Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Plants (Basel) ; 10(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34685977

RESUMO

The constitution of heat tolerant F1 hybrids is a challenge to ensure high yield and good fruit quality in the global climate. In the present work, we evaluated 15 genotypes for yield-related traits highly affected by high temperatures (HT). This phenotypic analysis allowed to identify four parental genotypes showing promising yield performances under HT conditions. Two of these genotypes also exhibited good fruit quality traits. A molecular marker analysis was carried out for six resistance genes to pathogens mostly affecting tomatoes. This analysis evidenced the presence of a maximum of three resistant alleles in parental genotypes. Exploring single nucleotide polymorphisms (SNPs) revealed by two high-throughput genotyping platforms allowed identifying additional 12 genes potentially involved in resistance to biotic stress, to be further investigated. Following these considerations, 13 F1 hybrids were constituted combining the parental genotypes and then evaluated for multiple traits under HT conditions. By estimating a hybrid index based on yield performances, desirable quality and resistance gene, we identified seven hybrids showing the best performances. The promising results obtained in the present work should be confirmed by evaluating the best hybrids selected for additional years and environments before proposing them as novel commercial hybrids that could maintain high performances under HT conditions.

3.
Hortic Res ; 8(1): 212, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34593775

RESUMO

Many studies showed that few degrees above tomato optimum growth temperature threshold can lead to serious loss in production. Therefore, the development of innovative strategies to obtain tomato cultivars with improved yield under high temperature conditions is a main goal both for basic genetic studies and breeding activities. In this paper, a F4 segregating population was phenotypically evaluated for quantitative and qualitative traits under heat stress conditions. Moreover, a genotyping by sequencing (GBS) approach has been employed for building up genomic selection (GS) models both for yield and soluble solid content (SCC). Several parameters, including training population size, composition and marker quality were tested to predict genotype performance under heat stress conditions. A good prediction accuracy for the two analyzed traits (0.729 for yield production and 0.715 for SCC) was obtained. The predicted models improved the genetic gain of selection in the next breeding cycles, suggesting that GS approach is a promising strategy to accelerate breeding for heat tolerance in tomato. Finally, the annotation of SNPs located in gene body regions combined with QTL analysis allowed the identification of five candidates putatively involved in high temperatures response, and the building up of a GS model based on calibrated panel of SNP markers.

4.
BMC Plant Biol ; 21(1): 345, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294034

RESUMO

BACKGROUND: Due to global warming, the search for new sources for heat tolerance and the identification of genes involved in this process has become an important challenge as of today. The main objective of the current research was to verify whether the heat tolerance determined in controlled greenhouse experiments could be a good predictor of the agronomic performance in field cultivation under climatic high temperature stress. RESULTS: Tomato accessions were grown in greenhouse under three temperature regimes: control (T1), moderate (T2) and extreme heat stress (T3). Reproductive traits (flower and fruit number and fruit set) were used to define heat tolerance. In a first screening, heat tolerance was evaluated in 219 tomato accessions. A total of 51 accessions were identified as being potentially heat tolerant. Among those, 28 accessions, together with 10 accessions from Italy (7) and Bulgaria (3), selected for their heat tolerance in the field in parallel experiments, were re-evaluated at three temperature treatments. Sixteen tomato accessions showed a significant heat tolerance at T3, including five wild species, two traditional cultivars and four commercial varieties, one accession from Bulgaria and four from Italy. The 15 most promising accessions for heat tolerance were assayed in field trials in Italy and Bulgaria, confirming the good performance of most of them at high temperatures. Finally, a differential gene expression analysis in pre-anthesis (ovary) and post-anthesis (developing fruit) under heat stress among pairs of contrasting genotypes (tolerant and sensitive from traditional and modern groups) showed that the major differential responses were produced in post-anthesis fruit. The response of the sensitive genotypes included the induction of HSP genes, whereas the tolerant genotype response included the induction of genes involved in the regulation of hormones or enzymes such as abscisic acid and transferases. CONCLUSIONS: The high temperature tolerance of fifteen tomato accessions observed in controlled greenhouse experiments were confirmed in agronomic field experiments providing new sources of heat tolerance that could be incorporated into breeding programs. A DEG analysis showed the complex response of tomato to heat and deciphered the different mechanisms activated in sensitive and tolerant tomato accessions under heat stress.


