Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cancers (Basel) ; 13(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809431

RESUMO

BACKGROUND: Preservation of kidney function in newly diagnosed (ND) multiple myeloma (MM) helps to prevent excess toxicity. Patients (pts) from two prospective trials were analyzed, provided postinduction (PInd) restaging was performed. Pts received three cycles with bortezomib (btz), cyclophosphamide, and dexamethasone (dex; VCD) or btz, lenalidomide (len), and dex (VRd) or len, adriamycin, and dex (RAD). The minimum required estimated glomerular filtration rate (eGFR) was >30 mL/min. We analyzed the percent change of the renal function using the International Myeloma Working Group (IMWG) criteria and Kidney Disease: Improving Global Outcomes (KDIGO)-defined categories. RESULTS: Seven hundred and seventy-two patients were eligible. Three hundred and fifty-six received VCD, 214 VRd, and 202 RAD. VCD patients had the best baseline eGFR. The proportion of pts with eGFR <45 mL/min decreased from 7.3% at baseline to 1.9% PInd (p < 0.0001). Thirty-seven point one percent of VCD versus 49% of VRd patients had a decrease of GFR (p = 0.0872). IMWG-defined "renal complete response (CRrenal)" was achieved in 17/25 (68%) pts after VCD, 12/19 (63%) after RAD, and 14/27 (52%) after VRd (p = 0.4747). CONCLUSIONS: Analyzing a large and representative newly diagnosed myeloma (NDMM) group, we found no difference in CRrenal that occurred independently from the myeloma response across the three regimens. A trend towards deterioration of the renal function with VRd versus VCD may be explained by a better pretreatment "renal fitness" in the latter group.

2.
Sci Rep ; 11(1): 5944, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723276

RESUMO

Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell disorders with a poor prognosis, especially for elderly patients. Increasing evidence suggests that alterations in the non-hematopoietic microenvironment (bone marrow niche) can contribute to or initiate malignant transformation and promote disease progression. One of the key components of the bone marrow (BM) niche are BM stromal cells (BMSC) that give rise to osteoblasts and adipocytes. It has been shown that the balance between these two cell types plays an important role in the regulation of hematopoiesis. However, data on the number of BMSC and the regulation of their differentiation balance in the context of hematopoietic malignancies is scarce. We established a stringent flow cytometric protocol for the prospective isolation of a CD73+ CD105+ CD271+ BMSC subpopulation from uncultivated cryopreserved BM of MDS and AML patients as well as age-matched healthy donors. BMSC from MDS and AML patients showed a strongly reduced frequency of CFU-F (colony forming unit-fibroblast). Moreover, we found an altered phenotype and reduced replating efficiency upon passaging of BMSC from MDS and AML samples. Expression analysis of genes involved in adipo- and osteogenic differentiation as well as Wnt- and Notch-signalling pathways showed significantly reduced levels of DLK1, an early adipogenic cell fate inhibitor in MDS and AML BMSC. Matching this observation, functional analysis showed significantly increased in vitro adipogenic differentiation potential in BMSC from MDS and AML patients. Overall, our data show BMSC with a reduced CFU-F capacity, and an altered molecular and functional profile from MDS and AML patients in culture, indicating an increased adipogenic lineage potential that is likely to provide a disease-promoting microenvironment.

3.
Eur J Immunol ; 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33733474

RESUMO

Immunogenic cancer therapies, including radiation and hypomethylating agents, such as 5-azacytidine, rely on tumor cell-intrinsic activation of the RNA receptor RIG-I for their synergism with immune checkpoint inhibitors. Possible RIG-I ligands are small nuclear RNA (snRNA) and endogenous retroviral elements (ERV) leaking from the nucleus during programmed cell death.

4.
Mol Cell ; 81(6): 1170-1186.e10, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33571422

RESUMO

The complex architecture of transmembrane proteins requires quality control (QC) of folding, membrane positioning, and trafficking as prerequisites for cellular homeostasis and intercellular communication. However, it has remained unclear whether transmembrane protein-specific QC hubs exist. Here we identify cereblon (CRBN), the target of immunomodulatory drugs (IMiDs), as a co-chaperone that specifically determines chaperone activity of HSP90 toward transmembrane proteins by means of counteracting AHA1. This function is abrogated by IMiDs, which disrupt the interaction of CRBN with HSP90. Among the multiple transmembrane protein clients of CRBN-AHA1-HSP90 revealed by cell surface proteomics, we identify the amino acid transporter LAT1/CD98hc as a determinant of IMiD activity in multiple myeloma (MM) and present an Anticalin-based CD98hc radiopharmaceutical for MM radio-theranostics. These data establish the CRBN-AHA1-HSP90 axis in the biogenesis of transmembrane proteins, link IMiD activity to tumor metabolism, and nominate CD98hc and LAT1 as attractive diagnostic and therapeutic targets in MM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fatores Imunológicos/farmacologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Chaperonas Moleculares/metabolismo , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Células Tumorais Cultivadas
5.
Blood ; 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33156908

RESUMO

The histone mark H3K27me3 and its reader/writer Polycomb repressive complex 2 (PRC2) mediate widespread transcriptional repression in stem and progenitor cells. Mechanisms that regulate this activity are critical for hematopoietic development but poorly understood. Here we show that the E3 ubiquitin ligase FBXO11 relieves PRC2-mediated repression during erythroid maturation by targeting its newly identified substrate BAHD1, an H3K27me3 reader that recruits transcriptional co-repressors. Erythroblasts lacking FBXO11 are developmentally delayed, with reduced expression of maturation-associated genes, most of which harbor bivalent histone marks (activating H3K4me3 and repressive H3K27me3), bind BAHD1, and fail to recruit the erythroid transcription factor GATA1. The BAHD1 complex interacts physically with PRC2 and depletion of either component restores FBXO11-deficient erythroid gene expression. Our studies identify BAHD1 as a novel effector of PRC2-mediated repression and reveal how a single E3 ubiquitin ligase eliminates PRC2 repression at developmentally poised bivalent genes during erythropoiesis.

6.
Nat Commun ; 11(1): 4527, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913197

RESUMO

Evasion of programmed cell death represents a critical form of oncogene addiction in cancer cells. Understanding the molecular mechanisms underpinning cancer cell survival despite the oncogenic stress could provide a molecular basis for potential therapeutic interventions. Here we explore the role of pro-survival genes in cancer cell integrity during clonal evolution in non-small cell lung cancer (NSCLC). We identify gains of MCL-1 at high frequency in multiple independent NSCLC cohorts, occurring both clonally and subclonally. Clonal loss of functional TP53 is significantly associated with subclonal gains of MCL-1. In mice, tumour progression is delayed upon pharmacologic or genetic inhibition of MCL-1. These findings reveal that MCL-1 gains occur with high frequency in lung adenocarcinoma and can be targeted therapeutically.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Evolução Clonal , Variações do Número de Cópias de DNA , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Progressão da Doença , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , Mutação , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Cultura Primária de Células , Estudos Prospectivos , Proteínas Proto-Oncogênicas p21(ras)/genética , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , RNA-Seq , Estudos Retrospectivos , Esferoides Celulares , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Proteína Supressora de Tumor p53/genética , Microtomografia por Raio-X
8.
Dtsch Med Wochenschr ; 145(12): 828-835, 2020 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-32557485

RESUMO

Plasma cell diseases, in particular multiple myeloma, represent an interdisciplinary challenge for oncologists and nephrologists. Patients often present initially with kidney problems to a nephrologist, requiring timely diagnosis and referral to an oncologist for treatment. On the other hand, a relevant part of patients will experience a - mostly temporary - decline in kidney function during the treatment course, which may require nephrological care. In any case, renal insufficiency can affect the therapeutic options. This article provides a short overview about common nephrological factors and complications which impact on the manifestation and course of treatment in patients with plasma cell diseases.

