Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 37(33): 10233-10240, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34387499

RESUMO

An improved procedure for the preparation of aerogel granules of polytetrafluoroethylene-graphene oxide (PTFE-GO) with a composition of 50:50 (in wt %) and a specific density of 35 ± 2 mg/cm3 is described. The technique practically excludes the granule cracking. The specific density of the pellets after reduction using hydrazine vapor and annealing at 370 °C decreased to 29 ± 2 mg/cm3. The PTFE-reduced GO (rGO) pellets obtained were tested as a recyclable sorbent for isopropyl alcohol (IPA) in sorption/combustion cycles. It has been shown that the aerogel sorption capacity for IPA increases from 35.6 to 39.3 g/g as a result of alcohol burning off. During the combustion of IPA, the temperature of an individual pellet can exceed 300 °C. When several contingent pellets are burned, the temperature of their heating increases. The fine-pored structure of the near-surface layer of the granule is destroyed during the alcohol burning, the internal structure with larger pores is exposed, and the relative proportion of PTFE on the surface of the granules decreases. It was also shown that the specific surface area of PTFE-rGO increases from 26 to 49 m2/g during cycling.

2.
Materials (Basel) ; 14(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435447

RESUMO

A graphene oxide aerogel (GOA) was formed inside a melamine sponge (MS) framework. After reduction with hydrazine at 60 °C, the electrical conductive nitrogen-enriched rGOA-MS composite material with a specific density of 20.1 mg/cm3 was used to fabricate an electrode, which proved to be a promising electrocatalyst for the oxygen reduction reaction. The rGOA-MS composite material was characterized by elemental analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. It was found that nitrogen in the material is presented by different types with the maximum concentration of pyrrole-like nitrogen. By using Raman scattering it was established that the rGOA component of the material is graphene-like carbon with an average size of the sp2-domains of 5.7 nm. This explains a quite high conductivity of the composite obtained.

3.
Langmuir ; 36(30): 8680-8686, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32631066

RESUMO

A mixture of water suspensions of graphene oxide (GO) and polytetrafluoroethylene (PTFE) was used to make the films GO-PTFE (50:50). They became conductive (2.0-2.8 S/cm) while maintaining flexibility after reduction with hydrazine and subsequent annealing at 370 °C. The structure and morphology of the reduced films (rGO-PTFE) are examined in detail by means of a number of techniques such as scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman, and contact angle wetting. The results of the films tested as current collectors in a metal-free supercapacitor with electrodes from microwave exfoliated GO and an acid (1 M H2SO4) electrolyte are presented.

4.
ACS Appl Mater Interfaces ; 11(35): 32517-32522, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31408314

RESUMO

Polytetrafluoroethylene-based aerogel was synthesized for the first time. Graphene oxide was used as a binder. After reduction with hydrazine and annealing at 370 °C, the aerogel with a density of 29 ± 2 mg/cm3 became superhydrophobic. The aerogel was characterized by IR spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. The sorption capacity of the aerogel for seven solvents and its sorption recyclability for hexane were measured.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...