Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Brain Dis ; 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34570340

RESUMO

Status epilepticus (SE) is a clinical emergency with high mortality. SE can trigger neuronal death or injury and alteration of neuronal networks resulting in long-term cognitive decline or epilepsy. Among the multiple factors contributing to this damage, imbalance between oxygen and glucose requirements and brain perfusion during SE has been proposed. Herein, we aimed to quantify by neuroimaging the spatiotemporal course of brain perfusion during and after lithium-pilocarpine-induced SE in rats. To this purpose, animals underwent 99mTc-HMPAO SPECT imaging at different time points during and after SE using a small animal SPECT/CT system. 99mTc-HMPAO regional uptake was normalized to the injected dose. In addition, voxel-based statistical parametric mapping was performed. SPECT imaging showed an increase of cortical perfusion before clinical seizure activity onset followed by regional hypo-perfusion starting with the first convulsive seizure and during SE. Twenty-four hours after SE, brain 99mTc-HMPAO uptake was widely decreased. Finally, chronic epileptic animals showed regionally decreased perfusion affecting hippocampus and cortical sub-regions. Despite elevated energy and oxygen requirements, brain hypo-perfusion is present during SE. Our results suggest that insufficient compensation of required blood flow might contribute to neuronal damage and neuroinflammation, and ultimately to chronic epilepsy generated by SE.

2.
Theranostics ; 11(16): 7755-7766, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335962

RESUMO

Background: Myocardial infarction (MI) evokes an organized remodeling process characterized by the activation and transdifferentiation of quiescent cardiac fibroblasts to generate a stable collagen rich scar. Early fibroblast activation may be amenable to targeted therapy, but is challenging to identify in vivo. We aimed to non-invasively image active fibrosis by targeting the fibroblast activation protein (FAP) expressed by activated (myo)fibroblasts, using a novel positron emission tomography (PET) radioligand [68Ga]MHLL1 after acute MI. Methods: One-step chemical synthesis and manual as well as module-based radiolabeling yielded [68Ga]MHLL1. Binding characteristics were evaluated in murine and human FAP-transfected cells, and stability tested in human serum. Biodistribution in healthy animals was interrogated by dynamic PET imaging, and metabolites were measured in blood and urine. The temporal pattern of FAP expression was determined by serial PET imaging at 7 d and 21 d after coronary artery ligation in mice as percent injected dose per gram (%ID/g). PET measurements were validated by ex vivo autoradiography and immunostaining for FAP and inflammatory macrophages. Results: [68Ga]MHLL1 displayed specific uptake in murine and human FAP-positive cells (p = 0.0208). In healthy mice the tracer exhibited favorable imaging characteristics, with low blood pool retention and dominantly renal clearance. At 7 d after coronary artery ligation, [68Ga]MHLL1 uptake was elevated in the infarct relative to the non-infarcted remote myocardium (1.3 ± 0.3 vs. 1.0 ± 0.2 %ID/g, p < 0.001) which persisted to 21 d after MI (1.3 ± 0.4 vs. 1.1 ± 0.4 %ID/g, p = 0.013). Excess unlabeled compound blocked tracer accumulation in both infarct and non-infarct remote myocardium regions (p < 0.001). Autoradiography and histology confirmed the regional uptake of [68Ga]MHLL1 in the infarct and especially border zone regions, as identified by Masson trichrome collagen staining. Immunostaining further delineated persistent FAP expression at 7 d and 21 d post-MI in the border zone, consistent with tracer distribution in vivo. Conclusion: The simplified synthesis of [68Ga]MHLL1 bears promise for non-invasive characterization of fibroblast activation protein early in remodeling after MI.


Assuntos
Endopeptidases/metabolismo , Radioisótopos de Gálio/farmacologia , Proteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Autorradiografia/métodos , Linhagem Celular Tumoral , Endopeptidases/fisiologia , Fibroblastos/metabolismo , Fibrose/diagnóstico por imagem , Radioisótopos de Gálio/metabolismo , Humanos , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Imagem Molecular/métodos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Distribuição Tecidual/fisiologia , Tomografia Computadorizada por Raios X/métodos
3.
J Med Chem ; 64(16): 12359-12378, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34370949

RESUMO

The diagnosis of bacterial infections at deep body sites benefits from noninvasive imaging of molecular probes that can be traced by positron emission tomography (PET). We specifically labeled bacteria by targeting their iron transport system with artificial siderophores. The cyclen-based probes contain different binding sites for iron and the PET nuclide gallium-68. A panel of 11 siderophores with different iron coordination numbers and geometries was synthesized in up to 8 steps, and candidates with the best siderophore potential were selected by a growth recovery assay. The probes [68Ga]7 and [68Ga]15 were found to be suitable for PET imaging based on their radiochemical yield, radiochemical purity, and complex stability in vitro and in vivo. Both showed significant uptake in mice infected with Escherichia coli and were able to discern infection from lipopolysaccharide-triggered, sterile inflammation. The study qualifies cyclen-based artificial siderophores as readily accessible scaffolds for the in vivo imaging of bacteria.

4.
Pharmaceutics ; 13(7)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34371788

RESUMO

In this work, a method for the preparation of the highly lipophilic labeling synthon [89Zr]Zr(oxinate)4 was optimized for the radiolabeling of liposomes and human induced pluripotent stem cells (hiPSCs). The aim was to establish a robust and reliable labeling protocol for enabling up to one week positron emission tomography (PET) tracing of lipid-based nanomedicines and transplanted or injected cells, respectively. [89Zr]Zr(oxinate)4 was prepared from oxine (8-hydroxyquinoline) and [89Zr]Zr(OH)2(C2O4). Earlier introduced liquid-liquid extraction methods were simplified by the optimization of buffering, pH, temperature and reaction times. For quality control, thin-layer chromatography (TLC), size-exclusion chromatography (SEC) and centrifugation were employed. Subsequently, the 89Zr-complex was incorporated into liposome formulations. PET/CT imaging of 89Zr-labeled liposomes was performed in healthy mice. Cell labeling was accomplished in PBS using suspensions of 3 × 106 hiPSCs, each. [89Zr]Zr(oxinate)4 was synthesized in very high radiochemical yields of 98.7% (96.8% ± 2.8%). Similarly, high internalization rates (≥90%) of [89Zr]Zr(oxinate)4 into liposomes were obtained over an 18 h incubation period. MicroPET and biodistribution studies confirmed the labeled nanocarriers' in vivo stability. Human iPSCs incorporated the labeling agent within 30 min with ~50% efficiency. Prolonged PET imaging is an ideal tool in the development of lipid-based nanocarriers for drug delivery and cell therapies. To this end, a reliable and reproducible 89Zr radiolabeling method was developed and tested successfully in a model liposome system and in hiPSCs alike.

5.
Geroscience ; 43(2): 673-690, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33517527

RESUMO

Ageing provokes a plethora of molecular, cellular and physiological deteriorations, including heart failure, neurodegeneration, metabolic maladaptation, telomere attrition and hair loss. Interestingly, on the molecular level, the capacity to induce autophagy, a cellular recycling and cleaning process, declines with age across a large spectrum of model organisms and is thought to be responsible for a subset of age-induced changes. Here, we show that a 6-month administration of the natural autophagy inducer spermidine in the drinking water to aged mice is sufficient to significantly attenuate distinct age-associated phenotypes. These include modulation of brain glucose metabolism, suppression of distinct cardiac inflammation parameters, decreased number of pathological sights in kidney and liver and decrease of age-induced hair loss. Interestingly, spermidine-mediated age protection was associated with decreased telomere attrition, arguing in favour of a novel cellular mechanism behind the anti-ageing effects of spermidine administration.


Assuntos
Espermidina , Telômero , Envelhecimento , Animais , Autofagia , Suplementos Nutricionais , Camundongos , Espermidina/farmacologia
6.
Neurotherapeutics ; 17(3): 1228-1238, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31970667

RESUMO

Epileptogenesis-associated brain inflammation might be a promising target to prevent or attenuate epileptogenesis. Positron emission tomography (PET) imaging targeting the translocator protein (TSPO) was applied here to quantify effects of different dosing regimens of the anti-inflammatory drug minocycline during the latent phase in two rodent models of epileptogenesis. After induction of epileptogenesis by status epilepticus (SE), rats were treated with minocycline for 7 days (25 or 50 mg/kg) and mice for 5 or 10 days (50 or 100 mg/kg). All animals were subjected to scans at 1 and 2 weeks post-SE. Radiotracer distribution was analyzed and statistical parametric mapping (SPM) was performed, as well as histological analysis of astroglial activation and neuronal cell loss. Atlas-based analysis of [18F]GE180 PET in rats revealed a dose-dependent regional decrease of TSPO expression at 2 weeks post-SE. Results of SPM analysis depicted a treatment effect already at 1 week post-SE in rats treated with the higher minocycline dose. In mice, TSPO PET imaging did not reveal any treatment effects whereas histology identified only a treatment-related reduction in dispersion of dentate gyrus neurons. TSPO PET served as an auspicious tool for temporal monitoring and quantification of anti-inflammatory effects during epileptogenesis. Importantly, the findings underline the need to applying more than one animal model to avoid missing treatment effects. For future studies, the setup is ready to be applied in combination with seizure monitoring to investigate the relationship between individual early treatment response and disease outcome.

