Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Br J Anaesth ; 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35183346

RESUMO

BACKGROUND: The posterior dominant rhythm (PDR) was the first oscillatory pattern noted in the EEG. Evoked by wakeful eyelid closure, these oscillations dissipate over seconds during loss of arousal. The peak frequency of the PDR maintains stability over years, suggesting utility as a state biomarker in the surveillance of acute cognitive impairments. This EEG signature has not been systematically investigated for tracking cognitive dysfunction after anaesthetic-induced loss of consciousness. METHODS: This substudy of Reconstructing Consciousness and Cognition (NCT01911195) investigated the PDR and cognitive function in 60 adult volunteers randomised to either 3 h of isoflurane general anaesthesia or resting wakefulness. Serial measurements of EEG power and cognitive task performance were assessed relative to pre-intervention baseline. Mixed-effects models allowed quantification of PDR and neurocognitive trajectories after return of responsiveness (ROR). RESULTS: Individuals in the control group showed stability in the PDR peak frequency over several hours (median difference/inter-quartile range [IQR] of 0.02/0.20 Hz, P=0.39). After isoflurane general anaesthesia, the PDR peak frequency was initially reduced at ROR (median difference/IQR of 0.88/0.65 Hz, P<0.001). PDR peak frequency recovered at a rate of 0.20 Hz h-1. After ROR, the PDR peak frequency correlated with reaction time and accuracy on multiple cognitive tasks (P<0.001). CONCLUSION: The temporal trajectory of the PDR peak frequency may be a useful perioperative marker for tracking cognitive dysfunction on the order of hours after surgery, particularly for cognitive domains of working memory, visuomotor speed, and executive function. CLINICAL TRIAL REGISTRATION: NCT01911195.

2.
Sleep ; 45(3)2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35023565

RESUMO

Astronauts are required to maintain optimal neurobehavioral functioning despite chronic exposure to the stressors and challenges of spaceflight. Sleep of adequate quality and duration is fundamental to neurobehavioral functioning, however astronauts commonly experience short sleep durations in spaceflight (<6 h). As humans embark on long-duration space exploration missions, there is an outstanding need to identify the consequences of sleep deficiency in spaceflight on neurobehavioral functions. Therefore, we conducted a longitudinal study that examined the sleep-wake behaviors, neurobehavioral functions, and ratings of stress and workload of N = 24 astronauts before, during, and after 6-month missions aboard the International Space Station (ISS). The computerized, Reaction SelfTest (RST), gathered astronaut report of sleep-wake behaviors, stress, workload, and somatic behavioral states; the RST also objectively assessed vigilant attention (i.e. Psychomotor Vigilance Test-Brief). Data collection began 180 days before launch, continued every 4 days in-flight aboard the ISS, and up to 90 days post-landing, which produced N = 2,856 RSTs. Consistent with previous ISS studies, astronauts reported sleeping ~6.5 h in-flight. The adverse consequences of short sleep were observed across neurobehavioral functions, where sleep durations <6 h were associated with significant reductions in psychomotor response speed, elevated stress, and higher workload. Sleep durations <5 h were associated with elevated negative somatic behavioral states. Furthermore, longer sleep durations had beneficial effects on astronaut neurobehavioral functions. Taken together, our findings highlight the importance of sleep for the maintenance of neurobehavioral functioning and as with humans on Earth, astronauts would likely benefit from interventions that promote sleep duration and quality.


Assuntos
Astronautas , Voo Espacial , Humanos , Estudos Longitudinais , Sono/fisiologia , Fatores de Tempo
4.
Sleep ; 45(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34897501

RESUMO

Interindividual differences in the neurobehavioral response to sleep loss are largely unexplained and phenotypic in nature. Numerous factors have been examined as predictors of differential response to sleep loss, but none have yielded a comprehensive view of the phenomenon. The present study examines the impact of baseline factors, habitual sleep-wake patterns, and homeostatic response to sleep loss on accrued deficits in psychomotor vigilance during chronic partial sleep restriction (SR), in a total of 306 healthy adults that participated in one of three independent laboratory studies. Findings indicate no significant impact of personality, academic intelligence, subjective reports of chronotype, sleepiness and fatigue, performance on working memory, and demographic factors such as sex, ethnicity, and body mass index, on neurobehavioral vulnerability to the negative effects of sleep loss. Only superior baseline performance on the psychomotor vigilance test and ability to sustain wakefulness on the maintenance of wakefulness test were associated with relative resilience to decrements in vigilant attention during SR. Interindividual differences in vulnerability to the effects of sleep loss were not accounted for by prior sleep history, habitual sleep patterns outside of the laboratory, baseline sleep architecture, or homeostatic sleep response during chronic partial SR. A recent theoretical model proposed that sleep-wake modulation may be influenced by competing internal and external demands which may promote wakefulness despite homeostatic and circadian signals for sleep under the right circumstances. Further research is warranted to examine the possibility of interindividual differences in the ability to prioritize external demands for wakefulness in the face of mounting pressure to sleep.


Assuntos
Desempenho Psicomotor , Privação do Sono , Adulto , Atenção/fisiologia , Ritmo Circadiano , Humanos , Desempenho Psicomotor/fisiologia , Sono/fisiologia , Privação do Sono/complicações , Vigília/fisiologia
5.
Sci Total Environ ; 805: 150191, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818802

RESUMO

Nocturnal traffic noise can disrupt sleep and impair physical and mental restoration, but classical sleep scoring techniques may not fully capture subtle yet clinically relevant alterations of sleep induced by noise. We used a validated continuous measure of sleep depth and quality based on automatic analysis of physiologic sleep data, termed Wake Propensity (WP), to investigate temporal changes of sleep in response to nocturnal noise events in 3-s epochs. Seventy-two healthy participants (mean age 40.3 years, range 18-71 years, 40 females, 32 males) slept for 11 nights in a laboratory, during which we measured sleep with polysomnography. In 8 nights, participants were exposed to 40, 80 or 120 road, rail and/or aircraft noise events with maximum noise levels of 45-65 dB LAS,max during 8-h sleep opportunities. We analyzed sleep macrostructure and event-related change of WP during noise exposure with linear mixed models. Nocturnal traffic noise led to event-related shifts towards wakefulness and less deep, more unstable sleep (increase in WP relative to pre-noise baseline ranging from +29.5% at 45 dB to +38.3% at 65 dB; type III effect p < 0.0001). Sleep depth decreased dynamically with increasing noise level, peaking when LAS,max was highest. This change in WP was stronger and occurred more quickly for events where the noise onset was more rapid (road and rail) compared to more gradually time-varying noise (aircraft). Sleep depth did not immediately recover to pre-noise WP, leading to decreased sleep stability across the night compared to quiet nights, which was greater with an increasing number of noise events (standardized ß = 0.053, p = 0.003). Further, WP was more sensitive to noise than classical arousals. Results demonstrate the usefulness of WP as a measure of the effects of external stimuli on sleep, and show WP is a more sensitive measure of noise-induced sleep disruption than traditional methods of sleep analysis.


Assuntos
Ruído dos Transportes , Adolescente , Adulto , Idoso , Aeronaves , Nível de Alerta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ruído dos Transportes/efeitos adversos , Polissonografia , Sono , Adulto Jovem
6.
J Grad Med Educ ; 13(5): 717-721, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34721802

RESUMO

BACKGROUND: Medical interns are at risk for sleep deprivation from long and often rotating work schedules. However, the effects of specific rotations on sleep are less clear. OBJECTIVE: To examine differences in sleep duration and alertness among internal medicine interns during inpatient intensive care unit (ICU) compared to general medicine (GM) rotations. METHODS: This secondary analysis compared interns during a GM or ICU rotation from a randomized trial (2015-2016) of 12 internal medicine residency programs assigned to different work hour limit policies (standard 16-hour shifts or no shift-length limits). The primary outcome was sleep duration/24-hour using continuous wrist actigraphy over a 13-day period. Secondary outcomes assessed each morning during the concomitant actigraphy period were sleepiness (Karolinska Sleepiness Scale [KSS]), alertness (number of Brief Psychomotor Vigilance Test [PVT-B] lapses), and self-report of excessive sleepiness over past 24 hours. Linear mixed-effect models with random program intercept determined associations between each outcome by rotation, controlling for age, sex, and work hour policy followed. RESULTS: Of 398 interns, 386 were included (n = 261 GM, n = 125 ICU). Average sleep duration was 7.00±0.08h and 6.84±0.10h, and number of PVT lapses were 5.5±0.5 and 5.7±0.7 for GM and ICU, respectively (all P > .05). KSS was 4.8±0.1 for both rotations. Compared to GM, ICU interns reported more days of excessive sleepiness from 12am-6am (2.6 vs 1.7, P < .001) and 6am-12pm (2.6 vs 1.9, P = .013) and had higher percent of days with sleep duration < 6 hours (27.6% vs 23.4%, P < .001). GM interns reported more days with no excessive sleepiness (5.3 vs 3.7, P < .001). CONCLUSIONS: Despite ICU interns reporting more excessive sleepiness in morning hours and more days of insufficient sleep (<6 hours), overall sleep duration and alertness did not significantly differ between rotations.