9.
Br J Haematol ; 190(3): 361-370, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32350858

RESUMO

Hypomethylating agents (HMAs) are widely used in patients with higher-risk myelodysplastic syndromes (MDS) not eligible for stem cell transplantation; however, the response rate is <50%. Reliable predictors of response are still missing, and it is a major challenge to develop new treatment strategies. One current approach is the combination of azacytidine (AZA) with checkpoint inhibitors; however, the potential benefit of targeting the immunomodulator indoleamine-2,3-dioxygenase (IDO-1) has not yet been evaluated. We observed moderate to strong IDO-1 expression in 37% of patients with high-risk MDS. IDO-1 positivity was predictive of treatment failure and shorter overall survival. Moreover, IDO-1 positivity correlated inversely with the number of infiltrating CD8+ T cells, and IDO-1+ patients failed to show an increase in CD8+ T cells under AZA treatment. In vitro experiments confirmed tryptophan catabolism and depletion of CD8+ T cells in IDO-1+ MDS, suggesting that IDO-1 expression induces an immunosuppressive microenvironment in MDS, thereby leading to treatment failure under AZA treatment. In conclusion, IDO-1 is expressed in more than one-third of patients with higher-risk MDS, and is predictive of treatment failure and shorter overall survival. Therefore, IDO-1 is emerging as a promising predictor and therapeutic target, especially for combination therapies with HMAs or checkpoint inhibitors.

10.
J Nucl Med ; 61(12): 1765-1771, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32332145

RESUMO

C-X-C chemokine receptor 4 (CXCR4) is a transmembrane chemokine receptor involved in growth, survival, and dissemination of cancer, including aggressive B-cell lymphoma. MRI is the standard imaging technology for central nervous system (CNS) involvement of B-cell lymphoma and provides high sensitivity but moderate specificity. Therefore, novel molecular and functional imaging strategies are urgently required. Methods: In this proof-of-concept study, 11 patients with lymphoma of the CNS (8 primary and 3 secondary involvement) were imaged with the CXCR4-directed PET tracer 68Ga-pentixafor. To evaluate the predictive value of this imaging modality, treatment response, as determined by MRI, was correlated with quantification of CXCR4 expression by 68Ga-pentixafor PET in vivo before initiation of treatment in 7 of 11 patients. Results: 68Ga-pentixafor PET showed excellent contrast with the surrounding brain parenchyma in all patients with active disease. Furthermore, initial CXCR4 uptake determined by PET correlated with subsequent treatment response as assessed by MRI. Conclusion: 68Ga-pentixafor PET represents a novel diagnostic tool for CNS lymphoma with potential implications for theranostic approaches as well as response and risk assessment.

11.
Nat Commun ; 11(1): 1268, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152317

RESUMO

Regulation of mitosis secures cellular integrity and its failure critically contributes to the development, maintenance, and treatment resistance of cancer. In yeast, the dual phosphatase Cdc14 controls mitotic progression by antagonizing Cdk1-mediated protein phosphorylation. By contrast, specific mitotic functions of the mammalian Cdc14 orthologue CDC14B have remained largely elusive. Here, we find that CDC14B antagonizes CDK1-mediated activating mitotic phosphorylation of the deubiquitinase USP9X at serine residue 2563, which we show to be essential for USP9X to mediate mitotic survival. Starting from an unbiased proteome-wide screening approach, we specify Wilms' tumor protein 1 (WT1) as the relevant substrate that becomes deubiquitylated and stabilized by serine 2563-phosphorylated USP9X in mitosis. We further demonstrate that WT1 functions as a mitotic transcription factor and specify CXCL8/IL-8 as a target gene of WT1 that conveys mitotic survival. Together, we describe a ubiquitin-dependent signaling pathway that directs a mitosis-specific transcription program to regulate mitotic survival.


Assuntos
Proteína Quinase CDC2/antagonistas & inibidores , Fosfatases de Especificidade Dupla/antagonistas & inibidores , Mitose/fisiologia , Ubiquitina Tiolesterase/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Proteínas WT1/metabolismo , Células A549 , Apoptose , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Interleucina-8/metabolismo , Fosforilação , Fatores de Transcrição , Ubiquitina Tiolesterase/genética , Proteínas WT1/genética
12.
Eur J Haematol ; 104(2): 125-137, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31758597

RESUMO

INTRODUCTION: Targeting the cell cycle machinery represents a rational therapeutic approach in myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (sAML). Despite substantial response rates, clinical use of the PLK inhibitor volasertib has been hampered by elevated side effects such as neutropenia and infections. OBJECTIVES: The primary objective was to analyse whether a reduced dose of volasertib was able to limit toxic effects on the healthy haematopoiesis while retaining its therapeutic effect. METHODS: Bone marrow mononuclear cells (BMMNCs) of patients with MDS/sAML (n = 73) and healthy controls (n = 28) were treated with volasertib (1 µM to 1 nM) or vehicle control. Short-term viability analysis was performed by flow cytometry after 72 hours. For long-term viability analysis, colony-forming capacity was assessed after 14 days. Protein expression of RIPK3 and MCL-1 was quantified via flow cytometry. RESULTS: Reduced dose levels of volasertib retained high cell death-inducing efficacy in primary human stem and progenitor cells of MDS/sAML patients without affecting healthy haematopoiesis in vitro. Interestingly, volasertib reduced colony-forming capacity and cell survival independent of clinical stage or mutational status. CONCLUSIONS: Volasertib offers a promising therapeutic approach in patients with adverse prognostic profile. RIPK3 and MCL-1 might be potential biomarkers for sensitivity to volasertib treatment.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Hematopoese/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Proteínas de Ciclo Celular/metabolismo , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Pteridinas/efeitos adversos , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese
13.
Haematologica ; 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33543864