7.
J Cereb Blood Flow Metab ; 40(1): 204-213, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30375913

RESUMO

Alterations in metabolism during epileptogenesis may be a therapy target. Recently, an increase in amino acid transport into the brain was proposed to play a role in epileptogenesis. We aimed to characterize alterations of substrate utilization during epileptogenesis and in chronic epilepsy. The lithium-pilocarpine post status epilepticus (SE) rat model was used. We performed longitudinal O-(2-[(18)F]fluoroethyl)-l-tyrosine (18F-FET) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and calculated 18F-FET volume of distribution (Vt) and 18F-FDG uptake. Correlation analyses were performed with translocator protein-PET defined neuroinflammation from previously acquired data. We found reduced 18F-FET Vt at 48 h after SE (amygdala: -30.2%, p = 0.014), whereas 18F-FDG showed increased glucose uptake 4 and 24 h after SE (hippocampus: + 43.6% and +42.5%, respectively; p < 0.001) returning to baseline levels thereafter. In chronic epileptic animals, we found a reduction in 18F-FET and 18F-FDG in the hippocampus. No correlation was found for 18F-FET or 18F-FDG to microglial activation at seven days post SE. Whereas metabolic alterations do not reflect higher metabolism associated to activated microglia, they might be partially driven by chronic neuronal loss. However, both metabolisms diverge during early epileptogenesis, pointing to amino acid turnover as a possible biomarker and/or therapeutic target for epileptogenesis.


Assuntos
Encefalopatias Metabólicas/diagnóstico por imagem , Encéfalo/metabolismo , Epilepsia/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Aminoácidos/farmacocinética , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/metabolismo , Animais , Encefalopatias Metabólicas/etiologia , Encefalopatias Metabólicas/metabolismo , Doença Crônica , Modelos Animais de Doenças , Radioisótopos de Flúor , Fluordesoxiglucose F18 , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Ratos , Especificidade por Substrato
8.
Haematologica ; 105(4): 1147-1157, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31289207

RESUMO

Hereditary pulmonary alveolar proteinosis due to GM-CSF receptor deficiency (herPAP) constitutes a life-threatening lung disease characterized by alveolar deposition of surfactant protein secondary to defective alveolar macrophage function. As current therapeutic options are primarily symptomatic, we have explored the potential of hematopoietic stem cell-based gene therapy. Using Csf2rb-/- mice, a model closely reflecting the human herPAP disease phenotype, we here demonstrate robust pulmonary engraftment of an alveolar macrophage population following intravenous transplantation of lentivirally corrected hematopoietic stem and progenitor cells. Engraftment was associated with marked improvement of critical herPAP disease parameters, including bronchoalveolar fluid protein, cholesterol and cytokine levels, pulmonary density on computed tomography scans, pulmonary deposition of Periodic Acid-Schiff+ material as well as respiratory mechanics. These effects were stable for at least nine months. With respect to engraftment and alveolar macrophage differentiation kinetics, we demonstrate the rapid development of CD11c+/SiglecF+ cells in the lungs from a CD11c-/SiglecF+ progenitor population within four weeks after transplantation. Based on these data, we suggest hematopoietic stem cell-based gene therapy as an effective and cause-directed treatment approach for herPAP.


Assuntos
Proteinose Alveolar Pulmonar , Animais , Modelos Animais de Doenças , Terapia Genética , Células-Tronco Hematopoéticas , Macrófagos Alveolares , Camundongos , Proteinose Alveolar Pulmonar/genética , Proteinose Alveolar Pulmonar/terapia
9.
Neurobiol Dis ; 134: 104664, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31678583

RESUMO

Epilepsy is a complex network phenomenon that, as yet, cannot be prevented or cured. We recently proposed network-based approaches to prevent epileptogenesis. For proof of concept we combined two drugs (levetiracetam and topiramate) for which in silico analysis of drug-protein interaction networks indicated a synergistic effect on a large functional network of epilepsy-relevant proteins. Using the intrahippocampal kainate mouse model of temporal lobe epilepsy, the drug combination was administered during the latent period before onset of spontaneous recurrent seizures (SRS). When SRS were periodically recorded by video-EEG monitoring after termination of treatment, a significant decrease in incidence and frequency of SRS was determined, indicating antiepileptogenic efficacy. Such efficacy was not observed following single drug treatment. Furthermore, a combination of levetiracetam and phenobarbital, for which in silico analysis of drug-protein interaction networks did not indicate any significant drug-drug interaction, was not effective to modify development of epilepsy. Surprisingly, the promising antiepileptogenic effect of the levetiracetam/topiramate combination was obtained in the absence of any significant neuroprotective or anti-inflammatory effects as indicated by multimodal brain imaging and histopathology. High throughput RNA-sequencing (RNA-seq) of the ipsilateral hippocampus of mice treated with the levetiracetam/topiramate combination showed that several genes that have been linked previously to epileptogenesis, were significantly differentially expressed, providing interesting entry points for future mechanistic studies. Overall, we have discovered a novel combination treatment with promise for prevention of epilepsy.


Assuntos
Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Quimioterapia Combinada/métodos , Epilepsia do Lobo Temporal , Mapeamento de Interação de Proteínas/métodos , Animais , Levetiracetam/farmacologia , Masculino , Camundongos , Estudo de Prova de Conceito , Topiramato/farmacologia , Transcriptoma/efeitos dos fármacos
10.
Epilepsia ; 60(11): 2325-2333, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31571210

RESUMO

OBJECTIVE: Identification of patients at risk of developing epilepsy before the first spontaneous seizure may promote the development of preventive treatment providing opportunity to stop or slow down the disease. METHODS: As development of novel radiotracers and on-site setup of existing radiotracers is highly time-consuming and expensive, we used dual-centre in vitro autoradiography as an approach to characterize the potential of innovative radiotracers in the context of epilepsy development. Using brain slices from the same group of rats, we aimed to characterise the evolution of neuroinflammation and expression of inhibitory and excitatory neuroreceptors during epileptogenesis using translational positron emission tomography (PET) tracers; 18 F-flumazenil (18 F-FMZ; GABAA receptor), 18 F-FPEB (metabotropic glutamate receptor 5; mGluR5), 18 F-flutriciclamide (translocator protein; TSPO, microglia activation) and 18 F-deprenyl (monoamine oxidase B, astroglia activation). Autoradiography images from selected time points after pilocarpine-induced status epilepticus (SE; baseline, 24 and 48 hours, 5, 10 and 15 days and 6 and 12-14 weeks after SE) were normalized to a calibration curve, co-registered to an MRI-based 2D region-of-interest atlas, and activity concentration (Bq/mm2 ) was calculated. RESULTS: In epileptogenesis-associated brain regions, 18 F-FMZ and 18 F-FPEB showed an early decrease after SE. 18 F-FMZ decrease was maintained in the latent phase and further reduced in the chronic epileptic animals, while 18 F-FPEB signal recovered from day 10, reaching baseline levels in chronic epilepsy. 18 F-flutriciclamide showed an increase of activated microglia at 24 hours after SE, peaking at 5-15 days and decreasing during the chronic phase. On the other hand, 18 F-deprenyl autoradiography showed late astrogliosis, peaking in the chronic phase. SIGNIFICANCE: Autoradiography revealed different evolution of the selected targets during epileptogenesis. Our results suggest an advantage of combined imaging of inter-related targets like glutamate and GABAA receptors, or microglia and astrocyte activation, in order to identify important interactions, especially when using PET imaging for the evaluation of novel treatments.


Assuntos
Epilepsia/metabolismo , Mediadores da Inflamação/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA-A/metabolismo , Receptores de Glutamato/metabolismo , Animais , Biomarcadores/metabolismo , Epilepsia/diagnóstico por imagem , Feminino , Ratos , Ratos Sprague-Dawley
11.
Mol Imaging Biol ; 21(6): 1089-1096, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30859471

RESUMO

PURPOSE: 2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) has been widely used for imaging brain metabolism. Tracer injection in anesthetized animals is a prerequisite for performing dynamic positron emission tomography (PET) scanning. Since preconditioning, as well as anesthesia, has been described to potentially influence brain [18F] FDG levels, this study evaluated how these variables globally and regionally affect both [18F] FDG uptake and kinetics in murine brain. PROCEDURES: Sixty-minute dynamic [18F] FDG PET scans were performed in adult male C57BL/6 mice anesthetized with isoflurane [control (in 100 % O2), in medical air, in 100 % O2 + insulin pre-treatment, and in 100 % O2 after 18 h fasting], ketamine/xylazine, sevoflurane, and chloral hydrate. An additional group was scanned after awake uptake. Blood glucose levels were determined, and data was analyzed by comparing percent injected dose per cc tissue (%ID/cc) and glucose influx rate and metabolic rate (MRGlu) calculated by Patlak plot. RESULTS: Ketamine/xylazine and chloral hydrate anesthesia induced a lower whole-brain uptake of [18F] FDG (2.86 ± 0.67 %ID/cc, p < 0.001; 4.25 ± 0.28 %ID/cc, p = 0.0179, respectively) compared to isoflurane anesthesia (5.04 ± 0.19 %ID/cc). In addition, protocols affected differently distribution of [18F] FDG uptake in brain regions. Ketamine/xylazine reduced [18F] FDG influx rate in murine brain (0.0135 ± 0.0009 vs 0.0247 ± 0.0014 ml/g/min; p < 0.005) and chloral hydrate increased MRGlu (66.72 ± 3.75 vs 41.55 ± 3.06 µmol/min/100 ml; p < 0.01) compared to isoflurane. Insulin-pretreated animals showed a higher influx rate (0.0477 ± 0.0101 ml/min/g; p < 0.05) but a reduced MRGlu (21.92 ± 3.12 µmol/min/100 ml; p < 0.01). Blood glucose levels were negatively correlated to [18F] FDG uptake and influx rate, but positively correlated to MRGlu. CONCLUSIONS: Choice of anesthesia and pre-conditioning affect not only [18F] FDG uptake but also kinetics and regional distribution in the mouse brain. Both anesthesia and pre-conditioning should be carefully considered in the interpretation of [18F] FDG studies due to its great influence on the uptake and distribution of the tracer along the brain regions.


Assuntos
Anestesia , Encéfalo/diagnóstico por imagem , Fluordesoxiglucose F18/farmacocinética , Animais , Glicemia/metabolismo , Cinética , Masculino , Camundongos Endogâmicos C57BL
12.
J Nucl Med ; 60(10): 1483-1491, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30850496

RESUMO

The standardization of preclinical imaging is a key factor to ensure the reliability, reproducibility, validity, and translatability of preclinical data. Preclinical standardization has been slowly progressing in recent years and has mainly been performed within a single institution, whereas little has been done in regards to multicenter standardization between facilities. This study aimed to investigate the comparability among preclinical imaging facilities in terms of PET data acquisition and analysis. In the first step, basic PET scans were obtained in 4 different preclinical imaging facilities to compare their standard imaging protocol for 18F-FDG. In the second step, the influence of the personnel performing the experiments and the experimental equipment used in the experiment were compared. In the third step, the influence of the image analysis on the reproducibility and comparability of the acquired data was determined. Distinct differences in the uptake behavior of the 4 standard imaging protocols were determined for the investigated organs (brain, left ventricle, liver, and muscle) due to different animal handling procedures before and during the scans (e.g., fasting vs. nonfasting, glucose levels, temperature regulation vs. constant temperature warming). Significant differences in the uptake behavior in the brain were detected when the same imaging protocol was used but executed by different personnel and using different experimental animal handling equipment. An influence of the person analyzing the data was detected for most of the organs, when the volumes of interest were manually drawn by the investigators. Coregistration of the PET to an MR image and drawing the volume of interest based on anatomic information yielded reproducible results among investigators. It has been demonstrated that there is a huge demand for standardization among multiple institutions.


Assuntos
Fluordesoxiglucose F18/química , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Imagens de Fantasmas , Reprodutibilidade dos Testes , Software , Temperatura , Distribuição Tecidual
13.
Theranostics ; 9(1): 152-166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30662559

RESUMO

Ischemia triggers a complex tissue response involving vascular, metabolic and inflammatory changes. METHODS: We combined hybrid SPECT/CT or PET/CT nuclear imaging studies of perfusion, metabolism and inflammation with multicolor flow cytometry-based cell population analysis to comprehensively analyze the ischemic tissue response and to elucidate the cellular substrate of noninvasive molecular imaging techniques in a mouse model of hind limb ischemia. RESULTS: Comparative analysis of tissue perfusion with [99mTc]-Sestamibi and arterial influx with [99mTc]-labeled albumin microspheres by SPECT/CT revealed a distinct pattern of response to vascular occlusion: an early ischemic period of matched suppression of tissue perfusion and arterial influx, a subacute ischemic period of normalized arterial influx but impaired tissue perfusion, and a protracted post-ischemic period of hyperdynamic arterial and normalized tissue perfusion, indicating coordination of macrovascular and microvascular responses. In addition, the subacute period showed increased glucose uptake by [18F]-FDG PET/CT scanning as the metabolic response of viable tissue to hypoperfusion. This was associated with robust macrophage infiltration by flow cytometry, and glucose uptake studies identified macrophages as major contributors to glucose utilization in ischemic tissue. Furthermore, imaging with the TSPO ligand [18F]-GE180 showed a peaked response during the subacute phase due to preferential labeling of monocytes and macrophages, while imaging with [68Ga]-RGD, an integrin ligand, showed prolonged post-ischemic upregulation, which was attributed to labeling of macrophages and endothelial cells by flow cytometry. CONCLUSION: Combined nuclear imaging and cell population analysis reveals distinct components of the ischemic tissue response and associated cell subsets, which could be targeted for therapeutic interventions.


Assuntos
Extremidades/patologia , Isquemia/patologia , Isquemia/fisiopatologia , Animais , Artérias/patologia , Modelos Animais de Doenças , Inflamação/patologia , Metabolismo , Camundongos , Imagem Óptica/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único
14.
PLoS One ; 13(10): e0205044, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30278068

RESUMO

Activation studies with positron emission tomography (PET) in auditory implant users explained some of the mechanisms underlying the variability of achieved speech comprehension. Since future developments of auditory implants will include studies in rodents, we aimed to inversely translate functional PET imaging to rats. In normal hearing rats, activity in auditory and non-auditory regions was studied using 18F-fluorodeoxyglucose (18F-FDG) PET with 3 different acoustic conditions: sound attenuated laboratory background, continuous white noise and rippled noise. Additionally, bilateral cochlea ablated animals were scanned. 3D image data were transferred into a stereotaxic standard space and evaluated using volume of interest (VOI) analyses and statistical parametric mapping (SPM). In normal hearing rats alongside the auditory pathway consistent activations of the nucleus cochlearis (NC), olivary complex (OC) and inferior colliculus (IC) were seen comparing stimuli with background. In this respect, no increased activation could be detected in the auditory cortex (AC), which even showed deactivation with white noise stimulation. Nevertheless, higher activity in the AC in normal hearing rats was observed for all 3 auditory conditions against the cochlea ablated status. Vice versa, in ablated status activity in the olfactory nucleus (ON) was higher compared to all auditory conditions in normal hearing rats. Our results indicate that activations can be demonstrated in normal hearing animals based on 18F-FDG PET in nuclei along the central auditory pathway with different types of noise stimuli. However, in the AC missing activation with respect to the background advises the need for more rigorous background noise attenuation for non-invasive reference conditions. Finally, our data suggest cross-modal activation of the olfactory system following cochlea ablation-underlining, that 18F-FDG PET appears to be well suited to study plasticity in rat models for cochlear implantation.


