Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Muscle Nerve ; 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33294984

RESUMO

INTRODUCTION/AIM: The immunopathology of autoimmune seronegative myasthenia gravis (SN MG) is poorly understood. Our objective was to determine immune profiles associated with a diagnosis of SN MG. METHODS: We performed high-dimensional flow cytometry on blood samples from SN MG patients (N=68), healthy controls (N=46), and acetylcholine receptor antibody (AChR+) MG patients (N=27). We compared 12 immune cell subsets in SN MG to controls using logistic modeling via a discovery-replication design. An exploratory analysis fit a multinomial model comparing AChR+ MG and controls to SN MG. RESULTS: An increase in CD19+ CD20- CD38hi plasmablast frequencies was associated with lower odds of being a SN MG case in both the discovery and replication analyses (discovery p-value=0.0003, replication p-value=0.0021). IL-21 producing helper T cell frequencies were associated with a diagnosis of AChR+ MG (p=0.004). DISCUSSION: Reduced plasmablast frequencies are strongly associated with a SN MG diagnosis and may be a useful diagnostic biomarker in the future.

2.
PLoS Genet ; 16(8): e1008947, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32833970

RESUMO

Genome-wide association studies (GWAS) have successfully identified tens of thousands of genetic variants associated with various phenotypes, but together they explain only a fraction of heritability, suggesting many variants have yet to be discovered. Recently it has been recognized that incorporating functional information of genetic variants can improve power for identifying novel loci. For example, S-PrediXcan and TWAS tested the association of predicted gene expression with phenotypes based on GWAS summary statistics by leveraging the information on genetic regulation of gene expression and found many novel loci. However, as genetic variants may have effects on more than one gene and through different mechanisms, these methods likely only capture part of the total effects of these variants. In this paper, we propose a summary statistics-based mixed effects score test (sMiST) that tests for the total effect of both the effect of the mediator by imputing genetically predicted gene expression, like S-PrediXcan and TWAS, and the direct effects of individual variants. It allows for multiple functional annotations and multiple genetically predicted mediators. It can also perform conditional association analysis while adjusting for other genetic variants (e.g., known loci for the phenotype). Extensive simulation and real data analyses demonstrate that sMiST yields p-values that agree well with those obtained from individual level data but with substantively improved computational speed. Importantly, a broad application of sMiST to GWAS is possible, as only summary statistics of genetic variant associations are required. We apply sMiST to a large-scale GWAS of colorectal cancer using summary statistics from ∼120, 000 study participants and gene expression data from the Genotype-Tissue Expression (GTEx) project. We identify several novel and secondary independent genetic loci.


Assuntos
Neoplasias Colorretais/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Neoplasias Colorretais/patologia , Biologia Computacional , Regulação Neoplásica da Expressão Gênica/genética , Variação Genética/genética , Genótipo , Humanos , Modelos Estatísticos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
3.
Cancer Res ; 80(20): 4578-4590, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32816852

RESUMO

Protective associations of fruits, vegetables, and fiber intake with colorectal cancer risk have been shown in many, but not all epidemiologic studies. One possible reason for study heterogeneity is that dietary factors may have distinct effects by colorectal cancer molecular subtypes. Here, we investigate the association of fruit, vegetables, and fiber intake with four well-established colorectal cancer molecular subtypes separately and in combination. Nine observational studies including 9,592 cases with molecular subtypes for microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and somatic mutations in BRAF and KRAS genes, and 7,869 controls were analyzed. Both case-only logistic regression analyses and polytomous logistic regression analyses (with one control set and multiple case groups) were used. Higher fruit intake was associated with a trend toward decreased risk of BRAF-mutated tumors [OR 4th vs. 1st quartile = 0.82 (95% confidence interval, 0.65-1.04)] but not BRAF-wildtype tumors [1.09 (0.97-1.22); P difference as shown in case-only analysis = 0.02]. This difference was observed in case-control studies and not in cohort studies. Compared with controls, higher fiber intake showed negative association with colorectal cancer risk for cases with microsatellite stable/MSI-low, CIMP-negative, BRAF-wildtype, and KRAS-wildtype tumors (P trend range from 0.03 to 3.4e-03), which is consistent with the traditional adenoma-colorectal cancer pathway. These negative associations were stronger compared with MSI-high, CIMP-positive, BRAF-mutated, or KRAS-mutated tumors, but the differences were not statistically significant. These inverse associations for fruit and fiber intake may explain, in part, inconsistent findings between fruit or fiber intake and colorectal cancer risk that have previously been reported. SIGNIFICANCE: These analyses by colorectal cancer molecular subtypes potentially explain the inconsistent findings between dietary fruit or fiber intake and overall colorectal cancer risk that have previously been reported.

