provide real-time feedback during surgery. SSEP and EEG changes predicted for neurologic outcomes and guide surgical decisions regarding the preservation or sacrifice of the ICA. Comprehensive multimodality monitoring according to the surgical risks can serve to detect and guide the management of ICA injury in EESBS.


Assuntos
Lesões das Artérias Carótidas/diagnóstico , Artéria Carótida Interna , Complicações Intraoperatórias/diagnóstico , Monitorização Neurofisiológica Intraoperatória/métodos , Neuroendoscopia/efeitos adversos , Base do Crânio/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Lesões das Artérias Carótidas/etiologia , Lesões das Artérias Carótidas/fisiopatologia , Artéria Carótida Interna/fisiopatologia , Criança , Eletroencefalografia/métodos , Potenciais Evocados Auditivos/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Humanos , Complicações Intraoperatórias/etiologia , Complicações Intraoperatórias/fisiopatologia , Masculino , Pessoa de Meia-Idade , Cavidade Nasal/cirurgia
9.
Spine (Phila Pa 1976) ; 46(2): E139-E145, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33347093

RESUMO

STUDY DESIGN: Retrospective observational study. OBJECTIVE: It has been shown that pedicle screw stimulation thresholds less than or equal to 8 mA yield a very high diagnostic accuracy of detecting misplaced screws in spinal surgery. In our study, we determined clinical implications of low stimulation thresholds. SUMMARY OF BACKGROUND DATA: Posterior lumbar spinal fusions (PSF), using pedicle screws, are performed to treat many spinal pathologies, but misplaced pedicle screws can result in new postoperative neurological deficits. METHODS: Patients with pedicle screw stimulation testing who underwent PSF between 2010 and 2012 at the University of Pittsburgh Medical Center (UPMC) were included in the study. We evaluated the sensitivity, specificity, and diagnostic odds ratio (DOR) to determine how effectively low pedicle screw responses predict new postoperative lower extremity neurological deficits. RESULTS: One thousand one hundred seventy nine eligible patients underwent 8584 pedicle screw stimulations with lower extremity somatosensory evoked potentials (LE SSEP) monitoring for lumbar fusion surgery. One hundred twenty one of these patients had 187 pedicle screws with a stimulation response at a threshold less than or equal to 8 mA. Smoking had a significant correlation to pedicle screw stimulation less than or equal to 8 mA (P = 0.012). A threshold of less than or equal to 8 mA had a sensitivity/specificity of 0.32/0.90 with DOR of 4.34 [1.83, 10.27] and an area under the ROC curve (AUC) of 0.61 [0.49, 0.74]. Patients with screw thresholds less than or equal to 8 mA and abnormal baselines had a DOR of 9.8 [95% CI: 2.13-45.17] and an AUC of 0.73 [95% CI: 0.50-0.95]. CONCLUSION: Patients with pedicle screw stimulation thresholds less than or equal to 8 mA are 4.34 times more likely to have neurological clinical manifestations. Smoking and LE deficits were shown to be significantly correlated with pedicle screw stimulation thresholds less than or equal to 8 mA. Low stimulation thresholds result in a high specificity of 90%. Pedicle screw stimulation less than or equal to 8 mA can serve as an accurate rule in test for postoperative neurological deficit, warranting reevaluation of screw placement and/or replacement intraoperatively.Level of Evidence: 3.


Assuntos
Região Lombossacral/cirurgia , Parafusos Pediculares , Fusão Vertebral/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletromiografia , Feminino , Humanos , Extremidade Inferior , Vértebras Lombares/cirurgia , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Estudos Retrospectivos
10.
J Stroke Cerebrovasc Dis ; 29(10): 105158, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32912500