Assuntos
Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Temperatura Alta , Lycopersicon esculentum/genética , Lycopersicon esculentum/fisiologia , Termotolerância/genética , Bulgária , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Itália , Fenótipo , Melhoramento Vegetal , Espanha
5.
Plants (Basel) ; 10(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923424

RESUMO

Abiotic stresses adversely affect crop production causing yield reductions in important crops, including tomato (Solanum lycopersicum L.). Among the different abiotic stresses, drought is considered to be the most critical one, since limited water availability negatively impacts plant growth and development, especially in arid and semi-arid areas. The aim of this study was to understand how biostimulants may interact with critical physiological response mechanisms in tomato under limited water availability and to define strategies to improve tomato performances under drought stress. We investigated the physiological responses of the tomato genotype 'E42' grown in open fields under optimal conditions (100% irrigation) and limited water availability (50% irrigation) treated or not with a novel protein hydrolysate-based biostimulant (CycoFlow, Agriges, BN, Italy). Plants treated with the protein hydrolysate showed a better water status and pollen viability, which also resulted in higher yield under drought stress compared to untreated plants. The treatment with the biostimulant had also an effect on antioxidant contents and activity in leaves and fruits depending on the level of irrigation provided. Altogether, these results indicate that the application of protein hydrolysates on tomato improved plant performances under limited water availability and in different experimental fields.

6.
Plants (Basel) ; 9(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962095

RESUMO

Genomic selection (GS) is a predictive approach that was built up to increase the rate of genetic gain per unit of time and reduce the generation interval by utilizing genome-wide markers in breeding programs. It has emerged as a valuable method for improving complex traits that are controlled by many genes with small effects. GS enables the prediction of the breeding value of candidate genotypes for selection. In this work, we address important issues related to GS and its implementation in the plant context with special emphasis on tomato breeding. Genomic constraints and critical parameters affecting the accuracy of prediction such as the number of markers, statistical model, phenotyping and complexity of trait, training population size and composition should be carefully evaluated. The comparison of GS approaches for facilitating the selection of tomato superior genotypes during breeding programs is also discussed. GS applied to tomato breeding has already been shown to be feasible. We illustrated how GS can improve the rate of gain in elite line selection, and descendent and backcross schemes. The GS schemes have begun to be delineated and computer science can provide support for future selection strategies. A new promising breeding framework is beginning to emerge for optimizing tomato improvement procedures.

7.
Genes (Basel) ; 11(8)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722275

RESUMO

The Solanum pennellii introgression lines (ILs) have been exploited to map quantitative trait loci (QTLs) and identify favorable alleles that could improve fruit quality traits in tomato varieties. Over the past few years, ILs exhibiting increased content of ascorbic acid in the fruit have been selected, among which the sub-line R182. The aims of this work were to identify the genes of the wild donor S. pennellii harbored by the sub-line and to detect genes controlling ascorbic acid accumulation by using genomics tools. A Genotyping-By-Sequencing (GBS) approach confirmed that no wild introgressions were present in the sub-line besides one region on chromosome 7. By using a dense single nucleotide polymorphism (SNP) map obtained by RNA sequencing (RNA-Seq), the wild region of the sub-line was finely identified; thus, defining 39 wild genes that replaced 33 genes of the ILs genetic background (cv. M82). The differentially expressed genes mapping in the region and the variants detected among the cultivated and the wild alleles evidenced the potential role of the novel genes present in the wild region. Interestingly, one upregulated gene, annotated as a major facilitator superfamily protein, showed a novel structure in R182, with respect to the parental lines. These genes will be further investigated using gene editing strategies.


Assuntos
Ácido Ascórbico/metabolismo , Frutas/metabolismo , Lycopersicon esculentum/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Cromossomos de Plantas/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Genômica , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/metabolismo , Fenótipo , Proteínas de Plantas/genética
8.
Genes (Basel) ; 11(6)2020 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-32517343

RESUMO

The selection of tolerant varieties is a powerful strategy to ensure highly stable yield under elevated temperatures. In this paper, we report the phenotypic and genotypic characterization of 10 tomato landraces to identify the best performing under high temperatures. The phenotyping of five yield-related traits allowed us to select one genotype that exhibits highly stable yield performances in different environmental conditions. Moreover, a Genotyping-by-Sequencing approach allowed us to explore the genetic variability of the tested genotypes. The high and stable yielding landrace E42 was the most polymorphic one, with ~49% and ~47% private SNPs and InDels, respectively. The effect of 26,113 mutations on proteins' structure was investigated and it was discovered that 37 had a high impact on the structure of 34 proteins of which some are putatively involved in responses to high temperatures. Additionally, 129 polymorphic sequences aligned against tomato wild species genomes revealed the presence in the genotype E42 of several introgressed regions deriving from S. pimpinellifolium. The position on the tomato map of genes affected by moderate and high impact mutations was also compared with that of known markers/QTLs (Quantitative Trait Loci) associated with reproductive and yield-related traits. The candidate genes/QTLs regulating heat tolerance in the selected landrace E42 could be further investigated to better understand the genetic mechanisms controlling traits for high and stable yield trait under high temperatures.


Assuntos
Técnicas de Genotipagem , Ensaios de Triagem em Larga Escala , Lycopersicon esculentum/genética , Termotolerância/genética , Mapeamento Cromossômico , Frutas/genética , Frutas/crescimento & desenvolvimento , Estudos de Associação Genética , Genótipo , Temperatura Alta/efeitos adversos , Lycopersicon esculentum/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
9.
Plants (Basel) ; 9(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326566

RESUMO

High temperatures represent a limitation for growth and development of many crop species. Several studies have demonstrated that the yield reduction of tomato under high temperatures and drought is mainly due to a photosynthetic decline. In this paper, a set of 15 tomato genotypes were screened for tolerance to elevated temperatures by cultivating plants under plastic walk-in tunnels. To assess the potential tolerance of tomato genotypes to high temperatures, measurements of chlorophyll fluorescence, pigments content and leaf functional traits have been carried out together with the evaluation of the final yields. Based on the greenhouse trials, a group of eight putative heat-sensitive and heat-tolerant tomato genotypes was selected for laboratory experiments aimed at investigating the effects of short-term high temperatures treatments in controlled conditions. The chlorophyll fluorescence induction kinetics were recorded on detached leaves treated for 60 min at 35 °C or at 45 °C. The last treatment significantly affected the photosystem II (PSII) photochemical efficiency (namely maximum PSII quantum efficiency, Fv/Fm, and quantum yield of PSII electron transport, ΦPSII) and the non-photochemical quenching (NPQ) in the majority of genotypes. The short-term heat shock treatments also led to significant differences in the shape of the slow Kautsky kinetics and its significant time points (chlorophyll fluorescence levels minimum O, peak P, semi-steady state S, maximum M, terminal steady state T) compared to the control, demonstrating heat shock-induced changes in PSII functionality. Genotypes potentially tolerant to high temperatures have been identified. Our findings support the idea that chlorophyll fluorescence parameters (i.e., ΦPSII or NPQ) and some leaf functional traits may be used as a tool to detect high temperatures-tolerant tomato cultivars.

10.
J Sci Food Agric ; 100(6): 2791-2799, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32022274

RESUMO

BACKGROUND: Global warming and extreme or adverse events induced by climatic fluctuations are an important threat for plants growth and agricultural production. Adaptability to environmental changes prevalently derives from a large set of genetic traits affecting physiological and agronomic parameters. Therefore, the identification of genotypes that are good yield performer at high temperatures is becoming increasingly necessary for future breeding programs. Here, we analyzed the performances of different tomato landraces grown under elevated temperatures in terms of yield and nutritional quality of the fruit. Finally, we evaluated the antioxidant and anti-inflammatory activities of fruit extracts from the tomato landraces selected. RESULTS: The tomato landraces analyzed here in a hot climate differed in terms of yield performance, physicochemical parameters of fruit (pH, titratable acidity, degrees Brix, firmness), bioactive compounds (ascorbic acid, carotenoids, and polyphenols), and anti-inflammatory potential. Three of these landraces (named E30, E94, and PDVIT) showed higher fruit quality and nutritional value. An estimated evaluation index allowed identification of PDVIT as the best performer in terms of yield and fruit quality under high temperatures. CONCLUSION: The analyses performed here highlight the possibility to identify new landraces that can combine good yield performances and fruit nutritional quality at high temperatures, information that is useful for future breeding programs. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Frutas/química , Temperatura Alta , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/genética , Antioxidantes/análise , Ácido Ascórbico/análise , Carotenoides/análise , Itália , Valor Nutritivo , Melhoramento Vegetal , Polifenóis/análise
11.
Plants (Basel) ; 8(7)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277433

RESUMO

Research on plant antioxidants, such as ascorbic acid (AsA) and polyphenols, is of increasing interest in plant science because of the health benefits and preventive role in chronic diseases of these natural compounds. Pepper (Capiscum annuum L.) is a major dietary source of antioxidants, especially AsA. Although considerable advance has been made, our understanding of AsA biosynthesis and its regulation in higher plants is not yet exhaustive. For instance, while it is accepted that AsA content in cells is regulated at different levels (e.g., transcriptional and post-transcriptional), their relative prominence is not fully understood. In this work, we identified and studied two pepper varieties with low and high levels of AsA to shed light on the transcriptional mechanisms that can account for the observed phenotypes. We quantified AsA and polyphenols in leaves and during fruit maturation, and concurrently, we analyzed the transcription of 14 genes involved in AsA biosynthesis, degradation, and recycling. The differential transcriptional analysis indicated that the higher expression of genes involved in AsA accumulation is a likely explanation for the observed differences in fruits. This was also supported by the identification of gene-metabolite relations, which deserve further investigation. Our results provide new insights into AsA differential accumulation in pepper varieties and highlight the phenotypic diversity in local germplasm, a knowledge that may ultimately contribute to the increased level of health-related phytochemicals.

12.
Front Plant Sci ; 10: 190, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30853967

RESUMO

The Solanum pennellii Introgression Line (IL) population can be exploited to identify favorable alleles that can improve yield and fruit quality traits in commercial tomato varieties. Over the past few years, we have selected ILs that exhibit increased content of antioxidant compounds in the fruit compared to the cultivar M82, which represents the genetic background in which the different wild regions of the S. pennellii ILs were included. Recently, we have identified seven sub-lines of the IL7-3 accumulating different amounts of antioxidants in the ripe fruit. Since the wild region carried on chromosome 7 induces a low fruit production in IL7-3, the first aim of the present work was to evaluate yield performances of the selected sub-lines in three experimental fields located in the South of Italy. Another aim was to confirm in the same lines the high levels of antioxidants and evaluate other fruit quality traits. On red ripe fruit, the levels of soluble solids content, firmness, and ascorbic acid (AsA) were highly variable among the sub-lines grown in three environmental conditions, evidencing a significant genotype by environment interaction for soluble solids and AsA content. Only one sub-line (coded R182) exhibited a significantly higher firmness, even though no differences were observed for this trait between the parental lines M82 and IL7-3. The same sub-line showed significantly higher AsA content compared to M82, thus resembling IL7-3. Even though IL7-3 always exhibited a significantly lower yield, all the sub-lines showed yield variability over the three trials. Interestingly, the sub-line R182, selected for its better performances in terms of fruit quality, in all the trials showed a production comparable to that of the control line M82. A group of species-specific molecular markers was tested on R182 and on the parental genotypes in order to better define the wild genomic regions carried by the elite line R182. In these regions three candidate genes that could increase the level of AsA in the fruit were identified. In the future, the line R182 could be used as pre-breeding material in order to obtain new varieties improved for nutritional traits.

13.
Sci Rep ; 9(1): 3699, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842571

RESUMO

Carotenoid accumulation in tomato (Solanum lycopersicum) fruits is influenced by environmental stimuli and hormonal signals. However, information on the relative regulatory mechanisms are scanty since many molecular players of the carotenoid biosynthetic pathway are still unknown. Here, we reported a basic Helix-Loop-Helix transcription factor, named SlARANCIO (SlAR), whose silencing influences carotenoid accumulation in tomato fruits. The SlAR gene was found in the S. pennellii introgression line (IL) 12-4SL that holds the carotenoid QTL lyc12.1. We observed that the presence of the wild region in a cultivated genetic background led to a decrease in total carotenoid content of IL12-4SL fruits. To get insights into the function of SlAR, a quick reverse genetic approach was carried out. Virus-induced gene silencing of SlAR in S. lycopersicum M82 and MicroTom fruits reproduced the same phenotype observed in IL12-4SL, i.e. decreased content of lycopene and total carotenoids. Vice versa, the overexpression of SlAR in Nicotiana benthamiana leaves increased the content of total carotenoids and chlorophylls. Our results, combined with public transcriptomic data, highly suggest that SlAR acts indirectly on the carotenoid pathway and advances current knowledge on the molecular regulators controlling lyc12.1 and, potentially, precursors of carotenoid biosynthesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carotenoides/metabolismo , Lycopersicon esculentum/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Vias Biossintéticas/genética , Clorofila/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas/genética , Licopeno/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Solanum/genética , Transcriptoma/genética
14.
Sci Rep ; 9(1): 1607, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733555

RESUMO

Non-specific lipid transfer proteins (nsLTPs) are characterized by an eight-cysteine motif backbone that is stabilized by four disulphide bonds. The strong interest towards this protein family is mainly due to the fact that nsLTPs are involved in many biological processes and have been identified as major human allergens. Since tomato (Solanum lycopersicum L.) is one of the most consumed and allergenic vegetables, a full characterization of this family is needed. In this study, hidden Markov model profiles were used to identify nsLTPs within the tomato protein complement. Following manual curation, 64 nsLTP genes were classified into six sub-families. Furthermore, nsLTP gene structure, distribution and arrangement along tomato chromosomes were investigated. Available RNA-seq expression profile data and Real-Time PCR analyses were used to derive expression patterns of tomato nsLTPs in different tissues/organs. Non-specific LTP genes with high level of expression in tomato fruits were filtered out since they could play a key role in tomato allergenicity. Among these genes was Solyc10g075090 that encodes the allergen Sola l 3. Finally, cloning, heterologous expression, purification and biochemical characterization of the recombinant protein Sola l 3 was performed.


Assuntos
Proteínas de Transporte/genética , Lycopersicon esculentum/genética , Proteínas de Plantas/genética , Cromossomos de Plantas/genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Filogenia
15.
BMC Genomics ; 20(1): 43, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30646856

RESUMO

BACKGROUND: Tomato is an economically important crop with fruits that are a significant source of bioactive compounds such as ascorbic acid and phenolics. Nowadays, the majority of the enzymes of the biosynthetic pathways and of the structural genes controlling the production and the accumulation of antioxidants in plants are known; however, the mechanisms that regulate the expression of these genes are yet to be investigated. Here, we analyzed the transcriptomic changes occurring during ripening in the fruits of two tomato cultivars (E1 and E115), characterized by a different accumulation of antioxidants, in order to identify candidate genes potentially involved in the biosynthesis of ascorbic acid and phenylpropanoids. RESULTS: RNA sequencing analyses allowed identifying several structural and regulator genes putatively involved in ascorbate and phenylpropanoids biosynthesis in tomato fruits. Furthermore, transcription factors that may control antioxidants biosynthesis were identified through a weighted gene co-expression network analysis (WGCNA). Results obtained by RNA-seq and WGCNA analyses were further confirmed by RT-qPCR carried out at different ripening stages on ten cultivated tomato genotypes that accumulate different amount of bioactive compounds in the fruit. These analyses allowed us to identify one pectin methylesterase, which may affect the release of pectin-derived D-Galacturonic acid as metabolic precursor of ascorbate biosynthesis. Results reported in the present work allowed also identifying one L-ascorbate oxidase, which may favor the accumulation of reduced ascorbate in tomato fruits. Finally, the pivotal role of the enzymes chalcone synthases (CHS) in controlling the accumulation of phenolic compounds in cultivated tomato genotypes and the transcriptional control of the CHS genes exerted by Myb12 were confirmed. CONCLUSIONS: By using transcriptomic analyses, candidate genes encoding transcription factors and structural genes were identified that may be involved in the accumulation of ascorbic acid and phenylpropanoids in tomato fruits of cultivated genotypes. These analyses provided novel insights into the molecular mechanisms controlling antioxidants accumulation in ripening tomato fruits. The structural genes and regulators here identified could also be used as efficient genetic markers for selecting high antioxidants tomato cultivars.