Assuntos
Técnicas de Ablação , Estimulação Acústica , Vias Auditivas/diagnóstico por imagem , Vias Auditivas/fisiologia , Cóclea/cirurgia , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Feminino , Ratos , Ratos Sprague-Dawley
15.
Nuklearmedizin ; 57(5): 198-203, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30267402

RESUMO

Previous findings of our group showed the chemokine receptor CXCR4 as a suitable target in PET/CT-imaging of axial bone infections, early postoperative osteomyelitis and periprosthetic infections. The aim of this study was to verify specific uptake of 68Ga-Pentixafor in chronic osteomyelitis. METHODS: 29 consecutive patients who underwent 68Ga-Pentixafor-PET/CT with clinically suspected osteomyelitis were evaluated retrospectively. Bone tissues of 6 patients were available and evaluated by immunohistochemical staining for CXCR4 and autoradiography with 68Ga-Pentixafor. Staining was performed with an anti-CXCR4 antibody. In order to detect lymphocytic infiltration and CXCR4-expressing lymphocytes double immunofluorescence with an anti-CD3 and anti-CXCR4 antibody was performed. RESULTS: 68Ga-Pentixafor-PET/ CT was true positive in 16 and true negative in 13 patients. In available bone tissue samples, immunohistochemical staining of CXCR4 expression and autoradiography with 68Ga-Pentixafor was highly positive. Double immunofluorescence was able to detect CXCR4-expressing T-lymphocytes within all bone samples while a control sample of noninfected tibial bone was negative for CXCR4. CONCLUSION: 68Ga-Pentixafor-PET/CT specifically shows CXCR4-expressing immune cells in chronic osteomyelitis and is therefore a suitable method for imaging chronic infection of the skeleton.Der Chemokinrezeptor CXCR4 konnte in einer Pilotstudie unserer Arbeitsgruppe als geeignete Zielstruktur zur PET/CT-Bildgebung von frühen postoperativen und periprothetischen Osteomyelitiden sowie Osteomyelitiden im Stammskelett identifiziert werden. In dieser Studie haben wir untersucht, ob 68Ga-Pentixafor spezifisch CXCR4-exprimierende Entzündungszellen in einer chronischen Osteomyelitis darstellen kann. METHODEN: Es erfolgte eine retrospektive Auswertung von 29 Patienten mit klinischem Verdacht einer chronischen Osteomyelitis, die mittels 68Ga-Pentixafor-PET/CT untersucht wurden. Hiervon lagen uns in 6 Fällen Knochengewebe zur immunhistochemischen und autoradiographischen Evaluation vor. Die Immunhistochemie wurde mit einem anti-CXCR4 Antikörper durchgeführt. Des Weiteren wurden ein anti-CD3 und der anti-CXCR4-Antikörper zur Detektion CXCR4-exprimierender Lymphozyten am Ort der Entzündung mittels Doppel- Immunfluoreszenz verwendet. ERGEBNISSE: Die 68Ga-Pentixafor-PET/CT war bei 16 Patienten richtig positiv und bei 13 Patienten richtig negativ. Die Färbungen der verfügbaren Knochenpräparate waren sowohl in der Immunhistochemie als auch in der Autoradiographie deutlich positiv. In der Immunfluoreszenz konnten zudem CXCR4-exprimierende Lymphozyten am Ort der Entzündung in allen Proben nachgewiesen werden. Die Kontrolle eines Präparats einer nicht infizierten distalen Tibia zeigte dagegen keine CXCR4-oder CD3-Expression. FAZIT: Mit der 68Ga-Pentixafor-PET/CT können spezifisch CXCR4-exprimierende Lymphozyten am Ort der Entzündung nachgewiesen werden. Die 68Ga-Pentixafor-PET/CT stellt eine geeignete Methode in der Diagnostik chronischer Osteomyeltiden dar.


Assuntos
Complexos de Coordenação/metabolismo , Osteomielite/diagnóstico por imagem , Peptídeos Cíclicos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Receptores CXCR4/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Doença Crônica , Feminino , Seguimentos , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Osteomielite/metabolismo , Osteomielite/patologia , Prognóstico , Estudos Retrospectivos , Adulto Jovem
16.
Stem Cell Reports ; 11(3): 696-710, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30100408