4.
Nat Commun ; 11(1): 3644, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686686

RESUMO

Colorectal cancer (CRC) is a biologically heterogeneous disease. To characterize its mutational profile, we conduct targeted sequencing of 205 genes for 2,105 CRC cases with survival data. Our data shows several findings in addition to enhancing the existing knowledge of CRC. We identify PRKCI, SPZ1, MUTYH, MAP2K4, FETUB, and TGFBR2 as additional genes significantly mutated in CRC. We find that among hypermutated tumors, an increased mutation burden is associated with improved CRC-specific survival (HR = 0.42, 95% CI: 0.21-0.82). Mutations in TP53 are associated with poorer CRC-specific survival, which is most pronounced in cases carrying TP53 mutations with predicted 0% transcriptional activity (HR = 1.53, 95% CI: 1.21-1.94). Furthermore, we observe differences in mutational frequency of several genes and pathways by tumor location, stage, and sex. Overall, this large study provides deep insights into somatic mutations in CRC, and their potential relationships with survival and tumor features.


Assuntos
Neoplasias Colorretais/genética , Proteínas de Neoplasias/genética , Neoplasias do Colo/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL , Mutação , Prognóstico , Proteína Supressora de Tumor p53/genética
5.
Sleep ; 42(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31139831

RESUMO

STUDY OBJECTIVES: Daytime sleepiness is a consequence of inadequate sleep, sleep-wake control disorder, or other medical conditions. Population variability in prevalence of daytime sleepiness is likely due to genetic and biological factors as well as social and environmental influences. DNA methylation (DNAm) potentially influences multiple health outcomes. Here, we explored the association between DNAm and daytime sleepiness quantified by the Epworth Sleepiness Scale (ESS). METHODS: We performed multi-ethnic and ethnic-specific epigenome-wide association studies for DNAm and ESS in the Multi-Ethnic Study of Atherosclerosis (MESA; n = 619) and the Cardiovascular Health Study (n = 483), with cross-study replication and meta-analysis. Genetic variants near ESS-associated DNAm were analyzed for methylation quantitative trait loci and followed with replication of genotype-sleepiness associations in the UK Biobank. RESULTS: In MESA only, we detected four DNAm-ESS associations: one across all race/ethnic groups; three in African-Americans (AA) only. Two of the MESA AA associations, in genes KCTD5 and RXRA, nominally replicated in CHS (p-value < 0.05). In the AA meta-analysis, we detected 14 DNAm-ESS associations (FDR q-value < 0.05, top association p-value = 4.26 × 10-8). Three DNAm sites mapped to genes (CPLX3, GFAP, and C7orf50) with biological relevance. We also found evidence for associations with DNAm sites in RAI1, a gene associated with sleep and circadian phenotypes. UK Biobank follow-up analyses detected SNPs in RAI1, RXRA, and CPLX3 with nominal sleepiness associations. CONCLUSIONS: We identified methylation sites in multiple genes possibly implicated in daytime sleepiness. Most significant DNAm-ESS associations were specific to AA. Future work is needed to identify mechanisms driving ancestry-specific methylation effects.


Assuntos
Afro-Americanos/genética , Metilação de DNA/genética , Transtornos do Sono-Vigília/etnologia , Transtornos do Sono-Vigília/genética , Sono/fisiologia , Idoso , Aterosclerose/etnologia , Aterosclerose/genética , Epigenoma/genética , Feminino , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Prevalência
6.
PLoS Genet ; 15(4): e1007739, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30990817

RESUMO

Sleep disordered breathing (SDB)-related overnight hypoxemia is associated with cardiometabolic disease and other comorbidities. Understanding the genetic bases for variations in nocturnal hypoxemia may help understand mechanisms influencing oxygenation and SDB-related mortality. We conducted genome-wide association tests across 10 cohorts and 4 populations to identify genetic variants associated with three correlated measures of overnight oxyhemoglobin saturation: average and minimum oxyhemoglobin saturation during sleep and the percent of sleep with oxyhemoglobin saturation under 90%. The discovery sample consisted of 8,326 individuals. Variants with p < 1 × 10(-6) were analyzed in a replication group of 14,410 individuals. We identified 3 significantly associated regions, including 2 regions in multi-ethnic analyses (2q12, 10q22). SNPs in the 2q12 region associated with minimum SpO2 (rs78136548 p = 2.70 × 10(-10)). SNPs at 10q22 were associated with all three traits including average SpO2 (rs72805692 p = 4.58 × 10(-8)). SNPs in both regions were associated in over 20,000 individuals and are supported by prior associations or functional evidence. Four additional significant regions were detected in secondary sex-stratified and combined discovery and replication analyses, including a region overlapping Reelin, a known marker of respiratory complex neurons.These are the first genome-wide significant findings reported for oxyhemoglobin saturation during sleep, a phenotype of high clinical interest. Our replicated associations with HK1 and IL18R1 suggest that variants in inflammatory pathways, such as the biologically-plausible NLRP3 inflammasome, may contribute to nocturnal hypoxemia.


Assuntos
Hexoquinase/genética , Subunidade alfa de Receptor de Interleucina-18/genética , Oxiemoglobinas/metabolismo , Sono/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Moléculas de Adesão Celular Neuronais/genética , Biologia Computacional , Proteínas da Matriz Extracelular/genética , Feminino , Redes Reguladoras de Genes , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Hipóxia/sangue , Hipóxia/genética , Masculino , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas do Tecido Nervoso/genética , Oxigênio/sangue , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Serina Endopeptidases/genética , Síndromes da Apneia do Sono/sangue , Síndromes da Apneia do Sono/genética , Adulto Jovem
7.
Epigenetics ; 13(10-11): 1039-1055, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30343628

RESUMO

DNA methylation is an epigenetic regulator of gene transcription, which has been found to be both metastable and variable within human cohort studies. Currently, few studies have been done to identify metastable DNA methylation biomarkers associated with longitudinal lung function decline in humans. The identification of such biomarkers is important for screening vulnerable populations. We hypothesized that quantifiable blood-based DNA methylation alterations would serve as metastable biomarkers of lung function decline and aging, which may help to discover new pathways and/or mechanisms related to pulmonary pathogenesis. Using linear mixed models, we performed an Epigenome Wide Association Study (EWAS) between DNA methylation at CpG dinucleotides and longitudinal lung function (FVC, FEV1, FEF25-75%) decline and aging with initial discovery in the Normative Aging Study, and replication in the Cooperative Health Research in the Region of Augsburg cohort. We identified two metastable epigenetic loci associated with either poor lung function and aging, cg05575921 (AHRR gene), or lung function independently of aging, cg06126421 (IER3 gene). These loci may inform basic mechanisms associated with pulmonary function, pathogenesis, and aging. Human epigenomic variation, may help explain features of lung function decline and related pathophysiology not attributable to DNA sequence alone, such as accelerated pulmonary decline in smokers, former smokers, and perhaps non-smokers. Our EWAS across two cohorts, therefore, will likely have implications for the human population, not just the elderly.