RESUMO

INTRODUCTION: Intra-operative stroke (IOS) is associated with poor clinical outcome as detection is often delayed and time of symptom onset or patient's last known well (LKW) is uncertain. Intra-operative neurophysiological monitoring (IONM) is uniquely capable of detecting onset of neurological dysfunction in anesthetized patients, thereby precisely defining time last electrically well (LEW). This novel parameter may aid in the detection of large vessel occlusion (LVO) and prompt treatment with endovascular thrombectomy (EVT). METHODS: We performed a retrospective analysis of a prospectively maintained AIS and LVO database from May 2018-August 2019. Inclusion criteria required any surgical procedure under general anesthesia (GA) utilizing EEG (electroencephalography) and/or SSEP (somatosensory evoked potentials) monitoring with development of intraoperative focal persistent changes using predefined alarm criteria and who were considered for EVT. RESULT: Five cases were identified. LKW to closure time ranged from 66 to 321 minutes, while LEW to closure time ranged from 43 to 174 min. All LVOs were in the anterior circulation. Angiography was not pursued in two cases due to large established infarct (both patients expired in the hospital). EVT was pursued in two cases with successful recanalization and spontaneous recanalization was noted in one patient (mRS 0-3 at 90 days was achieved in all 3 cases). CONCLUSIONS: This study demonstrates that significant IONM changes can accurately identify patients with an acute LVO in the operative setting. Given the challenges of recognizing peri-operative stroke, LEW may be an appropriate surrogate to quickly identify and treat IOS.


Assuntos
Eletroencefalografia , Procedimentos Endovasculares , Potenciais Somatossensoriais Evocados , Monitorização Neurofisiológica Intraoperatória , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia , Triagem , Idoso , Anestesia Geral , Bases de Dados Factuais , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/mortalidade , Feminino , Humanos , Período Intraoperatório , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Fatores de Risco , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/mortalidade , Fatores de Tempo , Resultado do Tratamento
12.
Neurosurgery ; 87(4): E473-E484, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32297629

RESUMO

BACKGROUND: Microvascular decompression (MVD) is the surgical treatment of choice for hemifacial spasm (HFS). During MVD, monitoring of the abnormal lateral spread response (LSR), an evoked response to facial nerve stimulation, has been traditionally used to monitor adequacy of cranial nerve (CN) VII decompression. OBJECTIVE: To assess the utility of LSR monitoring in predicting spasm-free status after MVD postoperatively. METHODS: We searched PubMed, Web of Science, and Embase for relevant publications. We included studies reporting on intraoperative LSR monitoring during MVD for HFS and spasm-free status following the procedure. Sensitivity of LSR, specificity, diagnostic odds ratio, and positive predictive value were calculated. RESULTS: From 148 studies, 26 studies with 7479 patients were ultimately included in this meta-analysis. The final intraoperative LSR status predicted the clinical outcome of MVD with the following specificities and sensitivities: 89% (0.83- 0.93) and 40% (0.30- 0.51) at discharge, 90% (0.84-0.94) and 41% (0.29-0.53) at 3 mo, 89% (0.83-0.93) and 40% (0.30-0.51) at 1 yr. When LSR persisted after MVD, the probability (95% CI) for HFS persistence was 47.8% (0.33-0.63) at discharge, 40.8% (0.23-0.61) at 3 mo, and 24.4% (0.13-0.41) at 1 yr. However, when LSR resolved, the probability for HFS persistence was 7.3% at discharge, 4.2% at 3 mo, and 4.0% at 1 yr. CONCLUSION: Intraoperative LSR monitoring has high specificity but modest sensitivity in predicting the spasm-free status following MVD. Persistence of LSR carries high risk for immediate and long-term facial spasm persistence. Therefore, adequacy of decompression should be thoroughly investigated before closing in cases where intraoperative LSR persists.


Assuntos
Espasmo Hemifacial/fisiopatologia , Espasmo Hemifacial/cirurgia , Cirurgia de Descompressão Microvascular/métodos , Monitorização Intraoperatória/métodos , Adulto , Idoso , Nervo Facial/diagnóstico por imagem , Nervo Facial/fisiopatologia , Nervo Facial/cirurgia , Feminino , Espasmo Hemifacial/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Alta do Paciente/tendências , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento
13.
J Neurosurg Spine ; : 1-6, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32114528