RESUMO

Induced pluripotent stem cell (iPSC)-derived hematopoietic cells represent a highly attractive source for cell and gene therapy. Given the longevity, plasticity, and self-renewal potential of distinct macrophage subpopulations, iPSC-derived macrophages (iPSC-Mφ) appear of particular interest in this context. We here evaluated the airway residence, plasticity, and therapeutic efficacy of iPSC-Mφ in a murine model of hereditary pulmonary alveolar proteinosis (herPAP). We demonstrate that single pulmonary macrophage transplantation (PMT) of 2.5-4 × 106 iPSC-Mφ yields efficient airway residence with conversion of iPSC-Mφ to an alveolar macrophage (AMφ) phenotype characterized by a distinct surface marker and gene expression profile within 2 months. Moreover, PMT significantly improves alveolar protein deposition and other critical herPAP disease parameters. Thus, our data indicate iPSC-Mφ as a source of functional macrophages displaying substantial plasticity and therapeutic potential that upon pulmonary transplantation will integrate into the lung microenvironment, adopt an AMφ phenotype and gene expression pattern, and profoundly ameliorate pulmonary disease phenotypes.


Assuntos
Subunidade beta Comum dos Receptores de Citocinas/genética , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos Alveolares/citologia , Macrófagos Alveolares/transplante , Proteinose Alveolar Pulmonar/terapia , Animais , Células Cultivadas , Deleção de Genes , Hematopoese , Camundongos , Camundongos Knockout , Proteinose Alveolar Pulmonar/genética , Proteinose Alveolar Pulmonar/patologia
17.
Eur J Nucl Med Mol Imaging ; 45(11): 1934-1944, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29967943

RESUMO

PURPOSE: The chemokine receptor CXCR4 is a promising target for molecular imaging of CXCR4+ cell types, e.g. inflammatory cells, in cardiovascular diseases. We speculated that a specific CXCR4 ligand, [68Ga]pentixafor, along with novel techniques for motion correction, would facilitate the in vivo characterization of CXCR4 expression in small culprit and nonculprit coronary atherosclerotic lesions after acute myocardial infarction by motion-corrected targeted PET/CT. METHODS: CXCR4 expression was analysed ex vivo in separately obtained arterial wall specimens. [68Ga]Pentixafor PET/CT was performed in 37 patients after stent-based reperfusion for a first acute ST-segment elevation myocardial infarction. List-mode PET data were reconstructed to five different datasets using cardiac and/or respiratory gating. Guided by CT for localization, the PET signals of culprit and various groups of nonculprit coronary lesions were analysed and compared. RESULTS: Ex vivo, CXCR4 was upregulated in atherosclerotic lesions, and mainly colocalized with CD68+ inflammatory cells. In vivo, elevated CXCR4 expression was detected in culprit and nonculprit lesions, and the strongest CXCR4 PET signal (median SUVmax 1.96; interquartile range, IQR, 1.55-2.31) was observed in culprit coronary artery lesions. Stented nonculprit lesions (median SUVmax 1.45, IQR 1.23-1.88; P = 0.048) and hot spots in naive remote coronary segments (median SUVmax 1.34, IQR 1.23-1.74; P = 0.0005) showed significantly lower levels of CXCR4 expression. Dual cardiac/respiratory gating provided the strongest CXCR4 PET signal and the highest lesion detectability. CONCLUSION: We demonstrated the basic feasibility of motion-corrected targeted PET/CT imaging of CXCR4 expression in coronary artery lesions, which was triggered by vessel wall inflammation but also by stent-induced injury. This novel methodology may serve as a platform for future diagnostic and therapeutic clinical studies targeting the biology of coronary atherosclerotic plaque.


Assuntos
Complexos de Coordenação , Regulação Neoplásica da Expressão Gênica , Movimento , Peptídeos Cíclicos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptores CXCR4/metabolismo , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/complicações , Placa Aterosclerótica/complicações , Placa Aterosclerótica/fisiopatologia , Respiração , Estudos Retrospectivos
18.
Stroke ; 49(8): 1988-1991, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30002148

RESUMO

Background and Purpose- This pilot study aims to demonstrate the feasibility of targeting molecular characteristics of high-risk atherosclerotic plaque in symptomatic and asymptomatic carotid stenosis (CS), that is, upregulation of the translocator protein (TSPO) and the chemokine receptor type 4 (CXCR4), by means of molecular imaging. Methods- In a translational setting, specimens of carotid plaques of patients with symptomatic and asymptomatic CS obtained by carotid endarterectomy were analyzed for the presence of TSPO and CXCR4 by autoradiography, using the positron emission tomography tracers 18F-GE180 and 68Ga-Pentixafor and evaluated by histopathology. In addition, 68Ga-Pentixafor positron emission tomography/computed tomography was performed in a patient with high-grade CS. Results- Distinct patterns of upregulation of TSPO (18F-GE180 uptake) and CXCR4 (68Ga-Pentixafor uptake) were identified in carotid plaque by autoradiography. The spatial distribution was associated with specific histological hallmarks that are established features of high-risk plaque: TSPO upregulation correlated with activated macrophages infiltration, whereas CXCR4 upregulation also corresponded to areas of intraplaque hemorrhage. 68Ga-Pentixafor uptake was significantly higher in plaques of symptomatic compared with asymptomatic CS. Clinical positron emission tomography revealed marked 68Ga-Pentixafor uptake in carotid plaque of a patient with high-grade CS. Conclusions- Clinical imaging of molecular signatures of high-risk atherosclerotic plaque is feasible and may become a promising diagnostic tool for comprehensive characterization of carotid disease. This methodology provides a platform for future studies targeting carotid plaque.


