Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2201683, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36932899

RESUMO

Limited Li resources, high cost, and safety risks of using organic electrolytes have stimulated a strong motivation to develop non-Li aqueous batteries. Aqueous Zn-ion storage (ZIS) devices offer low-cost and high-safety solutions. However, their practical applications are at the moment restricted by their short cycle life arising mainly from irreversible electrochemical side reactions and processes at the interfaces. This review sums up the capability of using 2D MXenes to increase the reversibility at the interface, assist the charge transfer process, and thereby improve the performance of ZIS. First, they discuss the ZIS mechanism and irreversibility of typical electrode materials in mild aqueous electrolytes. Then, applications of MXenes in different ZIS components are highlighted, including as electrodes for Zn2+ intercalation, protective layers of Zn anode, hosts for Zn deposition, substrates, and separators. Finally, perspectives are put forward on further optimizing MXenes to improve the ZIS performance.

2.
ACS Appl Mater Interfaces ; 15(6): 8033-8045, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36734486

RESUMO

Accurate, cost-efficient, and safe hydrogen sensors will play a key role in the future hydrogen economy. Optical hydrogen sensors based on metal hydrides are attractive owing to their small size and costs and the fact that they are intrinsically safe. These sensors rely on suitable sensing materials, of which the optical properties change when they absorb hydrogen if they are in contact with a hydrogen-containing environment. Here, we illustrate how we can use alloying to tune the properties of hydrogen-sensing materials by considering thin films consisting of tantalum doped with ruthenium. Using a combination of optical transmission measurements, ex situ and in situ X-ray diffraction, and neutron and X-ray reflectometry, we show that introducing Ru in Ta results in a solid solution of Ta and Ru up to at least 30% Ru. The alloying has two major effects: the compression of the unit cell with increasing Ru doping modifies the enthalpy of hydrogenation and thereby shifts the pressure window in which the material absorbs hydrogen to higher hydrogen concentrations, and it reduces the amount of hydrogen absorbed by the material. This allows one to tune the pressure/concentration window of the sensor and its sensitivity and makes Ta1-yRuy an ideal hysteresis-free tunable hydrogen-sensing material with a sensing range of >7 orders of magnitude in pressure. In a more general perspective, these results demonstrate that one can rationally tune the properties of metal hydride optical hydrogen-sensing layers by appropriate alloying.

4.
Langmuir ; 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36417899

RESUMO

The crystal structure and phase behavior of bisamide gelators are investigated using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and molecular modeling, aiming at a better understanding of bisamide gel systems. A homologous series of bisamide model compounds (nBAs) was prepared with the (CH2)n spacer between the two amide groups, where n varies from 5 to 10, and with two symmetric C17 alkyl tails. With increasing spacer length, the thermal properties show a clear odd-even effect, which was characterized using our newly developed analytical model DSCN(T). Using XRD, all studied nBA compounds turn out to have a layer-like structure. The XRD patterns of the odd BA series are very similar but show marked differences compared to the XRD patterns of the even series, which in turn are very similar. The odd-membered 5BA molecules are nearly perpendicular to the stacked layers, as described by a pseudo-orthorhombic unit cell, whereas the even-membered 6BA molecules are tilted at an angle with respect to the layer normal, as described by a triclinic unit cell. In both the odd and even series, the inter-layer interaction is the van der Waals interaction. The 6BA hydrogen bonding scheme is very similar to that of Nylon 6,10 α, unlike the 5BA H bonding scheme. The packing of the C17 alkyl tails in the 5BA layers is similar to polyethylene, and unlike 6BA. The slightly higher crystalline density of 6BA (1.038 g cm-3) as compared to 5BA (1.018 g cm-3) explains the higher melting point, higher enthalpy of fusion, and the observed shift of N-H stretch bands to higher wave numbers. The structural differences observed between the odd and even BA series reflect the different structure-directing effect of parallel versus antiparallel amide hydrogen bonding motifs. These differences underlie the observed odd-even effect in the thermal properties of nBA compounds.

5.
J Phys Chem C Nanomater Interfaces ; 126(34): 14742-14749, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36081901

RESUMO

To develop an understanding of the photochromic effect in rare-earth metal oxyhydride thin films (REH3-2x O x , here RE = Y), we explore the aliovalent doping of the RE cation. We prepared Ca-doped yttrium oxyhydride thin films ((Ca z Y1-z )H x O y ) by reactive magnetron cosputtering with Ca doping concentrations between 0 and 36 at. %. All of the films are semiconductors with a constant optical band gap for Ca content below 15%, while the band gap expands for compositions above 15%. Ca doping affects the photochromic properties, resulting in (1) a lower photochromic contrast, likely due to a lower H- concentration, and (2) a faster bleaching speed, caused by a higher pre-exponential factor. Overall, these results point to the importance of the H- concentration for the formation of a "darkened" phase and the local rearrangement of these H- for the kinetics of the process.