Assuntos
Envelhecimento/patologia , Metilação de DNA , Epigênese Genética , Pneumopatias/genética , Pulmão/crescimento & desenvolvimento , Idoso , Envelhecimento/genética , Ilhas de CpG , Feminino , Estudo de Associação Genômica Ampla , Humanos , Pulmão/patologia , Masculino
8.
Nat Genet ; 50(7): 968-978, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915430

RESUMO

The breast cancer risk variants identified in genome-wide association studies explain only a small fraction of the familial relative risk, and the genes responsible for these associations remain largely unknown. To identify novel risk loci and likely causal genes, we performed a transcriptome-wide association study evaluating associations of genetically predicted gene expression with breast cancer risk in 122,977 cases and 105,974 controls of European ancestry. We used data from the Genotype-Tissue Expression Project to establish genetic models to predict gene expression in breast tissue and evaluated model performance using data from The Cancer Genome Atlas. Of the 8,597 genes evaluated, significant associations were identified for 48 at a Bonferroni-corrected threshold of P < 5.82 × 10-6, including 14 genes at loci not yet reported for breast cancer. We silenced 13 genes and showed an effect for 11 on cell proliferation and/or colony-forming efficiency. Our study provides new insights into breast cancer genetics and biology.


Assuntos
Neoplasias da Mama/genética , Estudos de Casos e Controles , Feminino , Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Risco , Transcriptoma
9.
Genet Epidemiol ; 42(5): 418-433, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29808603

RESUMO

Integrating genome-wide association (GWAS) and expression quantitative trait locus (eQTL) data into transcriptome-wide association studies (TWAS) based on predicted expression can boost power to detect novel disease loci or pinpoint the susceptibility gene at a known disease locus. However, it is often the case that multiple eQTL genes colocalize at disease loci, making the identification of the true susceptibility gene challenging, due to confounding through linkage disequilibrium (LD). To distinguish between true susceptibility genes (where the genetic effect on phenotype is mediated through expression) and colocalization due to LD, we examine an extension of the Mendelian randomization (MR) egger regression method that allows for LD while only requiring summary association data for both GWAS and eQTL. We derive the standard TWAS approach in the context of MR and show in simulations that the standard TWAS does not control type I error for causal gene identification when eQTLs have pleiotropic or LD-confounded effects on disease. In contrast, LD-aware MR-Egger (LDA MR-Egger) regression can control type I error in this case while attaining similar power as other methods in situations where these provide valid tests. However, when the direct effects of genetic variants on traits are correlated with the eQTL associations, all of the methods we examined including LDA MR-Egger regression can have inflated type I error. We illustrate these methods by integrating gene expression within a recent large-scale breast cancer GWAS to provide guidance on susceptibility gene identification.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma/genética , Neoplasias da Mama/genética , Simulação por Computador , Feminino , Predisposição Genética para Doença , Humanos , Desequilíbrio de Ligação/genética , Modelos Genéticos , Locos de Características Quantitativas/genética , Análise de Regressão
10.
Genet Epidemiol ; 41(8): 824-833, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29082545

RESUMO

Mediation analysis helps researchers assess whether part or all of an exposure's effect on an outcome is due to an intermediate variable. The indirect effect can help in designing interventions on the mediator as opposed to the exposure and better understanding the outcome's mechanisms. Mediation analysis has seen increased use in genome-wide epidemiological studies to test for an exposure of interest being mediated through a genomic measure such as gene expression or DNA methylation (DNAm). Testing for the indirect effect is challenged by the fact that the null hypothesis is composite. We examined the performance of commonly used mediation testing methods for the indirect effect in genome-wide mediation studies. When there is no association between the exposure and the mediator and no association between the mediator and the outcome, we show that these common tests are overly conservative. This is a case that will arise frequently in genome-wide mediation studies. Caution is hence needed when applying the commonly used mediation tests in genome-wide mediation studies. We evaluated the performance of these methods using simulation studies, and performed an epigenome-wide mediation association study in the Normative Aging Study, analyzing DNAm as a mediator of the effect of pack-years on FEV1 .