Assuntos
Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/metabolismo , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/metabolismo , Receptores CXCR4/metabolismo , Receptores de GABA/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autorradiografia/métodos , Feminino , Humanos , Masculino , Projetos Piloto , Receptores CXCR4/análise , Receptores de GABA/análise , Fatores de Risco
19.
eNeuro ; 5(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854942

RESUMO

Increased permeability of the blood-brain barrier (BBB) following cerebral injury results in regional extravasation of plasma proteins and can critically contribute to the pathogenesis of epilepsy. Here, we comprehensively explore the spatiotemporal evolution of a main extravasation component, albumin, and illuminate associated responses of the neurovascular unit (NVU) contributing to early epileptogenic neuropathology. We applied translational in vivo MR imaging and complementary immunohistochemical analyses in the widely used rat pilocarpine post-status epilepticus (SE) model. The observed rapid BBB leakage affected major epileptogenesis-associated brain regions, peaked between 1 and 2 d post-SE, and rapidly declined thereafter, accompanied by cerebral edema generally following the same time course. At peak of BBB leakage, serum albumin colocalized with NVU constituents, such as vascular components, neurons, and brain immune cells. Surprisingly, astroglial markers did not colocalize with albumin, and aquaporin-4 (AQP4) was clearly reduced in areas of leaky BBB, indicating a severe disturbance of astrocyte-mediated endothelial-neuronal coupling. In addition, a distinct adaptive reorganization process of the NVU vasculature apparently takes place at sites of albumin presence, substantiated by reduced immunoreactivity of endothelial and changes in vascular basement membrane markers. Taken together, degenerative events at the level of the NVU, affecting vessels, astrocytes, and neurons, seem to outweigh reconstructive processes. Considering the rapidly occurring BBB leakage and subsequent impairment of the NVU, our data support the necessity of a prompt BBB-restoring treatment as one component of rational therapeutic intervention to prevent epileptogenesis and the development of other detrimental sequelae of SE.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Encéfalo/metabolismo , Estado Epiléptico/metabolismo , Albuminas/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Feminino , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Neurônios/metabolismo , Pilocarpina , Ratos Sprague-Dawley , Albumina Sérica/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia
20.
J Am Coll Cardiol ; 71(3): 263-275, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29348018

RESUMO

BACKGROUND: The local inflammatory tissue response after acute myocardial infarction (MI) determines subsequent healing. Systemic interaction may induce neuroinflammation as a precursor to neurodegeneration. OBJECTIVES: This study sought to assess the influence of MI on cardiac and brain inflammation using noninvasive positron emission tomography (PET) of the heart-brain axis. METHODS: After coronary artery ligation or sham surgery, mice (n = 49) underwent serial whole-body PET imaging of the mitochondrial translocator protein (TSPO) as a marker of activated macrophages and microglia. Patients after acute MI (n = 3) were also compared to healthy controls (n = 9). RESULTS: Infarct mice exhibited elevated myocardial TSPO signal at 1 week versus sham (percent injected dose per gram: 8.0 ± 1.6 vs. 4.8 ± 0.9; p < 0.001), localized to activated CD68+ inflammatory cells in the infarct. Early TSPO signal predicted subsequent left ventricular remodeling at 8 weeks (rpartial = -0.687; p = 0.001). In parallel, brain TSPO signal was elevated at 1 week (1.7 ± 0.2 vs. 1.4 ± 0.2 for sham; p = 0.017), localized to activated microglia. After interval decline at 4 weeks, progressive heart failure precipitated a second wave of neuroinflammation (1.8 ± 0.2; p = 0.005). TSPO was concurrently up-regulated in remote cardiomyocytes at 8 weeks (8.8 ± 1.7, p < 0.001) without inflammatory cell infiltration, suggesting mitochondrial impairment. Angiotensin-converting enzyme inhibitor treatment lowered acute inflammation in the heart (p = 0.003) and brain (p = 0.06) and improved late cardiac function (p = 0.05). Patients also demonstrated elevation of cardiac TSPO signal in the infarct territory, paralleled by neuroinflammation versus controls. CONCLUSIONS: The brain is susceptible to acute MI and chronic heart failure. Immune activation may interconnect heart and brain dysfunction, a finding that provides a foundation for strategies to improve heart and brain outcomes.


Assuntos
Encéfalo/diagnóstico por imagem , Infarto do Miocárdio/diagnóstico por imagem , Miocárdio/patologia , Remodelação Ventricular/fisiologia , Animais , Encéfalo/imunologia , Previsões , Inflamação/diagnóstico por imagem , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Imagem Molecular/métodos , Infarto do Miocárdio/imunologia , Miocárdio/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...