6.
ACS Appl Mater Interfaces ; 14(14): 16413-16423, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357122

RESUMO

The integration of passivating contacts based on a highly doped polycrystalline silicon (poly-Si) layer on top of a thin silicon oxide (SiOx) layer has been identified as the next step to further increase the conversion efficiency of current mainstream crystalline silicon (c-Si) solar cells. However, the interrelation between the final properties of poly-Si/SiOx contacts and their fabrication process has not yet been fully unraveled, which is mostly due to the challenge of characterizing thin-film stacks with features in the nanometric range. Here, we apply in situ X-ray reflectometry and diffraction to investigate the multiscale (1 Å-100 nm) structural evolution of poly-Si contacts during annealing up to 900 °C. This allows us to quantify the densification and thinning of the poly-Si layer during annealing as well as to monitor the disruption of the thin SiOx layer at high temperature >800 °C. Moreover, results obtained on a broader range of thermal profiles, including firing with dwell times of a few seconds, emphasize the impact of high thermal budgets on poly-Si contacts' final properties and thus the importance of ensuring a good control of such high-temperature processes when fabricating c-Si solar cells integrating such passivating contacts. Overall, this study demonstrates the robustness of combining different X-ray elastic scattering techniques (here XRR and GIXRD), which present the unique advantage of being rapid, nondestructive, and applicable on a large sample area, to unravel the multiscale structural evolution of poly-Si contacts in situ during high-temperature processes.

7.
J Phys Chem C Nanomater Interfaces ; 126(4): 2276-2284, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35145577

RESUMO

Thin films of rare earth metal oxyhydrides show a photochromic effect, the precise mechanism of which is yet unknown. Here, we made thin films of NdH3-2x O x and show that we can change the band gap, crystal structure, and photochromic contrast by tuning the composition (O2-:H-) via the sputtering deposition pressure. To protect these films from rapid oxidation, we add a thin ALD coating of Al2O3, which increases the lifetime of the films from 1 day to several months. Encapsulation of the films also influences photochromic bleaching, changing the time dependency from first-order kinetics. As well, the partial annealing which occurs during the ALD process results in a dramatically slower bleaching speed, revealing the importance of defects for the reversibility (bleaching speed) of photochromism.

8.
J Phys Chem Lett ; 12(45): 10969-10974, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34738818

RESUMO

Metal hydrides may play a paramount role in a future hydrogen economy. While most applications are based on nanostructured and confined materials, studies considering the structural response of these materials to hydrogen concentrate on bulk material. Here, using in situ in- and out-of-plane X-ray diffraction and reflectometry, we study the fcc ↔ fct transition in Hf thin films, an optical hydrogen-sensing material. We show that the confinement of Hf affects this transition: compared to bulk Hf, the transition is pushed to a higher hydrogen-to-metal ratio, the tetragonality of the fct phase is reduced, and phase coexistence is suppressed. These nanoconfinement effects ensure the hysteresis-free response of hafnium to hydrogen, enabling its remarkable performance as a hydrogen-sensing material. In a wider perspective, the results highlight the profound influences of the nanostructuring and nanoconfinement of metal hydrides on their structural response to hydrogen with a significant impact on their applicability in future devices.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34709777

RESUMO

Catalyzing capping layers on metal hydrides are employed to enhance the hydrogenation kinetics of metal hydride-based systems such as hydrogen sensors. Here, we use a novel experimental method to study the hydrogenation kinetics of catalyzing capping layers composed of several alloys of Pd and Au as well as Pt, Ni, and Ru, all with and without an additional PTFE polymer protection layer and under the same set of experimental conditions. In particular, we employ a thin Ta film as an optical indicator to study the kinetics of the catalytic layers deposited on top of it and which allows one to determine the absolute hydrogenation rates. Our results demonstrate that doping Pd with Au results in significantly faster hydrogenation kinetics, with response times up to five times shorter than Pd through enhanced diffusion and a reduction in the activation energy. On the other hand, the kinetics of non-Pd-based materials turn out to be significantly slower and mainly limited by the diffusion through the capping layer itself. Surprisingly, the additional PTFE layer was only found to improve the kinetics of Pd-based capping materials and has no significant effect on the kinetics of Pt, Ni, and Ru. Taken together, the experimental results aid in rationally choosing a suitable capping material for the application of metal hydrides and other materials in a hydrogen economy. In addition, the used method can be applied to simultaneously study the hydrogenation kinetics in thin-film materials for a wide set of experimental conditions.

10.
Nat Mater ; 18(5): 489-495, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936481

RESUMO

Hydrogen-air mixtures are highly flammable. Hydrogen sensors are therefore of paramount importance for timely leak detection during handling. However, existing solutions do not meet the stringent performance targets set by stakeholders, while deactivation due to poisoning, for example by carbon monoxide, is a widely unsolved problem. Here we present a plasmonic metal-polymer hybrid nanomaterial concept, where the polymer coating reduces the apparent activation energy for hydrogen transport into and out of the plasmonic nanoparticles, while deactivation resistance is provided via a tailored tandem polymer membrane. In concert with an optimized volume-to-surface ratio of the signal transducer uniquely offered by nanoparticles, this enables subsecond sensor response times. Simultaneously, hydrogen sorption hysteresis is suppressed, sensor limit of detection is enhanced, and sensor operation in demanding chemical environments is enabled, without signs of long-term deactivation. In a wider perspective, our work suggests strategies for next-generation optical gas sensors with functionalities optimized by hybrid material engineering.

11.
Sci Adv ; 4(9): eaat7323, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30255145

RESUMO

The lack of inversion symmetry in the crystal lattice of magnetic materials gives rise to complex noncollinear spin orders through interactions of a relativistic nature, resulting in interesting physical phenomena, such as emergent electromagnetism. Studies of cubic chiral magnets revealed a universal magnetic phase diagram composed of helical spiral, conical spiral, and skyrmion crystal phases. We report a remarkable deviation from this universal behavior. By combining neutron diffraction with magnetization measurements, we observe a new multidomain state in Cu2OSeO3. Just below the upper critical field at which the conical spiral state disappears, the spiral wave vector rotates away from the magnetic field direction. This transition gives rise to large magnetic fluctuations. We clarify the physical origin of the new state and discuss its multiferroic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...