Assuntos
Estudo de Associação Genômica Ampla , Modelos Genéticos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Metilação de DNA , Epigenômica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Repressoras/genética
11.
Genome Med ; 8(1): 20, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26884246

RESUMO

BACKGROUND: Disease risk assessments based on common genetic variation have gained widespread attention and use in recent years. The clinical utility of genetic risk profiles depends on the number and effect size of identified loci, and how stable the predicted risks are as additional loci are discovered. Changes in risk classification for individuals over time would undermine the validity of common genetic variation for risk prediction. In this analysis, we quantified reclassification of genetic risk based on past and anticipated future GWAS data. METHODS: We identified disease-associated SNPs via the NHGRI GWAS catalog and recent large scale genome-wide association study (GWAS). We calculated the genomic risk for a simulated cohort of 100,000 individuals based on a multiplicative odds ratio model using cumulative GWAS-identified SNPs at four time points: 2007, 2009, 2011, and 2013. Individuals were classified as Higher Risk (population adjusted odds >2), Average Risk (between 0.5 and 2), and Lower Risk (<0.5) for each time point and we compared classifications between time points for breast cancer (BrCa), prostate cancer (PrCa), diabetes mellitus type 2 (T2D), and cardiovascular heart disease (CHD). We estimated future reclassification using the anticipated number of undiscovered SNPs. RESULTS: Risk reclassification occurred for all four phenotypes from 2007 to 2013. During the most recent interval (2011-2013), the degree of risk reclassification ranged from 16.3 % for CHD to 24.4 % for PrCa. Many individuals classified as Higher Risk at earlier time points were subsequently reclassified into a lower risk category. From 2011 to 2013, the degree of such downward risk reclassification ranged from 24.9% for T2D to 55% for CHD. The percent of individuals classified as Higher Risk increased as more SNPs were discovered, ranging from an increase of 5% for CHD to 9% for PrCa from 2007 to 2013. Reclassification continued to occur when we modeled the discovery of anticipated SNPs based on doubling current sample size. CONCLUSION: Risk estimates from common genetic variation show large reclassification rates. Identifying disease-associated SNPs facilitates the clinically relevant task of identifying higher-risk individuals. However, the large amount of reclassification that we demonstrated in individuals initially classified as Higher Risk but later as Average Risk or Lower Risk, suggests that caution is currently warranted in basing clinical decisions on common genetic variation for many complex diseases.


Assuntos
Doenças Cardiovasculares/genética , Biologia Computacional/métodos , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Algoritmos , Neoplasias da Mama/genética , Simulação por Computador , Diabetes Mellitus Tipo 2/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Razão de Chances , Neoplasias da Próstata/genética
12.
Nat Genet ; 46(9): 994-1000, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25086665

RESUMO

We performed a multistage genome-wide association study including 7,683 individuals with pancreatic cancer and 14,397 controls of European descent. Four new loci reached genome-wide significance: rs6971499 at 7q32.3 (LINC-PINT, per-allele odds ratio (OR) = 0.79, 95% confidence interval (CI) 0.74-0.84, P = 3.0 × 10(-12)), rs7190458 at 16q23.1 (BCAR1/CTRB1/CTRB2, OR = 1.46, 95% CI 1.30-1.65, P = 1.1 × 10(-10)), rs9581943 at 13q12.2 (PDX1, OR = 1.15, 95% CI 1.10-1.20, P = 2.4 × 10(-9)) and rs16986825 at 22q12.1 (ZNRF3, OR = 1.18, 95% CI 1.12-1.25, P = 1.2 × 10(-8)). We identified an independent signal in exon 2 of TERT at the established region 5p15.33 (rs2736098, OR = 0.80, 95% CI 0.76-0.85, P = 9.8 × 10(-14)). We also identified a locus at 8q24.21 (rs1561927, P = 1.3 × 10(-7)) that approached genome-wide significance located 455 kb telomeric of PVT1. Our study identified multiple new susceptibility alleles for pancreatic cancer that are worthy of follow-up studies.


Assuntos
Loci Gênicos , Neoplasias Pancreáticas/genética , Idoso , Estudos de Casos e Controles , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética
13.
Genet Epidemiol ; 38(3): 231-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24478250

RESUMO

DNA methylation is an important epigenetic mechanism that has been linked to complex diseases and is of great interest to researchers as a potential link between genome, environment, and disease. As the scale of DNA methylation association studies approaches that of genome-wide association studies, issues such as population stratification will need to be addressed. It is well-documented that failure to adjust for population stratification can lead to false positives in genetic association studies, but population stratification is often unaccounted for in DNA methylation studies. Here, we propose several approaches to correct for population stratification using principal components (PCs) from different subsets of genome-wide methylation data. We first illustrate the potential for confounding due to population stratification by demonstrating widespread associations between DNA methylation and race in 388 individuals (365 African American and 23 Caucasian). We subsequently evaluate the performance of our PC-based approaches and other methods in adjusting for confounding due to population stratification. Our simulations show that (1) all of the methods considered are effective at removing inflation due to population stratification, and (2) maximum power can be obtained with single-nucleotide polymorphism (SNP)-based PCs, followed by methylation-based PCs, which outperform both surrogate variable analysis and genomic control. Among our different approaches to computing methylation-based PCs, we find that PCs based on CpG sites chosen for their potential to proxy nearby SNPs can provide a powerful and computationally efficient approach to adjust for population stratification in DNA methylation studies when genome-wide SNP data are unavailable.


Assuntos
Grupos de Populações Continentais/genética , Metilação de DNA/genética , Estudos de Associação Genética/métodos , Afro-Americanos/genética , Ilhas de CpG/genética , Grupo com Ancestrais do Continente Europeu/genética , Genética Populacional , Genoma Humano , Humanos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Projetos de Pesquisa
14.
Proc Natl Acad Sci U S A ; 110(37): 14990-4, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980137

RESUMO

Obesity is a highly heritable condition and a risk factor for other diseases, including type 2 diabetes, cardiovascular disease, hypertension, and cancer. Recently, genomic copy number variation (CNV) has been implicated in cases of early onset obesity that may be comorbid with intellectual disability. Here, we describe a recurrent CNV that causes a syndrome associated with intellectual disability, seizures, macrocephaly, and obesity. This unbalanced chromosome translocation leads to duplication of over 100 genes on chromosome 12, including the obesity candidate gene G protein ß3 (GNB3). We generated a transgenic mouse model that carries an extra copy of GNB3, weighs significantly more than its wild-type littermates, and has excess intraabdominal fat accumulation. GNB3 is highly expressed in the brain, consistent with G-protein signaling involved in satiety and/or metabolism. These functional data connect GNB3 duplication and overexpression to elevated body mass index and provide evidence for a genetic syndrome caused by a recurrent CNV.


Assuntos
Duplicação Gênica , Proteínas Heterotriméricas de Ligação ao GTP/genética , Obesidade Pediátrica/genética , Adolescente , Adulto , Animais , Encéfalo/metabolismo , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 8/genética , Modelos Animais de Doenças , Feminino , Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Obesidade Pediátrica/metabolismo , Obesidade Pediátrica/patologia , Linhagem , Síndrome , Translocação Genética
15.
Bioinformatics ; 28(9): 1280-1, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22451269

RESUMO

SUMMARY: With the increasing availability of high-density methylation microarrays, there has been growing interest in analysis of DNA methylation data. We have developed CpGassoc, an R package that can efficiently perform the statistical analysis needed for increasingly large methylation datasets. CpGassoc is a modular, expandable package with functions to perform rapid analyses of DNA methylation data via fixed or mixed effects models, to perform basic quality control, to carry out permutation tests, and to display results via an array of publication-quality plots. AVAILABILITY AND IMPLEMENTATION: CpGassoc is implemented in R and is freely available at http://genetics.emory.edu/conneely; we are in the process of submitting it to CRAN.