RESUMO

Hematopoietic stem cell self-renewal, proliferation, and differentiation are independently regulated by intrinsic as well as extrinsic mechanisms. We previously demonstrated that murine proliferation of hematopoietic stem cells is supported in serum-free medium supplemented with two growth factors, stem cell factor and interleukin 11. The survival of hematopoietic stem cells is additionally improved by supplementing this medium with two more growth factors, neural growth factor and collagen 1 (four growth factors) or serum-free medium conditioned by the hematopoietic stem cell-supportive stromal UG26-1B6 cells1. Here, we describe a robust and versatile alternative source of conditioned medium from mouse embryonic fibroblasts. We found that this conditioned medium supports survival and phenotypical identity of hematopoietic stem cells, as well as cell cycle entry in single cell cultures of CD34- CD48- CD150+ Lineage- SCA1+ KIT+ cells supplemented with two growth factors. Strikingly, in comparison with cultures in serum-free medium with four growth factors, conditioned medium from mouse embryonic fibroblasts increases the numbers of proliferating clones and the number of Lineage- SCA1+ KIT+ cells, both with two and four growth factors. In addition, conditioned medium from mouse embryonic fibroblasts supports self-renewal in culture of cells with short- and long-term hematopoiesis-repopulating ability in vivo. These findings identify conditioned medium from mouse embryonic fibroblasts as a robust alternative serumfree source of factors to maintain self-renewal of in vivo-repopulating hematopoetic stem cells in culture.

14.
Sci Rep ; 9(1): 14955, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628411

RESUMO

Recent studies highlight immunoregulatory functions of type I interferons (IFN-I) during the pathogenesis of graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We demonstrated that selective activation of IFN-I pathways including RIG-I/MAVS and cGAS/STING prior to allo-HSCT conditioning therapy can ameliorate the course of GVHD. However, direct effects of IFN-Is on immune cells remain ill characterized. We applied RIG-I agonists (3pRNA) to stimulate IFN-I production in murine models of conditioning therapy with total body irradiation (TBI) and GVHD. Using IFN-I receptor-deficient donor T cells and hematopoietic cells, we found that endogenous and RIG-I-induced IFN-Is do not reduce GVHD by acting on these cell types. However, 3pRNA applied before conditioning therapy reduced the ability of CD11c+ recipient cells to stimulate proliferation and interferon gamma expression of allogeneic T cells. Consistently, RIG-I activation before TBI reduced the proliferation of transplanted allogeneic T-cells. The reduced allogenicity of CD11c+ recipient cells was dependent on IFN-I signaling. Notably, this immunosuppressive function of DCs was restricted to a scenario where tissue damage occurs. Our findings uncover a context (damage by TBI) and IFN-I dependent modulation of T cells by DCs and extend the understanding about the cellular targets of IFN-I during allo-HSCT and GVHD.

15.
Sci Immunol ; 4(39)2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519811

RESUMO

Achieving durable clinical responses to immune checkpoint inhibitors remains a challenge. Here, we demonstrate that immunotherapy with anti-CTLA-4 and its combination with anti-PD-1 rely on tumor cell-intrinsic activation of the cytosolic RNA receptor RIG-I. Mechanistically, tumor cell-intrinsic RIG-I signaling induced caspase-3-mediated tumor cell death, cross-presentation of tumor-associated antigen by CD103+ dendritic cells, subsequent expansion of tumor antigen-specific CD8+ T cells, and their accumulation within the tumor tissue. Consistently, therapeutic targeting of RIG-I with 5'- triphosphorylated RNA in both tumor and nonmalignant host cells potently augmented the efficacy of CTLA-4 checkpoint blockade in several preclinical cancer models. In humans, transcriptome analysis of primary melanoma samples revealed a strong association between high expression of DDX58 (the gene encoding RIG-I), T cell receptor and antigen presentation pathway activity, and prolonged overall survival. Moreover, in patients with melanoma treated with anti-CTLA-4 checkpoint blockade, high DDX58 RIG-I transcriptional activity significantly associated with durable clinical responses. Our data thus identify activation of RIG-I signaling in tumors and their microenvironment as a crucial component for checkpoint inhibitor-mediated immunotherapy of cancer.


Assuntos
Proteína DEAD-box 58/imunologia , Melanoma/imunologia , Animais , Linhagem Celular Tumoral , Estudos de Coortes , Proteína DEAD-box 58/genética , Modelos Animais de Doenças , Humanos , Imunoterapia , Melanoma/patologia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microambiente Tumoral
16.
Leukemia ; 33(11): 2710-2719, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31462732

RESUMO

This phase 3 trial compared tandem autologous stem cell transplantation (autoSCT) versus autoSCT followed by reduced-intensity conditioning allogeneic stem cell transplantation (auto/alloSCT) in patients with newly diagnosed multiple myeloma (MM) with deletion of (del) chromosome 13q (del13q). The availability/absence of a human leukocyte antigen-matched-related or matched-unrelated donor (MUD) determined the nature of the second SCT. The primary endpoint was progression-free survival (PFS) in the intention-to-treat population (n = 199). Auto/alloSCT was performed in 126 patients; 74 received MUD allografts. After 91 months median follow-up, median PFS with auto/allo versus tandem autoSCT was 34.5 versus 21.8 months (P = 0.003; adjusted hazard ratio 0.55, 95% confidence interval 0.36-0.84). Median overall survival (OS) was 70.2 versus 71.8 months (P = 0.856). Two-year non-relapse mortality with auto/allo versus tandem autoSCT was 14.3% versus 4.1% (P = 0.008). In patients harboring both del13q and del17p, median PFS and OS were 37.5 and 61.5 months with auto/allo (n = 19) versus 6.1 and 23.4 months with tandem autoSCT (n = 6) (P = 0.0002 and 0.032). Our findings suggest that auto/alloSCT significantly extends PFS versus tandem autoSCT in del13q MM, and indicate some survival benefit for first-line alloSCT in high-risk MM.


Assuntos
Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Transplante Homólogo , Adulto , Deleção Cromossômica , Citogenética , Intervalo Livre de Doença , Feminino , Seguimentos , Doença Enxerto-Hospedeiro , Antígenos HLA/química , Humanos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Condicionamento Pré-Transplante , Resultado do Tratamento
17.
Eur J Haematol ; 103(3): 255-267, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31231828

RESUMO

OBJECTIVE: A post hoc analysis of two phase III trials was carried out to explore the influence of age and treatment factors on the effect of bortezomib consolidation on progression-free survival (PFS) post autologous stem cell transplantation (ASCT). METHODS: Patients with newly diagnosed multiple myeloma were assigned to one of two trials (ClinicalTrials.gov IDs: NCT00416273, NCT00416208), which were conducted in parallel, based on age (18-60 or 61-75 years, respectively). Following induction and ASCT, patients were randomized 1:1 to four 35-day cycles of bortezomib consolidation (1.6 mg/m2 IV on days 1, 8, 15, 22) or observation only. RESULTS: Median PFS with bortezomib consolidation vs observation was 33.6 vs 29.0 months (P = 0.3599) in patients aged 18-60 years (n = 202), and 33.4 vs 26.4 months (P = 0.0073) in patients aged 61-75 years (n = 155), respectively. Bortezomib consolidation post-ASCT appeared to equalize outcomes between older and younger patients who received prior treatment of differing intensity. This suggests that the effect of consolidation may be relative and may depend on the composition and intensity of induction and high-dose therapy. CONCLUSION: Older patients receiving less intensive prior treatment could experience a larger PFS benefit from bortezomib consolidation.


Assuntos
Antineoplásicos/uso terapêutico , Bortezomib/uso terapêutico , Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo/terapia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Bortezomib/administração & dosagem , Bortezomib/efeitos adversos , Terapia Combinada , Quimioterapia de Consolidação , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/mortalidade , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida , Transplante Autólogo , Resultado do Tratamento , Adulto Jovem
18.
Exp Hematol Oncol ; 8: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016067

RESUMO

Patients with Myelodysplastic Syndromes (MDS) and secondary Acute Myeloid Leukemia (sAML) have a very poor prognosis after failure of hypomethylating agents (HMA). Stem cell transplantation is the only effective salvage therapy, for which only a limited number of patients are eligible due to age and comorbidity. Combination therapy of venetoclax and azacitidine (5-AZA) seems to be a promising approach in myeloid malignancies, but data from patients with HMA failure are lacking. Furthermore, a considerable concern of combination regimens in elderly AML and MDS patients is the toxicity on the remaining healthy hematopoiesis. Here, we report in vitro data showing the impact of venetoclax and 5-AZA, alone or in combination, in a larger cohort of MDS/sAML patients (n = 21), even after HMA failure (n = 13). We especially focused on the effects on healthy hematopoiesis and the impact on colony forming capacity as a parameter for long-term effects. To the best of our knowledge, we show for the first time that venetoclax in combination with capped dose of 5-AZA targets cell malignancies, while sparing healthy hematopoiesis.

19.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30877233

RESUMO

Adoptive transfer of TCR transgenic T cells holds great promise for treating various cancers. So far, mainly semi-randomly integrating vectors have been used to genetically modify T cells. These carry the risk of insertional mutagenesis, and the sole addition of an exogenous TCR potentially results in the mispairing of TCR chains with endogenous ones. Established approaches using nonviral vectors, such as transposons, already reduce the risk of insertional mutagenesis but have not accomplished site-specific integration. Here, we used CRISPR-Cas9 RNPs and adeno-associated virus 6 for gene targeting to deliver an engineered TCR gene specifically to the TCR alpha constant locus, thus placing it under endogenous transcriptional control. Our data demonstrate that this approach replaces the endogenous TCR, functionally redirects the edited T cells' specificity in vitro, and facilitates potent tumor rejection in an in vivo xenograft model.


Assuntos
Engenharia Celular/métodos , Edição de Genes/métodos , Neoplasias/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/imunologia , Animais , Proteína 9 Associada à CRISPR/genética , Linhagem Celular , Genes Codificadores da Cadeia alfa de Receptores de Linfócitos T/genética , Vetores Genéticos , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Neoplasias/terapia , Doadores de Tecidos , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto
20.
EBioMedicine ; 41: 146-155, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30852164

RESUMO

BACKGROUND: Antibody-mediated targeting of regulatory T cell receptors such as CTLA-4 enhances antitumor immune responses against several cancer entities including malignant melanoma. Yet, therapeutic success in patients remains variable underscoring the need for novel combinatorial approaches. METHODS: Here we established a vaccination strategy that combines engagement of the nucleic acid-sensing pattern recognition receptor RIG-I, antigen and CTLA-4 blockade. We used in vitro transcribed 5'-triphosphorylated RNA (3pRNA) to therapeutically target the RIG-I pathway. We performed in vitro functional analysis in bone-marrow derived dendritic cells and investigated RIG-I-enhanced vaccines in different murine melanoma models. FINDINGS: We found that protein vaccination together with RIG-I ligation via 3pRNA strongly synergizes with CTLA-4 blockade to induce expansion and activation of antigen-specific CD8+ T cells that translates into potent antitumor immunity. RIG-I-induced cross-priming of cytotoxic T cells as well as antitumor immunity were dependent on the host adapter protein MAVS and type I interferon (IFN-I) signaling and were mediated by dendritic cells. INTERPRETATION: Overall, our data demonstrate the potency of a novel combinatorial vaccination strategy combining RIG-I-driven immunization with CTLA-4 blockade to prevent and treat experimental melanoma. FUND: German Research Foundation (SFB 1335, SFB 1371), EMBO, Else Kröner-Fresenius-Foundation, German Cancer Aid, European Hematology Association, DKMS Foundation for Giving Life, Dres. Carl Maximilian and Carl Manfred Bayer-Foundation.


Assuntos
Antígeno CTLA-4/imunologia , Vacinas Anticâncer/imunologia , Proteína DEAD-box 58/imunologia , Imunoterapia/métodos , Melanoma Experimental/terapia , RNA/imunologia , Adjuvantes Imunológicos/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Apresentação Cruzada , Proteína DEAD-box 58/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...