RESUMO
Gatemon qubits are the electrically tunable cousins of superconducting transmon qubits. In this work, we demonstrate the full coherent control of a gatemon qubit based on hole carriers in a Ge/Si core/shell nanowire, with the longest coherence times in group IV material gatemons to date. The key to these results is a high-quality Josephson junction obtained using a straightforward and reproducible annealing technique. We demonstrate that the transport through the narrow junction is dominated by only two quantum channels, with transparencies up to unity. This novel qubit platform holds great promise for quantum information applications, not only because it incorporates technologically relevant materials, but also because it provides new opportunities, like an ultrastrong spin-orbit coupling in the few-channel regime of Josephson junctions.
RESUMO
Optical remote sensing and Earth observation instruments rely on precise radiometric calibrations which are generally provided by the broadband emission from large-aperture integrating spheres. The link between the integrating sphere radiance and an SI-traceable radiance standard is made by spectroradiometer measurements. In this work, the calibration efforts of a Spectra Vista Corporation (SVC) HR-1024i spectroradiometer are presented to study how these enable radiance transfer measurements at the Calibration Home Base (CHB) for imaging spectrometers at the Remote Sensing Technology Institute (IMF) of the German Aerospace Center (DLR). The spectral and radiometric response calibrations of an SVC HR-1024i spectroradiometer are reported, as well as the measurements of non-linearity and its sensitivity to temperature changes and polarized light. This achieves radiance transfer measurements with the calibrated spectroradiometer with relative expanded uncertainties between 1% and 3% (k=2) over the wavelength range of 380 nm to 2500 nm, which are limited by the uncertainties of the applied radiance standard.
RESUMO
Correlations are fundamental in describing many-body systems. However, in experiments, correlations are notoriously difficult to assess on a microscopic scale, especially for electron spins. Even though it is firmly established theoretically that the electrons in a Cooper pair1 of a superconductor form maximally spin-entangled singlet states with opposite spin projections2-4, no spin correlation experiments have been demonstrated so far. Here we report the direct measurement of the spin cross-correlations between the currents of a Cooper pair splitter5-13, an electronic device that emits electrons originating from Cooper pairs. We use ferromagnetic split-gates14,15, compatible with nearby superconducting structures, to individually spin polarize the transmissions of the quantum dots in the two electronic paths, which act as tunable spin filters. The signals are detected in standard transport and in highly sensitive transconductance experiments. We find that the spin cross-correlation is negative, consistent with spin singlet emission, and deviates from the ideal value mostly due to the overlap of the Zeeman split quantum dot states. Our results demonstrate a new route to perform spin correlation experiments in nano-electronic devices, especially suitable for those relying on magnetic field sensitive superconducting elements, like triplet or topologically non-trivial superconductors16-18, or to perform Bell tests with massive particles19,20.
RESUMO
We compare the adiabatic quantized charge pumping performed in two types of InAs nanowire double quantum dots (DQDs), either with tunnel barriers defined by closely spaced narrow bottom gates, or by well-separated side gates. In the device with an array of bottom gates of 100 nm pitch and 10 µm lengths, the pump current is quantized only up to frequencies of a few MHz due to the strong capacitive coupling between the bottom gates. In contrast, in devices with well-separated side gates with reduced mutual gate capacitances, we find well-defined pump currents up to 30 MHz. Our experiments demonstrate that high frequency quantized charge pumping requires careful optimization of the device geometry, including the typically neglected gate feed lines.
RESUMO
Due to organ shortage and rising life expectancy the age of organ donors and recipients is increasing. Reliable biomarkers of organ quality that predict successful long-term transplantation outcomes are poorly defined. The aim of this study was the identification of age-related markers of kidney function that might accurately reflect donor organ quality. Histomorphometric, biochemical and molecular parameters were measured in young (3-month-old) and old (24-month-old) male Sprague Dawley rats. In addition to conventional methods, we used urine metabolomics by NMR spectroscopy and gene expression analysis by quantitative RT-PCR to identify markers of ageing relevant to allograft survival. Beside known markers of kidney ageing like albuminuria, changes in the concentration of urine metabolites such as trimethylamine-N-oxide, trigonelline, 2-oxoglutarate, citrate, hippurate, glutamine, acetoacetate, valine and 1-methyl-histidine were identified in association with ageing. In addition, expression of several genes of the toll-like receptor (TLR) pathway, known for their implication in inflammaging, were upregulated in the kidneys of old rats. This study led to the identification of age-related markers of biological allograft age potentially relevant for allograft survival in the future. Among those, urine metabolites and markers of immunity and inflammation, which are highly relevant to immunosuppression in transplant recipients, are promising and deserve further investigation in humans.
RESUMO
We demonstrate superconducting vertical interconnect access (VIA) contacts to a monolayer of molybdenum disulfide (MoS2), a layered semiconductor with highly relevant electronic and optical properties. As a contact material we use MoRe, a superconductor with a high critical magnetic field and high critical temperature. The electron transport is mostly dominated by a single superconductor/normal conductor junction with a clear superconductor gap. In addition, we find MoS2 regions that are strongly coupled to the superconductor, resulting in resonant Andreev tunneling and junction-dependent gap characteristics, suggesting a superconducting proximity effect. Magnetoresistance measurements show that the bandstructure and the high intrinsic carrier mobility remain intact in the bulk of the MoS2. This type of VIA contact is applicable to a large variety of layered materials and superconducting contacts, opening up a path to monolayer semiconductors as a platform for superconducting hybrid devices.
RESUMO
In some types of imaging systems, such as imaging spectrometers, the spectral and geometric pixel properties like center wavelength, center angle, response shape and resolution change rapidly between adjacent pixels. Image transformation techniques are required to either correct these effects or to compare images acquired by different systems. In this paper we present a novel image transformation method that allows to manipulate geometric and spectral properties of each pixel individually. The linear transformation employs a transformation matrix to associate every pixel of a target sensor B with all related pixels of a source sensor A. The matrix is derived from the cross-correlations of all sensor A pixels and cross-correlations of sensor A and sensor B pixels. We provide the mathematical background, discuss the propagation of uncertainty, demonstrate the use of the method in a case study, and show that the method is a generalization of the Wiener deconvolution filter. In the study, the transformation of images with random, non-uniform pixel properties to distortion-free images leads to errors that are one order of magnitude smaller than those obtained with a conventional approach.
RESUMO
Subgap states in semiconducting-superconducting nanowire hybrid devices are controversially discussed as potential topologically nontrivial quantum states. One source of ambiguity is the lack of an energetically and spatially well defined tunnel spectrometer. Here, we use quantum dots directly integrated into the nanowire during the growth process to perform tunnel spectroscopy of discrete subgap states in a long nanowire segment. In addition to subgap states with a standard magnetic field dependence, we find topologically trivial subgap states that are independent of the external magnetic field, i.e., that are pinned to a constant energy as a function of field. We explain this effect qualitatively and quantitatively by taking into account the strong spin-orbit interaction in the nanowire, which can lead to a decoupling of Andreev bound states from the field due to a spatial spin texture of the confined eigenstates. This result constitutes an important step forward in the research on superconducting subgap states in nanowires, such as Majorana bound states.
RESUMO
Microscopic corrugations are ubiquitous in graphene even when placed on atomically flat substrates. These result in random local strain fluctuations limiting the carrier mobility of high quality hBN-supported graphene devices. We present transport measurements in hBN-encapsulated devices where such strain fluctuations can be in situ reduced by increasing the average uniaxial strain. When â¼0.2% of uniaxial strain is applied to the graphene, an enhancement of the carrier mobility by â¼35% is observed while the residual doping reduces by â¼39%. We demonstrate a strong correlation between the mobility and the residual doping, from which we conclude that random local strain fluctuations are the dominant source of disorder limiting the mobility in these devices. Our findings are also supported by Raman spectroscopy measurements.
RESUMO
Various promising qubit concepts have been put forward recently based on engineered superconductor subgap states like Andreev bound states, Majorana zero modes or the Yu-Shiba-Rusinov (Shiba) states. The coupling of these subgap states via a superconductor strongly depends on their spatial extension and is an essential next step for future quantum technologies. Here we investigate the spatial extension of a Shiba state in a semiconductor quantum dot coupled to a superconductor. With detailed transport measurements and numerical renormalization group calculations we find a remarkable more than 50 nm extension of the zero energy Shiba state, much larger than the one observed in very recent scanning tunneling microscopy measurements. Moreover, we demonstrate that its spatial extension increases substantially in a magnetic field.