RESUMO

OBJECTIVE: Posterior thoracic fusion (PTF) is used as a surgical treatment for a wide range of pathologies. The monitoring of somatosensory evoked potentials (SSEPs) is used to detect and prevent injury during many neurological surgeries. The authors conducted a study to evaluate the efficacy of SSEPs in predicting perioperative lower-extremity (LE) neurological deficits during spinal thoracic fusion surgery. METHODS: The authors included patients who underwent PTF with SSEP monitoring performed throughout the entire surgery from 2010 to 2015 at the University of Pittsburgh Medical Center (UPMC). The sensitivity, specificity, odds ratio, and receiver operating characteristic curve were calculated to evaluate the diagnostic accuracy of SSEP changes in predicting postoperative deficits. Univariate analysis was completed to determine the impact of age exceeding 65 years, sex, obesity, abnormal baseline testing, surgery type, and neurological deficits on the development of intraoperative changes. RESULTS: From 2010 to 2015, 771 eligible patients underwent SSEP monitoring during PTF at UPMC. Univariate and linear regression analyses showed that LE SSEP changes significantly predicted LE neurological deficits. Significant changes in LE SSEPs had a sensitivity and specificity of 19% and 96%, respectively, in predicting LE neurological deficits. The diagnostic odds ratio for patients with new LE neurological deficits who had significant changes in LE SSEPs was 5.86 (95% CI 2.74-12.5). However, the results showed that a loss of LE waveforms had a poor predictive value for perioperative LE deficits (diagnostic OR 1.58 [95% CI 0.19-12.83]). CONCLUSIONS: Patients with new postoperative LE neurological deficits are 5.9 times more likely to have significant changes in LE SSEPs during PTF. Surgeon awareness of an LE SSEP loss may alter surgical strategy and positively impact rates of postoperative LE neurological deficit status. The relatively poor sensitivity of LE SSEP monitoring may indicate a need for multimodal neurophysiological monitoring, including motor evoked potentials, in thoracic fusion surgery.

14.
Sport Sci Health ; 15(2): 375-383, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31814853

RESUMO

Purpose: Previous research suggests that prolonged sitting may acutely reduce cerebral blood flow velocity (CBFv). The purpose of this study was to evaluate the effects of alternating standing and sitting vs prolonged sitting on CBFv. Methods: This randomized crossover study enrolled working adults (N=25) with pre-to-stage 1 hypertension not using antihypertensive medications, and a body mass index from 25 to < 40 kg/m2. Subjects participated in two simulated workday conditions: 1) sitting continuously (SIT), and 2) alternating standing and sitting every 30 min (SS). Beat-to-beat systolic, mean and diastolic CBFv were recorded bilaterally for 1 min via insonation of the middle cerebral artery using transcranial Doppler ultrasonography before (morning), between (midday) and following (afternoon) two 3-hr 40 min work periods. Results: Mean±SD age was 42±12 years, blood pressure (BP) was 132±9/83±8 mmHg, and BMI was 32±5 kg/m2. Cerebrovascular hemodynamics did not differ across condition (P>0.05). There were, however, significant nonlinear effects of time (decrease from morning to midday; increase from midday to afternoon) on systolic CBFv (P=0.014), mean CBFv (P=0.001), diastolic CBFv (P=0.002), and pulsatility index (P=0.038). When overall time effects were evaluated during each time interval, mean and diastolic CBFv significantly decreased morning to midday and all CBFv increased from midday to afternoon. When separated by condition, significant time effects were observed for all CBFv during SIT (P<0.02) but not SS (P>0.05). Conclusions: In individuals with elevated BP and BMI, CBFv significantly decreased by midday and increased by afternoon, especially during a workday of prolonged sitting. Future studies should evaluate the combination of frequent walks and a sit-stand desk to break up prolonged sitting.

15.
Resuscitation ; 139: 92-98, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30995538

RESUMO

AIM: Predicting recovery in comatose post-cardiac arrest patients requires multiple modalities of prognostic assessment. In isolation, absent N20 cortical responses in somatosensory evoked potentials (SSEPs) are a specific predictor of poor outcome. It is unknown whether SSEP results, when assessed in the context of prior knowledge (demographic and clinical information), change the pretest predicted probability of recovery. METHODS: In a single center retrospective study, a cohort of 323 patients admitted to post-cardiac arrest service at a tertiary care center were classified into a group based on SSEP testing. We built adjusted logistic regression models including clinical examination findings on the day SSEPs were recorded to generate a pre-test outcome probability for awakening, withdrawal of life-sustaining therapy (WLST) and survival to discharge. We then added the upper extremity N20 cortical response results to the model to obtain updated outcome probabilities. ROC curve was used to determine the additive effect of using SSEPs to the model. Survival to discharge, awakening, and WLST due to neurological reasons were designated as primary, secondary and tertiary outcomes, respectively. RESULTS: Analyses showed that evoked potentials are ordered in sicker patients. Adding SSEP to the model increased the proportion of patients with less than 1% and 5% chance of survival, as well as the proportion of patients with over 95% chance of WLST. AUC for survival increased from 0.85 to 0.93 when SSEP was included (p = 0.006). CONCLUSION: Adding the N20 SSEP response results to prior knowledge changed the predicted probability of WLST and survival to discharge in comatose post-arrest patients.


Assuntos
Potenciais Somatossensoriais Evocados , Parada Cardíaca Extra-Hospitalar/mortalidade , Adulto , Idoso , Coma/etiologia , Coma/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Parada Cardíaca Extra-Hospitalar/complicações , Parada Cardíaca Extra-Hospitalar/fisiopatologia , Curva ROC , Estudos Retrospectivos
17.
J Clin Monit Comput ; 33(2): 333-339, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29855850

RESUMO

The goal of this study was to evaluate the risk factors associated with positioning-related SSEP changes (PRSC). The study investigated the association between 18 plausible risk factors and the occurrence of intraoperative PRSC. Risk factors investigated included demographic variables, comorbidities, and procedure related variables. All patients were treated by the University of Pittsburgh Medical Center from 2010 to 2012. We used univariate and multivariate statistical methods. 69 out of the 3946 (1.75%) spinal surgeries resulted in PRSC changes. The risk of PRSC was increased for women (p < 0.001), patients older than 65 years of age (p = 0.01), higher BMI (p < 0.001) patients, smokers (p < 0.001), and patients with hypertension (p < 0.001). No associations were found between PRSC and age greater than 80 years, diabetes mellitus, cardiovascular disease, and peripheral vascular disease. Three surgical situations were associated with PRSC including abnormal baselines (p < 0.001), patients in the "superman" position (p < 0.001), and patients in surgical procedures that extended over 200 min (p = 0.03). Patients with higher BMIs and who are undergoing spinal surgery longer than 200 min, with abnormal baselines, must be positioned with meticulous attention. Gender, hypertension, and smoking were also found to be risk factors from their odds ratios.


Assuntos
Potenciais Somatossensoriais Evocados , Monitorização Intraoperatória/métodos , Coluna Vertebral/cirurgia , Idoso , Idoso de 80 Anos ou mais , Feminino , Monitorização Hemodinâmica , Humanos , Período Intraoperatório , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Procedimentos Neurocirúrgicos , Estudos Retrospectivos , Fatores de Risco
18.
J Clin Neurosci ; 61: 78-83, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30528129

RESUMO

BACKGROUND: Lumbar interbody spinal fusion (LIF) surgeries are performed to treat or prevent back pain in patients with degenerated intervertebral discs and a variety of spinal diseases. However, post-operative neurological complications may ensue. Intraoperative monitoring techniques have been used to predict and potentially reduce the risk of complications. METHODS: This study examined the diagnostic accuracy of significant changes of somatosensory evoked potentials (SSEPs) to evaluate and predict post-operative neurological deficits after LIF. All patients underwent LIF at UPMC from 2010 to 2012. One thousand fifty-seven patients had pre-operative baseline and continuous intraoperative SSEP monitoring. Statistical analysis was completed using SPSS version 22. No relevant disclosure. RESULTS: Patient outcomes were not significantly affected by age over 65, gender, obesity, and abnormal baselines. Lower extremity (LE) significant changes in SSEPs and LE loss of responses resulted in a sensitivity/specificity of 0.03/0.99 and 0.03/0.99; they had an AUC of 0.54/0.73 with a 95% confidence interval (CI) of [0.34, 0.74]/[0.29, 1.00]. CONCLUSIONS: Significant SSEP changes during LIF are a very specific but poorly sensitive indicator of perioperative neurological deficits. The odds ratio for LE loss of responses was 29.14 with a 95% CI of 1.79-475.5, so LE SSEP loss of responses can serve as a biomarker of perioperative neurological deficits after LIF.


Assuntos
Potenciais Somatossensoriais Evocados , Monitorização Neurofisiológica Intraoperatória/normas , Fusão Vertebral/métodos , Adolescente , Adulto , Idoso , Feminino , Humanos , Monitorização Neurofisiológica Intraoperatória/métodos , Região Lombossacral/cirurgia , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/epidemiologia , Sensibilidade e Especificidade
19.
J Clin Monit Comput ; 33(2): 175-183, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30374759

RESUMO

The American Society of Neurophysiological Monitoring (ASNM) was founded in 1989 as the American Society of Evoked Potential Monitoring. From the beginning, the Society has been made up of physicians, doctoral degree holders, Technologists, and all those interested in furthering the profession. The Society changed its name to the ASNM and held its first Annual Meeting in 1990. It remains the largest worldwide organization dedicated solely to the scientifically-based advancement of intraoperative neurophysiology. The primary goal of the ASNM is to assure the quality of patient care during procedures monitoring the nervous system. This goal is accomplished primarily through programs in education, advocacy of basic and clinical research, and publication of guidelines, among other endeavors. The ASNM is committed to the development of medically sound and clinically relevant guidelines for the performance of intraoperative neurophysiology. Guidelines are formulated based on exhaustive literature review, recruitment of expert opinion, and broad consensus among ASNM membership. Input is likewise sought from sister societies and related constituencies. Adherence to a literature-based, formalized process characterizes the construction of all ASNM guidelines. The guidelines covering the Professional Practice of intraoperative neurophysiological monitoring were initially published January 24th, 2013, and subsequently that document has undergone review and revision to accommodate broad inter- and intra-societal feedback. This current version of the ASNM Professional Practice Guideline was fully approved for publication according to ASNM bylaws on February 22nd, 2018, and thus overwrites and supersedes the initial guideline.


Assuntos
Monitorização Neurofisiológica Intraoperatória/normas , Monitorização Neurofisiológica/normas , Neurofisiologia/normas , Humanos , Organização e Administração , Médicos , Sociedades Médicas , Estados Unidos
20.
J Phys Act Health ; 15(10): 788-794, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30139293

RESUMO

BACKGROUND: Limited research examines the influence of sit-stand desks on ratings of discomfort, sleepiness, and fatigue. This study evaluated the time course of these outcomes over 1 day. METHODS: Adults (N = 25) completed a randomized cross-over study in a laboratory with two 8-hour workday conditions: (1) prolonged sitting (SIT) and (2) alternating sitting and standing every 30 minutes (SIT-STAND). Sleepiness was assessed hourly. Discomfort, physical fatigue, and mental fatigue were measured every other hour. Linear mixed models evaluated whether these measures differed across conditions and the workday. Effect sizes were calculated using Cohen's d. RESULTS: Participants were primarily white (84%) males (64%), with mean (SD) body mass index of 31.9 (5.0) kg/m2 and age 42 (12) years. SIT-STAND resulted in decreased odds of discomfort (OR = 0.37, P = .01) and lower overall discomfort (ß = -0.19, P < .001, d = 0.42) versus SIT. Discomfort during SIT-STAND was lower in the lower and upper back, but higher in the legs (all Ps< .01, d = 0.26-0.42). Sleepiness (ß = -0.09, P = .01, d = 0.15) and physical fatigue (ß = -0.34, P = .002, d = 0.34) were significantly lower in SIT-STAND. Mental fatigue was similar across conditions. CONCLUSIONS: Sit-stand desks may reduce acute levels of sleepiness, physical fatigue, and both overall and back discomfort. However, levels of lower extremity discomfort may be increased with acute exposure.


Assuntos
Fadiga , Obesidade , Postura/fisiologia , Comportamento Sedentário , Posição Ortostática , Local de Trabalho/estatística & dados numéricos , Adulto , Índice de Massa Corporal , Estudos Cross-Over , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenômenos Fisiológicos Musculoesqueléticos , Postura Sentada , Sonolência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...