Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 68: 104946, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679257

RESUMO

No carcinogenesis or mutagenesis studies have been carried out with etomidate. The current study showed that etomidate has weak cytotoxic potential after 48 h exposure in human lymphocytes and has no hemolytic activity. The weak cytotoxicity seems to be related with redox imbalance of etomidate (40.9 and 81.9 µM) treated lymphocytes. At both etomidate concentrations, a slight decrease of the levels of GSH intracellular content and a significant increase in the amount of carbonylated proteins were observed after 48 h. The contribution of oxidative stress to genetic toxicity was only perceived when the enzyme Fpg was applied in the comet assay. Etomidate (40.9 and 81.9 µM) is a weak generator of oxidative DNA damage in lymphocytes. These damages to DNA probably were repaired, since no DNA strand breaks were detected in the standard alkaline comet assay (in the presence or absence of hepatic S9 microsomal fraction) without Fpg. Also, no micronucleated lymphocytes or carrying chromosomal aberrations were observed. Finally, etomidate (2046.8 and 4093.5 µM) was not mutagenic in the Salmonella/microsome mutagenicity assay, which used four Salmonella typhimurium strains (TA97a, TA98, TA100, and TA102) to detect frameshift and base-substitution mutations. In summary, etomidate is a weak oxidative DNA damaging anesthetic and is devoid of mutagenic properties in eukaryotic and prokaryotic models.

2.
Toxicol In Vitro ; 62: 104718, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31706955

RESUMO

Ketamine is a potent uncompetitive NMDA receptor antagonist that provides amnesia, analgesia, environmental dissociation and immobility, where it has its cytotoxic effect well described in the literature. However, the work on its genotoxic/mutagenic potentials are scarce and insufficient and does not allow a reasonable evaluation of its role. Thus, in the present work, we decided to evaluate the genotoxic and mutagenic effects of ketamine on human peripheral blood leukocytes (PBLs) and Salmonella typhimurium (TA98, TA97a, TA100, and TA102) through several well-established experimental protocols based on different parameters in the presence or not of exogenous metabolizing S9 fraction. Our data revealed that ketamine induces a weak cytotoxic effect on human PBLs after 24 h and is devoided of hemolytic effects. A small amount of DNA strand breaks levels were detected in the modified comet assay (employment of FPG enzyme) only at highest concentrations (500 and 700 µg/mL) of ketamine, highlighting our pro-oxidant data regarding ketamine. However, the oxidative DNA lesions were almost completely repaired which reflects in the lack of mutagenesis (micronuclei and chromosomal aberrations) on human PBLs and no increases in revertants numbers on S. typhimurium/microsome test (500 to 5000 µg/plate). In summary, ketamine is a weak oxidative DNA damaging agent and is devoid of mutagenic properties on eukaryotic and prokaryotic models.


Assuntos
Anestésicos Dissociativos/toxicidade , Ketamina/toxicidade , Leucócitos/efeitos dos fármacos , Mutagênicos/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Aberrações Cromossômicas/induzido quimicamente , Ensaio Cometa , Quebras de DNA , Dano ao DNA , Hemólise/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Testes de Mutagenicidade , Estresse Oxidativo
3.
Einstein (Sao Paulo) ; 17(2): eAO4576, 2019 May 02.
Artigo em Inglês, Português | MEDLINE | ID: mdl-31066794

RESUMO

OBJECTIVE: To evaluate the effect of red propolis and L-lysine on angiogenesis and tumor growth in a new model of hamster cheek pouch inoculated with Walker 256 tumor cells. METHODS: The study consisted of two experiments with four groups each (total: 57 hamsters). In the experiment 1, the animals were inoculated with Walker tumor cells, followed by administration of test substances (red propolis 200mg/5mL/kg or L-lysine 150mg/kg) or control substances (gum arabic 5mL/kg or water 5mL/kg) for 10 days. The animals in the experiment 2 received red propolis, L-lysine, gum arabic or water at the same doses, for 33 days prior to inoculation of Walker tumor cells, followed by 10 days of treatment with the same substances. Based on single-plane images, angiogenesis was quantified (mean vascular area), in percentage, and tumor area (mm2) and perimeter (mm). RESULTS: In the experiment 1, compared to animals receiving water, the mean vascular area expressed in percentage was significantly smaller in animal treated with propolis (p<0.05) and L-lysine (p<0.001). CONCLUSION: Both red propolis and L-lysine inhibited tumor angiogenesis in the new hamster cheek pouch model when administered after tumor inoculation.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Lisina/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Própole/uso terapêutico , Animais , Antioxidantes , Carcinoma 256 de Walker/irrigação sanguínea , Bochecha , Cricetinae , Feminino , Mesocricetus , Modelos Animais , Neoplasias Bucais/irrigação sanguínea , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/tratamento farmacológico , Resultado do Tratamento , Ganho de Peso
4.
Einstein (Säo Paulo) ; 17(2): eAO4576, 2019. tab, graf
Artigo em Inglês | LILACS-Express | ID: biblio-1001897

RESUMO

ABSTRACT Objective: To evaluate the effect of red propolis and L-lysine on angiogenesis and tumor growth in a new model of hamster cheek pouch inoculated with Walker 256 tumor cells. Methods: The study consisted of two experiments with four groups each (total: 57 hamsters). In the experiment 1, the animals were inoculated with Walker tumor cells, followed by administration of test substances (red propolis 200mg/5mL/kg or L-lysine 150mg/kg) or control substances (gum arabic 5mL/kg or water 5mL/kg) for 10 days. The animals in the experiment 2 received red propolis, L-lysine, gum arabic or water at the same doses, for 33 days prior to inoculation of Walker tumor cells, followed by 10 days of treatment with the same substances. Based on single-plane images, angiogenesis was quantified (mean vascular area), in percentage, and tumor area (mm2) and perimeter (mm). Results: In the experiment 1, compared to animals receiving water, the mean vascular area expressed in percentage was significantly smaller in animal treated with propolis (p<0.05) and L-lysine (p<0.001). Conclusion: Both red propolis and L-lysine inhibited tumor angiogenesis in the new hamster cheek pouch model when administered after tumor inoculation.


RESUMO Objetivo: Avaliar o efeito da própolis vermelha e da L-lisina na angiogênese e no crescimento tumoral em novo modelo de bolsa jugal de hamster inoculada com células de tumor de Walker 256. Métodos: O estudo consistiu em dois experimentos com quatro grupos cada (total: 57 hamsters). No experimento 1, os animais foram inoculados com células de tumor de Walker, tendo em seguida administradas as substâncias teste (própolis vermelha 200mg/5mL/kg ou L-lisina 150mg/kg) ou controle (goma arábica 5mL/kg ou água 5mL/kg) por 10 dias. Os animais do experimento 2 receberam própolis vermelha, L-lisina, goma arábica ou água nas mesmas doses, por 33 dias antes do inóculo das células de tumor de Walker, seguido por 10 dias de tratamento com as mesmas substâncias. Baseado em imagens em plano único, foram quantificados a angiogênese (área vascular média), em termos percentuais, e a área (mm2) e o perímetro (mm) do tumor. Resultados: Comparada aos animais que receberam água, a área vascular média, expressa em percentagem, foi significativamente menor nos animais tratados com própolis (p<0,05) e com L-lisina (p<0,001). Conclusão: Tanto a própolis vermelha quanto a L-lisina inibiram a angiogênese no novo modelo de bolsa jugal de hamsters, quando administradas após a inoculação do tumor.

5.
BMC Complement Altern Med ; 15: 357, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26467757

RESUMO

BACKGROUND: The implementation of new public healthcare models that stimulate the use of natural products from traditional medicine, as a so-called integrated medicine, refers to an approach that use best of both conventional medicine and traditional medicine. Propolis is a widely used natural product by different ancient cultures and known to exhibit biological activities beneficial for health. The large number of studies conducted with propolis had shown that its chemical composition differs as a function of the climate, plant diversity and bee species and plays an important role on its therapeutic properties. The aim of this study was to analyse the phytochemical profile of the ethanolic extract of red propolis (EEP) and its fractionation, antioxidant action of EEP and its fractions hexane, cloroform and ethyl acetate and cytotoxic activity of EEP on human tumour cell lines SF-295 (glioblastoma), OVCAR-8 (ovary) and HCT-116 (colon). METHODS: EEP was obtained by maceration with absolute ethanol, then it was concentrated in rotaevaporator up to complete evaporation of the solvent. The crude extract was fractionated with hexane, ethyl acetate, chloroform and methanol and they were subjected to phytochemical screening and total phenolic compounds. Antioxidant activity of EEP and fractions was done by means of the 2,2-diphenyl-1-picryhydrazyl (DPPH) method. Biomarkers of red propolis were identified by LC-Orbitrap-FTMS. To assess cytotoxic activity of the extract, cells were exposed to EEP over 72 h. Cell viability was assessed by means of MTT assay. The percentage of cell growth inhibition (IC50) was analysed by means of non-linear regression, and the absorbance values of the various investigated concentrations were subjected to one-factor analysis of variance (ANOVA) followed by Tukey's or Tamhane's tests (α = 0.05). RESULTS: The results obtained using phytochemical screening and LC-Orbitrap-FTMS indicated the presence of phlobaphene tannins, catechins, chalcones, aurones, flavonones, flavonols, xanthones, pentacyclic triterpenoids and guttiferones in Brazilian red propolis. EEP and its hexane, chloroform and ethyl acetate fractions obtained by liquid-liquid partitioning exhibited satisfactory antioxidant percentages. EEP (IC50 < 34.27 µg/mL) exhibited high levels of cytotoxicity on all human tumour cell lines tested when compared to negative control. CONCLUSIONS: C-Orbitrap-FTMS was useful to establish the chemical profile of the red propolis. Brazilian red propolis has antioxidant properties and decreases substantially the percentage of cell survival of human tumour cells; thus, it has potential to serve as an anticancer drug.


Assuntos
Linhagem Celular Tumoral/efeitos dos fármacos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Própole/química , Própole/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA