Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Environ Pollut ; 244: 617-626, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30384067


Plastic debris carry fouling a variety of class-size organisms, among them harmful microorganisms that potentially play a role in the dispersal of allochthonous species and toxic compounds with ecological impacts on the marine environment and human health. We analyzed samples of marine plastics floating at the sea surface using a molecular qPCR assay to quantify the attached microalgal taxa, in particular, harmful species. Diatoms were the most abundant group of plastic colonizers with maximum abundance of 8.2 × 104 cells cm-2 of plastics, the maximum abundance of dinoflagellates amounted to 1.1 × 103 cells cm-2 of plastics. The most abundant harmful microalgal taxon was the diatom Pseudo-nitzschia spp., including at least 12 toxic species, and the dinoflagellate Ostreopsis cf. ovata with 6606 and 259 cells cm-2, respectively. The abundance of other harmful microalgal species including the toxic allochthonous dinoflagellate Alexandrium pacificum ranged from 1 to 73 cells cm-2. In the present study, a direct relationship between the abundance of harmful algal species colonizing the plastic substrates and their toxin production was found. The levels of potential toxins on plastic samples ranged from 101 to 102 ng cm-2, considering the various toxin families produced by the colonized harmful microalgal species. We also measured the rate of adhesion by several target microalgal species. It ranged from 1.8 to 0.3 day-1 demonstrating the capacity of plastic substrate colonizing rapidly by microalgae. The present study reports the first estimates of molecular quantification of microorganisms including toxin producing species that can colonize plastics. Such findings provide important insights for improving the monitoring practice of plastics and illustrate how the epi-plastic community can exacerbate the harmful effects of plastics by dispersal, acting as an alien and toxic species carrier and potentially being ingested through the marine trophic web.

Diatomáceas/crescimento & desenvolvimento , Dinoflagelados/crescimento & desenvolvimento , Monitoramento Ambiental , Toxinas Marinhas/análise , Microalgas/crescimento & desenvolvimento , Plásticos/química , Diatomáceas/isolamento & purificação , Dinoflagelados/isolamento & purificação , Humanos , Microalgas/isolamento & purificação , Resíduos/análise
Mar Pollut Bull ; 62(3): 499-513, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21215975


In recent times many benthic indices have been proposed to assess the ecological quality of marine waters worldwide. In this study we compared single metrics and multi-metric methods to assess coastal and transitional benthic status along human pressure gradients in five distinct environments across Europe: Varna bay and lake (Bulgaria), Lesina lagoon (Italy), Mondego estuary (Portugal), Basque coast (Spain) and Oslofjord (Norway). Hence, 13 single metrics (abundance, number of taxa, and several diversity and sensitivity indices) and eight of the most common indices used within the European Water Framework Directive (WFD) for benthic assessment were selected: index of size spectra (ISS), Benthic assessment tool (BAT), Norwegian quality index (NQI), Multivariate AMBI (M-AMBI), Benthic quality index (BQI), (Benthic ecosystem quality index (BEQI), Benthic index based on taxonomic sufficiency (BITS), and infaunal quality index (IQI). Within each system, sampling sites were ordered in an increasing pressure gradient according to a preliminary classification based on professional judgement. The different indices are largely consistent in their response to pressure gradient, except in some particular cases (i.e. BITS, in all cases, or ISS when a low number of individuals is present). Inconsistencies between indicator responses were most pronounced in transitional waters (i.e. IQI, BEQI), highlighting the difficulties of the generic application of indicators to all marine, estuarine and lagoonal environments. However, some of the single (i.e. ecological groups approach, diversity, richness) and multi-metric methods (i.e. BAT, M-AMBI, NQI) were able to detect such gradients both in transitional and coastal environments, being these multi-metric methods more consistent in the detection than single indices. This study highlights the importance of survey design and good reference conditions for some indicators. The agreement observed between different methodologies and their ability to detect quality trends across distinct environments constitutes a promising result for the implementation of the WFD's monitoring plans. Moreover, these results have management implications, regarding the dangers of misclassification, uncertainty in the assessment, use of conflicting indices, and testing and validation of indices.

Ecossistema , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Biodiversidade , Europa (Continente) , Oceanos e Mares , Água do Mar/química , Poluentes Químicos da Água/normas