Assuntos
Internato e Residência , Tolerância ao Trabalho Programado , Cuidados Críticos , Humanos , Sono , Vigília
8.
Front Hum Neurosci ; 15: 706693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594193

RESUMO

The temporal trajectories and neural mechanisms of recovery of cognitive function after a major perturbation of consciousness is of both clinical and neuroscientific interest. The purpose of the present study was to investigate network-level changes in functional brain connectivity associated with the recovery and return of six cognitive functions after general anesthesia. High-density electroencephalograms (EEG) were recorded from healthy volunteers undergoing a clinically relevant anesthesia protocol (propofol induction and isoflurane maintenance), and age-matched healthy controls. A battery of cognitive tests (motor praxis, visual object learning test, fractal-2-back, abstract matching, psychomotor vigilance test, digital symbol substitution test) was administered at baseline, upon recovery of consciousness (ROC), and at half-hour intervals up to 3 h following ROC. EEG networks were derived using the strength of functional connectivity measured through the weighted phase lag index (wPLI). A partial least squares (PLS) analysis was conducted to assess changes in these networks: (1) between anesthesia and control groups; (2) during the 3-h recovery from anesthesia; and (3) for each cognitive test during recovery from anesthesia. Networks were maximally perturbed upon ROC but returned to baseline 30-60 min following ROC, despite deficits in cognitive performance that persisted up to 3 h following ROC. Additionally, during recovery from anesthesia, cognitive tests conducted at the same time-point activated distinct and dissociable functional connectivity networks across all frequency bands. The results highlight that the return of cognitive function after anesthetic-induced unconsciousness is task-specific, with unique behavioral and brain network trajectories of recovery.

9.
J Clin Sleep Med ; 17(11): 2283-2306, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34666885

RESUMO

CITATION: Risks associated with fatigue that accumulates during work shifts have historically been managed through working time arrangements that specify fixed maximum durations of work shifts and minimum durations of time off. By themselves, such arrangements are not sufficient to curb risks to performance, safety, and health caused by misalignment between work schedules and the biological regulation of waking alertness and sleep. Science-based approaches for determining shift duration and mitigating associated risks, while addressing operational needs, require: (1) a recognition of the factors contributing to fatigue and fatigue-related risks; (2) an understanding of evidence-based countermeasures that may reduce fatigue and/or fatigue-related risks; and (3) an informed approach to selecting workplace-specific strategies for managing work hours. We propose a series of guiding principles to assist stakeholders with designing a shift duration decision-making process that effectively balances the need to meet operational demands with the need to manage fatigue-related risks.


Assuntos
Transtornos do Sono do Ritmo Circadiano , Tolerância ao Trabalho Programado , Fadiga , Humanos , Sono , Estados Unidos , Local de Trabalho
10.
Nat Sci Sleep ; 13: 1545-1560, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557048

RESUMO

PURPOSE: Sleep loss impairs a range of neurobehavioral functions, particularly vigilant attention and arousal. However, the detrimental effects of sleep deprivation on inhibition control and its relationship to vigilant attention impairments remain unclear. This study examined the extent to which vigilant attention deficits contribute to inhibition control performance after one night of total sleep deprivation (TSD) and two nights of partial sleep restriction (PSR). PARTICIPANTS AND METHODS: We analyzed data from N = 49 participants in a one-night of TSD experiment, N=16 participants in a control experiment without sleep loss, and N = 16 participants in a two-nights of PSR experiment (time in bed, TIB = 6 h for each night). Throughout waking periods in each condition, participants completed the psychomotor vigilance test (PVT), which measures vigilant attention, and the Go/No-Go task, which measures inhibition control. RESULTS: After TSD and PSR, participants displayed significantly slower reaction times (RT) and more lapses in PVT performance, as well as slower Go RT and more errors of omission during the Go/No-Go task. PVT deficits accounted for 18.0% of the change in Go RT and 12.4% of the change in errors of omission in the TSD study, and 23.7% of the change in Go RT and 20.3% of the change in errors of omission in the PSR study. CONCLUSION: Both TSD and PSR impaired inhibition control during the Go/No-Go task, which can be partly accounted for by vigilant attention deficits during the PVT. These findings support the key role of vigilant attention in maintaining overall neurobehavioral function after sleep loss.

11.
Aerosp Med Hum Perform ; 92(8): 650-669, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34503618

RESUMO

AbstractINTRODUCTION: For over 50 yr, investigators have studied the physiological adaptations of the human system during short- and long-duration spaceflight exposures. Much of the knowledge gained in developing health countermeasures for astronauts onboard the International Space Station demonstrate terrestrial applications. To date, a systematic process for translating these space applications to terrestrial human health has yet to be defined.METHODS: In the summer of 2017, a team of 38 international scientists launched the Bellagio ll Summit Initiative. The goals of the Summit were: 1) To identify space medicine findings and countermeasures with highest probability for future terrestrial applications; and 2) To develop a roadmap for translation of these countermeasures to future terrestrial application. The team reviewed public domain literature, NASA databases, and evidence books within the framework of the five-stage National Institutes of Health (NIH) translation science model, and the NASA two-stage translation model. Teams then analyzed and discussed interdisciplinary findings to determine the most significant evidence-based countermeasures sufficiently developed for terrestrial application.RESULTS: Teams identified published human spaceflight research and applied translational science models to define mature products for terrestrial clinical practice.CONCLUSIONS: The Bellagio ll Summit identified a snapshot of space medicine research and mature science with the highest probability of translation and developed a Roadmap of terrestrial application from space medicine-derived countermeasures. These evidence-based findings can provide guidance regarding the terrestrial applications of best practices, countermeasures, and clinical protocols currently used in spaceflight.Sides MB, Johnston SL III, Sirek A, Lee PH, Blue RS, Antonsen EL, Basner M, Douglas GL, Epstein A, Flynn-Evans EE, Gallagher MB, Hayes J, Lee SMC, Lockley SW, Monseur B, Nelson NG, Sargsyan A, Smith SM, Stenger MB, Stepanek J, Zwart SR; Bellagio II Team. Bellagio II report: terrestrial applications of space medicine research. Aerosp Med Hum Perform. 2021; 92(8):650669.


Assuntos
Medicina Aeroespacial , Voo Espacial , Astronautas , Humanos , Fatores de Tempo
12.
Sleep ; 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34373924

RESUMO

Risks associated with fatigue that accumulates during work shifts have historically been managed through working time arrangements that specify fixed maximum durations of work shifts and minimum durations of time off. By themselves, such arrangements are not sufficient to curb risks to performance, safety, and health caused by misalignment between work schedules and the biological regulation of waking alertness and sleep. Science-based approaches for determining shift duration and mitigating associated risks, while addressing operational needs, require: (1) a recognition of the factors contributing to fatigue and fatigue-related risks; (2) an understanding of evidence-based countermeasures that may reduce fatigue and/or fatigue-related risks; and (3) an informed approach to selecting workplace-specific strategies for managing work hours. We propose a series of guiding principles to assist stakeholders with designing a shift duration decision-making process that effectively balances the need to meet operational demands with the need to manage fatigue-related risks.

13.
Sleep ; 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34263305

RESUMO

Risks associated with fatigue that accumulates during work shifts have historically been managed through working time arrangements that specify fixed maximum durations of work shifts and minimum durations of time off. By themselves, such arrangements are not sufficient to curb risks to performance, safety, and health caused by misalignment between work schedules and the biological regulation of waking alertness and sleep. Science-based approaches for determining shift duration and mitigating associated risks, while addressing operational needs, require: 1) a recognition of the factors contributing to fatigue and fatigue-related risks; 2) an understanding of evidence-based countermeasures that may reduce fatigue and/or fatigue-related risks; and 3) an informed approach to selecting workplace-specific strategies for managing work hours. We propose a series of guiding principles to assist stakeholders with designing a shift duration decision-making process that effectively balances the need to meet operational demands with the need to manage fatigue-related risks.

14.
J Clin Sleep Med ; 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34180805

RESUMO

Risks associated with fatigue that accumulates during work shifts have historically been managed through working time arrangements that specify fixed maximum durations of work shifts and minimum durations of time off. By themselves, such arrangements are not sufficient to curb risks to performance, safety, and health caused by misalignment between work schedules and the biological regulation of waking alertness and sleep. Science-based approaches for determining shift duration and mitigating associated risks, while addressing operational needs, require: 1) a recognition of the factors contributing to fatigue and fatigue-related risks; 2) an understanding of evidence-based countermeasures that may reduce fatigue and/or fatigue-related risks; and 3) an informed approach to selecting workplace-specific strategies for managing work hours. We propose a series of guiding principles to assist stakeholders with designing a shift duration decision-making process that effectively balances the need to meet operational demands with the need to manage fatigue-related risks.

15.
Elife ; 102021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33970101

RESUMO

Understanding how the brain recovers from unconsciousness can inform neurobiological theories of consciousness and guide clinical investigation. To address this question, we conducted a multicenter study of 60 healthy humans, half of whom received general anesthesia for 3 hr and half of whom served as awake controls. We administered a battery of neurocognitive tests and recorded electroencephalography to assess cortical dynamics. We hypothesized that recovery of consciousness and cognition is an extended process, with differential recovery of cognitive functions that would commence with return of responsiveness and end with return of executive function, mediated by prefrontal cortex. We found that, just prior to the recovery of consciousness, frontal-parietal dynamics returned to baseline. Consistent with our hypothesis, cognitive reconstitution after anesthesia evolved over time. Contrary to our hypothesis, executive function returned first. Early engagement of prefrontal cortex in recovery of consciousness and cognition is consistent with global neuronal workspace theory.


Anesthesia is a state of reversable, controlled unconsciousness. It has enabled countless medical procedures. But it also serves as a tool for scientists to study how the brain regains consciousness after disruptions such as sleep, coma or medical procedures requiring general anesthesia. It is still unclear how exactly the brain regains consciousness, and less so, why some patients do not recover normally after general anesthesia or fail to recover from brain injury. To find out more, Mashour et al. studied the patterns of reemerging consciousness and cognitive function in 30 healthy adults who underwent general anesthesia for three hours. While the volunteers were under anesthesia, their brain activity was measured with an EEG; and their sleep-wake activity was measured before and after the experiment. Each participant took part in a series of cognitive tests designed to measure the reaction speed, memory and other functions before receiving anesthesia, right after the return of consciousness, and then every 30 minutes thereafter. Thirty healthy volunteers who did not have anesthesia also completed the scans and tests as a comparison group. The experiments showed that certain normal EEG patterns resumed just before a person wakes up from anesthesia. The return of thinking abilities was an extended, multistep process, but volunteers recovered their cognitive abilities to nearly the same level as the volunteers within three hours of being deeply anesthetized. Mashour et al. also unexpectedly found that abstract problem-solving resumes early in the process, while other functions such as reaction time and attention took longer to recover. This makes sense from an evolutionary perspective. Sleep leaves individuals vulnerable. Quick evaluation and decision-making skills would be key to respond to a threat upon waking. The experiments confirm that the front of the brain, which handles thinking and decision-making, was especially active around the time of recovery. This suggests that therapies targeting this part of the brain may help people who experience loss of consciousness after a brain injury or have difficulties waking up after anesthesia. Moreover, disorders of cognition, such as delirium, in the days following surgery may be caused by factors other than the lingering effects of anesthetic drugs on the brain.


Assuntos
Anestesia Geral , Cognição/efeitos dos fármacos , Estado de Consciência/efeitos dos fármacos , Isoflurano/farmacologia , Adulto , Período de Recuperação da Anestesia , Encéfalo/efeitos dos fármacos , Eletroencefalografia , Feminino , Humanos , Masculino , Inconsciência/induzido quimicamente
17.
Front Physiol ; 12: 643854, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815148

RESUMO

Environmental and psychological stressors can adversely affect astronaut cognitive performance in space. This study used a 6° head-down tilt bed rest (HDBR) paradigm to simulate some of the physiologic changes induced by microgravity. Twenty-four participants (mean ± SD age 33.3 ± 9.2 years, N = 16 men) spent 60 consecutive days in strict HDBR. They were studied in three groups of eight subjects each. One group served as Control, whereas the other two groups received either a continuous or intermittent artificial gravity (AG) countermeasure of 30 min centrifugation daily (1 g acceleration at the center of mass and 2 g at the feet). Participants performed all 10 tests of NASA's Cognition battery and a brief alertness and mood survey repeatedly before, during, and after the HDBR period. Test scores were adjusted for practice and stimulus set difficulty effects. A modest but statistically significant slowing across a range of cognitive domains was found in all three groups during HDBR compared to baseline, most consistently for sensorimotor speed, whereas accuracy was unaffected. These changes were observed early during HDBR and did not further worsen or improve with increasing time in HDBR, except for emotion recognition performance. With increasing time spent in HDBR, participants required longer time to decide which facial emotion was expressed. They were also more likely to select categories with negative valence over categories with neutral or positive valence. Except for workload, which was rated lower in the Control group, continuous or intermittent AG did not modify the effect of HDBR on cognitive performance or subjective responses. Participants expressed several negative survey responses during HDBR relative to baseline, and some of the responses further deteriorated during recovery, which highlights the importance of adequate medical and psychological support during extended duration HDBR studies. In conclusion, 60 days of HDBR were associated with moderate cognitive slowing and changes in emotion recognition performance, but these effects were not mitigated by either continuous or intermittent exposure to AG for 30 min daily.

18.
Physiol Behav ; 236: 113413, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33811909

RESUMO

PURPOSE: To study the impact of 48 h of simulated military operational stress (SMOS) on executive function, in addition to the role of trait resilience (RES) and aerobic fitness (FIT) on executive function performance. Associations between executive function and neuropeptide-Y (NPY), brain-derived neurotropic factor (BDNF), insulin-like growth factor-I (IGF-I), oxytocin, and α-klotho (klotho) were assessed to elucidate potential biomarkers that may contribute to cognitive performance during a multi-factorial stress scenario. METHODS: Fifty-four service members (SM) (26.4 ± 5.4 years, 178.0 ± 6.5 cm, 85.2 ± 14.0 kg) completed the 5-day protocol, including daily physical exertion and 48 h of restricted sleep and caloric intake. Each morning subjects completed a fasted blood draw followed by Cognition, a 10-part cognitive test battery assessing executive function. SMs were grouped into tertiles [low (L-), moderate (M-), high (H-)] based on Connor Davidson Resilience Score (RES) and V˙O2peak (FIT). Repeated measures ANOVA were run to analyze the effect of day on cognitive performance and biomarker concentration. Separate two-way mixed ANOVAs were run to determine the interaction of group by day on cognitive function. Friedman test with Bonferroni-corrected pairwise comparisons were used if assumptions for ANOVA were not met. Associations between changes in biomarkers and cognitive performance were analyzed using parametric and non-parametric correlation coefficients. RESULTS: SMOS reduced SM vigilance -11.3% (p < 0.001) and working memory -5.6% (p = 0.015), and increased risk propensity +9.5% (p = 0.005). H-RES and H-FIT SMs demonstrated stable vigilance across SMOS (p > 0.05). Vigilance was compromised during SMOS in L- and M-RES (p = 0.007 and p = 0.001, respectively) as well as L- and M-FIT (p = 0.001 and p = 0.031, respectively). SMOS reduced circulating concentrations of α-klotho -7.2% (p = 0.004), NPY -6.4% (p = 0.001), and IGF-I -8.1% (p < 0.001) from baseline through the end of the protocol. BDNF declined -19.2% after the onset of sleep and caloric restriction (p = 0.005) with subsequent recovery within 48 h. Oxytocin remained stable (p > 0.05). Several modest associations between neuroendocrine biomarkers and cognitive performance were identified. CONCLUSION: This study demonstrates H-FIT and H-RES may buffer the impact of SMOS on vigilance. SMOS negatively impacted circulating neuroendocrine biomarkers. While BDNF returned to baseline concentrations by the end of the 5 d protocol, NPY, IGF-I, and α-klotho may require a longer recovery period. These data suggest that the military may benefit by training and/or selection processes targeting at augmenting trait resilience and aerobic fitness for increased readiness.


Assuntos
Função Executiva , Militares , Biomarcadores , Cognição , Exercício Físico , Humanos , Memória de Curto Prazo , Aptidão Física
19.
Sleep ; 44(8)2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33630069

RESUMO

Chronic sleep loss is associated with escalating declines in vigilant attention across days of sleep restriction. However, studies exceeding 2 weeks of chronic sleep loss are scarce, and the cognitive performance outcomes assessed are limited. We assessed the effects of 6 weeks of chronic sleep restriction on a range of cognitive domains in 15 high-performing individuals (38.5 ± 8.2 years, 6 women) confined to small space in groups of 4. Sleep opportunities were limited to 5 h on weekdays and 8 h on weekends. Individual sleep-wake patterns were recorded with actigraphy. Neurobehavioral performance was assessed in evenings with Cognition, a computerized battery of ten tests assessing a range of cognitive domains. There were some small to moderate effects of increasing sleep debt relative to pre-mission baseline, with decreases in accuracy across cognitive domains (standardized ß = -0.121, p = 0.001), specifically on tests of spatial orientation (ß = -0.289, p = 0.011) and vigilant attention (ß = -0.688, p < 0.001), which were not restored by two nights of weekend recovery sleep. Cognitive and subjective decrements occurred despite occasional daytime napping in breach of study protocol, evening testing around the circadian peak, and access to caffeine before 14:00. Sensorimotor speed, spatial learning and memory, working memory, abstraction and mental flexibility, emotion identification, abstract reasoning, cognitive throughput, and risk decision making were not significantly affected by sleep debt. Taken together with modest lower subjective ratings of happiness and healthiness, these findings underline the importance of sufficient sleep, on both an acute and chronic basis, for performance in selected cognitive domains and subjective wellbeing in operationally relevant environments.


Assuntos
Privação do Sono , Sono , Adulto , Atenção , Cognição , Feminino , Humanos , Vigília
20.
J Appl Physiol (1985) ; 130(4): 1235-1246, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33630672

RESUMO

Microgravity and elevated CO2 levels are two important environmental spaceflight stressors that can adversely affect astronaut cognitive performance and jeopardize mission success. This study investigated the effects of 6° head-down tilt bed rest (HDBR) with (n = 11 participants, 30-day HDBR) and without (n = 8 participants, 60-day HDBR) elevated ambient (3.73 mmHg) CO2 concentrations on cognitive performance. Participants of both groups performed all 10 tests of NASA's Cognition battery and a brief alertness and mood survey repeatedly before, during, and after the HDBR period. Test scores were adjusted for practice and stimulus set effects. Concentrating on the first 30 days of HDBR, a modest but statistically significant slowing across a range of cognitive domains was found in both groups (controls: -0.37 SD; 95% CI -0.48, -0.27; adjusted P < 0.0001; CO2: -0.25 SD; 95% CI -0.34, -0.16; adjusted P < 0.001), most prominently for sensorimotor speed. These changes were observed early during HDBR and did not further deteriorate or improve with increasing time in HDBR. The study found similar cognitive effects of HDBR irrespective of CO2 levels, suggesting that elevated CO2 neither ameliorated nor worsened the HDBR effects. In both groups, cognitive performance after 15 days of recovery was statistically indistinguishable from pre-HDBR performance. However, subjects undergoing 60 days of HDBR rated themselves as feeling more sleepy, tired, physically exhausted, stressed, and unhealthy during recovery compared to their 30-day counterparts.NEW AND NOTEWORTHY This study investigated the effects of prolonged head-down tilt bed rest with and without elevated (3.73 mmHg) levels of ambient CO2 on cognitive performance across a range of cognitive domains and is one of the few studies investigating combined effects of environmental stressors prevalent in spaceflight. The study showed moderate declines in cognitive speed induced by head-down tilt bed rest and suggests that exposure to elevated levels of ambient CO2 did not modify this effect.


Assuntos
Dióxido de Carbono , Voo Espacial , Repouso em Cama/efeitos adversos , Cognição , Decúbito Inclinado com Rebaixamento da Cabeça , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...