Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(37): 12927-12930, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28846421

RESUMO

Transition metal phosphides exhibit high catalytic activity toward the electrochemical hydrogen-evolution reaction (HER) and resist chemical corrosion in acidic solutions. For example, an electrodeposited CoP catalyst exhibited an overpotential, η, of -η < 100 mV at a current density of -10 mA cm-2 in 0.500 M H2SO4(aq). To obtain a chemical description of the material as-prepared and also while effecting the HER in acidic media, such electrocatalyst films were investigated using Raman spectroscopy and X-ray absorption spectroscopy both ex situ as well as under in situ and operando conditions in 0.500 M H2SO4(aq). Ex situ analysis using the tandem spectroscopies indicated the presence of multiple ordered and disordered phases that contained both near-zerovalent and oxidized Co species, in addition to reduced and oxygenated P species. Operando analysis indicated that the active electrocatalyst was primarily amorphous and predominantly consisted of near-zerovalent Co as well as reduced P.


Assuntos
Cobalto/química , Técnicas Eletroquímicas , Hidrogênio/química , Fósforo/química , Catálise , Espectroscopia por Absorção de Raios X
2.
Proc Natl Acad Sci U S A ; 114(23): 5918-5923, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533377

RESUMO

In this study we control the surface structure of Cu thin-film catalysts to probe the relationship between active sites and catalytic activity for the electroreduction of CO2 to fuels and chemicals. Here, we report physical vapor deposition of Cu thin films on large-format (∼6 cm2) single-crystal substrates, and confirm epitaxial growth in the <100>, <111>, and <751> orientations using X-ray pole figures. To understand the relationship between the bulk and surface structures, in situ electrochemical scanning tunneling microscopy was conducted on Cu(100), (111), and (751) thin films. The studies revealed that Cu(100) and (111) have surface adlattices that are identical to the bulk structure, and that Cu(751) has a heterogeneous kinked surface with (110) terraces that is closely related to the bulk structure. Electrochemical CO2 reduction testing showed that whereas both Cu(100) and (751) thin films are more active and selective for C-C coupling than Cu(111), Cu(751) is the most selective for >2e- oxygenate formation at low overpotentials. Our results demonstrate that epitaxy can be used to grow single-crystal analogous materials as large-format electrodes that provide insights on controlling electrocatalytic activity and selectivity for this reaction.

3.
Langmuir ; 26(12): 9632-9, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20334405

RESUMO

The adsorption of Ca on electron-irradiated poly(3-hexylthiophene) (P3HT) surfaces at 300 K (E(kin) = 100 eV) has been studied by adsorption microcalorimetry, atomic beam/surface scattering, X-ray photoelectron spectroscopy (XPS), and low-energy He(+) ion scattering spectroscopy (LEIS). The results are compared to previous studies of Ca adsorption on pristine P3HT. The major structural effect of electron irradiation is a substantial increase in the fraction of unsaturated carbon atoms, probably a result of electron-induced hydrogen abstraction from the hexyl chains and formation of new C=C double bonds. No loss of sulfur was observed. The combined XPS, LEIS, and calorimetry data indicate that the reaction and growth behavior of Ca on P3HT surfaces is not significantly affected by this electron damage, apart from an increased sticking probability at low coverages. The sticking probability of Ca on the irradiated P3HT is initially 0.63, compared to 0.36 on the pristine surface. It increases with coverage, approaching unity between 4 and 5 ML. The heat of adsorption stays nearly constant at 405 kJ/mol up to a coverage of 0.6 ML, which is ascribed to Ca diffusing below the surface and forming CaS clusters by abstraction of sulfur from the thiophene rings, based on XPS and LEIS data. The heat of adsorption then decreases gradually until it reaches the heat of sublimation of bulk Ca, 178 kJ/mol, by 4 ML; this is attributed to the formation of 3D Ca islands on top of the polymer, which eventually coalesce into a continuous Ca film by 11 ML. The heat of reaction versus coverage and the ultimate depth up to which the Ca atoms react with the polymer thiophene groups (approximately 3 nm) are nearly independent of electron damage, except for a difference in the heat of adsorption below 0.1 ML associated with defects or impurities. The increase in initial sticking probability caused by electron damage is attributed to stronger bonding of Ca adatoms to unsaturated versus saturated hydrocarbons. These very weakly held Ca adatoms are transient precursors to the two reactions which dominate the measured heat of adsorption (reaction with thiophene units and Ca cluster formation), but they can also desorb in this three-path kinetic competition. Mass spectrometer data show that these precursors have longer surface residence times on the electron-damaged surface.

4.
J Am Chem Soc ; 131(37): 13498-507, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-19722488

RESUMO

The adsorption of Ca on poly(3-hexylthiophene) (P3HT) has been studied by adsorption microcalorimetry, atomic beam/surface scattering, X-ray photoelectron spectroscopy (XPS), low-energy He(+) ion scattering spectroscopy (LEIS), and first-principles calculations. The sticking probability of Ca on P3HT is initially 0.35 and increases to almost unity by 5 ML. A very high initial heat of adsorption in the first 0.02 ML (625-500 kJ/mol) is attributed to the reaction of Ca with defect sites or residual contamination. Between 0.1 and 0.5 ML, there is a high and nearly constant heat of adsorption of 405 kJ/mol, which we ascribe to Ca reacting with subsurface sulfur atoms from the thiophene rings of the polymer. This is supported by the absence of LEIS signal for Ca and the shift of the S 2p XPS binding energy by -2.8 eV for reacted S atoms. The heat of adsorption decreases above 0.6 ML coverage, reaching the sublimation enthalpy of Ca, 178 kJ/mol, by 4 ML. This is attributed to the formation of Ca nanoparticles and eventually a continuous solid Ca film, on top of the polymer. LEIS and XPS measurements, which show only a slow increase of the signals related to solid Ca, support this model. Incoming Ca atoms are subject to a kinetic competition between diffusing into the polymer to react with subsurface thiophene units versus forming or adding to three-dimensional Ca clusters on the surface. At approximately 1.6 ML Ca coverage, Ca atoms have similar probabilities for either process, with the former dominating at lower coverage. Ultimately about 1.6 ML of Ca (1.2 x 10(15) atoms/cm(2)) reacts with S atoms, corresponding to a reacted depth of approximately 3 nm, or nearly five monomer-unit layers. Density-functional theory calculations confirm that the heat of reaction and the shift of the S 2p signal are consistent with Ca abstracting S from the thiophene rings to form small CaS clusters.

5.
Langmuir ; 22(25): 10762-5, 2006 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-17129057

RESUMO

The interaction of hydroquinone (H2Q) with well-defined Pd(111) surfaces at preselected potentials in dilute H2SO4 has been studied by molecule-resolved electrochemical scanning tunneling microscopy (EC-STM). H2Q spontaneously undergoes oxidative chemisorption to benzoquinone (Q), which adopts a slightly tilted parallel orientation. Evidently, the surface coordination is through the quinone pi-electron system. At potentials within the double-layer region, a close-packed well-ordered Pd(111)-(3 x 3)-Q adlattice was formed. A potential excursion to 0.7 V, a potential at which the solution-phase Q/H2Q redox reaction takes place, introduced disorder into the organic adlayer; this positive-potential-induced order-to-disorder phase transition is reversible because the ordered (3 x 3)-Q adlattice was regenerated when the potential reverted to 0.4 V. When the potential was poised at 0.2 V, a potential at which hydrogen evolution was initiated, an appreciable fraction of Q was (hydrogenatively) desorbed; the remnant Q molecules were agglomerated in small islands that retained the (3 x 3) symmetry of the full adlayer. Two possible structural models of the Pd(111)-(3 x 3)-Q adlattice are described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...