Assuntos
Antioxidantes/metabolismo , Frutas/genética , Perfilação da Expressão Gênica , Lycopersicon esculentum/genética , Lycopersicon esculentum/metabolismo , Metaboloma/genética , Ácido Ascórbico/biossíntese , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Estudos de Associação Genética , Genótipo , Modelos Biológicos , Fenóis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
16.
BMC Bioinformatics ; 19(Suppl 15): 435, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30497367

RESUMO

BACKGROUND: "Omics" approaches may provide useful information for a deeper understanding of speciation events, diversification and function innovation. This can be achieved by investigating the molecular similarities at sequence level between species, allowing the definition of ortholog and paralog genes. However, the spreading of sequenced genome, often endowed with still preliminary annotations, requires suitable bioinformatics to be appropriately exploited in this framework. RESULTS: We presented here a multilevel comparative approach to investigate on genome evolutionary relationships and peculiarities of two fleshy fruit species of relevant agronomic interest, Solanum lycopersicum (tomato) and Vitis vinifera (grapevine). We defined 17,823 orthology relationships between tomato and grapevine reference gene annotations. The resulting orthologs are associated with the detected paralogs in each species, permitting the definition of gene networks, useful to investigate the different relationships. The reconciliation of the compared collections in terms of an updating of the functional descriptions was also exploited. All the results were made accessible in ComParaLogs, a dedicated bioinformatics platform available at http://biosrv.cab.unina.it/comparalogs/gene/search . CONCLUSIONS: The aim of the work was to suggest a reliable approach to detect all similarities of gene loci between two species based on the integration of results from different levels of information, such as the gene, the transcript and the protein sequences, overcoming possible limits due to exclusive protein versus protein comparisons. This to define reliable ortholog and paralog genes, as well as species specific gene loci in the two species, overcoming limits due to the possible draft nature of preliminary gene annotations. Moreover, reconciled functional descriptions, as well as common or peculiar enzymatic classes and protein domains from tomato and grapevine, together with the definition of species-specific gene sets after the pairwise comparisons, contributed a comprehensive set of information useful to comparatively exploit the two species gene annotations and investigate on differences between species with climacteric and non-climacteric fruits. In addition, the definition of networks of ortholog genes and of associated paralogs, and the organization of web-based interfaces for the exploration of the results, defined a friendly computational bench-work in support of comparative analyses between two species.


Assuntos
Evolução Biológica , Biologia Computacional/métodos , Lycopersicon esculentum/genética , Anotação de Sequência Molecular , Análise Multinível , Vitis/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genoma de Planta , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
17.
Plant Sci ; 266: 55-63, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29241567

RESUMO

The increase of L-Ascorbic Acid (AsA) content in tomato (Solanum lycopersicum) is a common goal in breeding programs due to its beneficial effect on human health. To shed light into the regulation of fruit AsA content, we exploited a Solanum pennellii introgression line (IL12-4-SL) harbouring one quantitative trait locus that increases the content of total AsA in the fruit. Biochemical and transcriptomic analyses were carried out in fruits of IL12-4-SL in comparison with the cultivated line M82 at different stages of ripening. AsA content was studied in relation with pectin methylesterase (PME) activity and the degree of pectin methylesterification (DME). Our results indicated that the increase of AsA content in IL12-4-SL fruits was related with pectin de-methylesterification/degradation. Specific PME, polygalacturonase (PG) and UDP-D-glucuronic-acid-4-epimerase (UGlcAE) isoforms were proposed as components of the D-galacturonate pathway leading to AsA biosynthesis. The relationship between AsA content and PME activity was also exploited in PMEI tobacco plants expressing a specific PME inhibitor (PMEI). Here we report that tobacco PMEI plants, altered in PME activity and degree of pectin methylesterification, showed a reduction in low methylesterified pectic domains and exhibited a reduced AsA content. Overall, our results provide novel biochemical and genetic traits for increasing antioxidant content by marker-assisted selection in the Solanaceae family.


Assuntos
Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Solanum/genética , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Frutas/química , Frutas/genética , Frutas/metabolismo , Lycopersicon esculentum/genética , Lycopersicon esculentum/metabolismo , Poligalacturonase/genética , Poligalacturonase/metabolismo , Locos de Características Quantitativas , Solanum/metabolismo
18.
BMC Plant Biol ; 17(1): 66, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28347287

RESUMO

BACKGROUND: The environment has a profound influence on the organoleptic quality of tomato (Solanum lycopersicum) fruit, the extent of which depends on a well-regulated and dynamic interplay among genes, metabolites and sensorial attributes. We used a systems biology approach to elucidate the complex interacting mechanisms regulating the plasticity of sensorial traits. To investigate environmentally challenged transcriptomic and metabolomic remodeling and evaluate the organoleptic consequences of such variations we grown three tomato varieties, Heinz 1706, whose genome was sequenced as reference and two "local" ones, San Marzano and Vesuviano in two different locations of Campania region (Italy). RESULTS: Responses to environment were more pronounced in the two "local" genotypes, rather than in the Heinz 1706. The overall genetic composition of each genotype, acting in trans, modulated the specific response to environment. Duplicated genes and transcription factors, establishing different number of network connections by gaining or losing links, play a dominant role in shaping organoleptic profile. The fundamental role of cell wall metabolism in tuning all the quality attributes, including the sensorial perception, was also highlighted. CONCLUSIONS: Although similar fruit-related quality processes are activated in the same environment, different tomato genotypes follow distinct transcriptomic, metabolomic and sensorial trajectories depending on their own genetic makeup.


Assuntos
Frutas/genética , Frutas/metabolismo , Lycopersicon esculentum/genética , Lycopersicon esculentum/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Qualidade dos Alimentos , Frutas/fisiologia , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genótipo , Itália , Metaboloma , Biologia de Sistemas/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
19.
J Sci Food Agric ; 97(5): 1616-1623, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27434883

RESUMO

BACKGROUND: Lipophilic antioxidants in tomato (Solanum lycopersicum) fruits exert important functions in reducing the risk of human diseases. Here the effect of thermal processing on the antioxidant activity of lipophilic extracts from the commercial tomato hybrid 'Zebrino' was analysed. Carotenoid content and lipophilic antioxidant activity were determined and the ability of tomato extracts in rescuing cells from oxidative stress was assessed. RESULTS: Lipophilic antioxidant activity was completely retained after heat treatment and extracts were able to mitigate the detrimental effect induced by oxidative stress on different cell lines. Lycopene alone was able to rescue cells from oxidative stress, even if to a lower extent compared with tomato extracts. These results were probably due to the synergistic effect of tomato compounds in protecting cells from oxidative stress injury. CONCLUSION: The current study provides valuable insights into the health effect of the dietary carotenoids present in fresh and processed tomato fruits. © 2016 Society of Chemical Industry.


Assuntos
Carotenoides/farmacologia , Manipulação de Alimentos/métodos , Lycopersicon esculentum/química , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Frutas/química , Humanos , Licopeno , Extratos Vegetais/farmacologia , Ratos
20.
Molecules ; 23(1)2017 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-29295478

RESUMO

The beneficial role of the Mediterranean diet in the prevention of chronic diseases, including cardiovascular diseases, diabetes, and obesity, is well-recognized. In this context, Brassicaceae are considered important vegetables due to several evidences of their health promoting effects that are associated to bioactive compounds present in the edible parts of the plants. In this review, the mechanisms of action and the factors regulating the levels of the bioactive compounds in Brassicaceae have been discussed. In addition, the impact of industrial and domestic processing on the amount of these compounds have been considered, in order to identify the best conditions that are able to preserve the functional properties of the Brassicaceae products before consumption. Finally, the main strategies used to increase the content of health-promoting metabolites in Brassica plants through biofortification have been analyzed.


Assuntos
Brassicaceae/química , Doença Crônica/prevenção & controle , Compostos Fitoquímicos/metabolismo , Verduras/química , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Biofortificação , Brassicaceae/metabolismo , Doenças Cardiovasculares/prevenção & controle , Carotenoides/química , Carotenoides/metabolismo , Diabetes Mellitus/prevenção & controle , Glucosinolatos/química , Glucosinolatos/metabolismo , Humanos , Hidroxibenzoatos/química , Hidroxibenzoatos/metabolismo , Obesidade/prevenção & controle , Compostos Fitoquímicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...