Assuntos
Metilação de DNA , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Ilhas de CpG , Humanos
16.
Epigenetics ; 7(3): 225-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22430798

RESUMO

Recent evidence suggests that DNA methylation changes may underlie numerous complex traits and diseases. The advent of commercial, array-based methods to interrogate DNA methylation has led to a profusion of epigenetic studies in the literature. Array-based methods, such as the popular Illumina GoldenGate and Infinium platforms, estimate the proportion of DNA methylated at single-base resolution for thousands of CpG sites across the genome. These arrays generate enormous amounts of data, but few software resources exist for efficient and flexible analysis of these data. We developed a software package called MethLAB (http://genetics.emory.edu/conneely/MethLAB) using R, an open source statistical language that can be edited to suit the needs of the user. MethLAB features a graphical user interface (GUI) with a menu-driven format designed to efficiently read in and manipulate array-based methylation data in a user-friendly manner. MethLAB tests for association between methylation and relevant phenotypes by fitting a separate linear model for each CpG site. These models can incorporate both continuous and categorical phenotypes and covariates, as well as fixed or random batch or chip effects. MethLAB accounts for multiple testing by controlling the false discovery rate (FDR) at a user-specified level. Standard output includes a spreadsheet-ready text file and an array of publication-quality figures. Considering the growing interest in and availability of DNA methylation data, there is a great need for user-friendly open source analytical tools. With MethLAB, we present a timely resource that will allow users with no programming experience to implement flexible and powerful analyses of DNA methylation data.


Assuntos
Gráficos por Computador/normas , Metilação de DNA , Epigenômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Software/normas , Algoritmos , Humanos , Interface Usuário-Computador
17.
Arch Gen Psychiatry ; 69(1): 89-97, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21893641

RESUMO

CONTEXT: The serotonin transporter (SLC6A4) has been associated with several stress-related syndromes including posttraumatic stress disorder (PTSD). The ability to detect meaningful associations is largely dependent on reliable measures of preexisting trauma. OBJECTIVE: To study the association of genetic variants within SLC6A4 with acute and posttraumatic stress symptoms in a civilian cohort with known levels of preexisting trauma and PTSD symptoms collected prior to a shared index traumatic event. DESIGN: Ongoing longitudinal study. SETTING: On February 14, 2008, a lone gunman shot multiple people on the campus of Northern Illinois University in DeKalb, Illinois, killing 5 and wounding 21. As part of an ongoing longitudinal study on that campus, a cohort of female undergraduate students, interviewed prior to the shooting, completed follow-up trauma-related measures including PTSD symptom severity (follow-up survey was launched 17 days postshooting; n = 691). To obtain DNA, salivary samples were collected from a subset of the original study population based on willingness to participate (n = 276). PARTICIPANTS: Two hundred four undergraduate women. MAIN OUTCOME MEASURES: SLC6A4 polymorphisms STin2, 5-HTTLPR, and rs25531 were genotyped in 235 individuals. RESULTS: We found that although the STin2 variant and 5-HTTLPR alone did not associate with increased PTSD symptoms, rs25531 and the 5-HTTLPR multimarker genotype (combined 5-HTTLPR and rs25531) were associated with significantly increased acute stress disorder symptoms at 2 to 4 weeks postshooting (n = 161; P < .05). This association remained significant when controlling for race and for level of shooting exposure (n = 123; P < .007). The association was most robust with the 5-HTTLPR multimarker genotype and avoidance symptoms (P = .003). CONCLUSION: These data suggest that differential function of the serotonin transporter may mediate differential response to a severe trauma. When examined in a relatively homogenous sample with shared trauma and known prior levels of child and adult trauma, the 5-HTTLPR multimarker genotype may serve as a useful predictor of risk for PTSD-related symptoms in the weeks and months following the trauma.


Assuntos
Interação Gene-Ambiente , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Traumático Agudo/genética , Adolescente , Adulto , Feminino , Predisposição Genética para Doença , Humanos , Illinois , Acontecimentos que Mudam a Vida , Estudos Longitudinais , Pessoa de Meia-Idade , Polimorfismo Genético , Estudos Prospectivos , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Transtornos de Estresse Traumático Agudo/diagnóstico , Universidades , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA