Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Angew Chem Int Ed Engl ; 58(43): 15263-15267, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31342607


A tetrameric pentacene, PT, has been used to explore the effects of exciton delocalization on singlet fission (SF). For the first time, triplet decorrelation through intramolecular triplet diffusion was observed following SF. Transient absorption spectroscopy was used to examine different decorrelation mechanisms (triplet diffusion versus structural changes) for PT and its dimeric equivalent PD on the basis of the rate and activation barrier of the decorrelation step. Charge-separation experiments using tetracyano-p-quinodimethane (TCNQ) to quench triplet excitons formed through SF demonstrate that enhanced intersystem crossing, that is, spin catalysis, is a widely underestimated obstacle to quantitative harvesting of the SF products. The importance of spatial separation of the decorrelated triplet states is emphasized, and independent proof that the decorrelated triplet pair state consists of two (T1 ) states per molecule is provided.

J Am Chem Soc ; 139(40): 14017-14020, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28915047


In this proof of concept study, we show that intramolecular singlet fission (iSF) can be initiated from a singlet excited state accessed by two-photon absorption, rather than through a traditional route of direct one-photon excitation (OPE). Thus, iSF in pentacene dimers 2 and 3 is enabled through NIR irradiation at 775 nm, a wavelength where neither dimer exhibits linear absorption of light. The adamantyl and meta-phenylene spacers 2 and 3, respectively, are designed to feature superimposable geometries, which establishes that the electronic coupling between the two pentacenes is the significant structural feature that dictates iSF efficiency.

Nat Commun ; 8: 15171, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28516916


When molecular dimers, crystalline films or molecular aggregates absorb a photon to produce a singlet exciton, spin-allowed singlet fission may produce two triplet excitons that can be used to generate two electron-hole pairs, leading to a predicted ∼50% enhancement in maximum solar cell performance. The singlet fission mechanism is still not well understood. Here we report on the use of time-resolved optical and electron paramagnetic resonance spectroscopy to probe singlet fission in a pentacene dimer linked by a non-conjugated spacer. We observe the key intermediates in the singlet fission process, including the formation and decay of a quintet state that precedes formation of the pentacene triplet excitons. Using these combined data, we develop a single kinetic model that describes the data over seven temporal orders of magnitude both at room and cryogenic temperatures.

Proc Natl Acad Sci U S A ; 112(17): 5325-30, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25858954


Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photon-to-current conversion efficiencies beyond the 30% Shockley-Queisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule.