Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Mais filtros

Base de dados
Intervalo de ano de publicação
Science ; 374(6563): 42, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34591634


[Figure: see text].

Curr Biol ; 31(16): 3671-3677.e3, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34237267


Most new infectious diseases emerge when pathogens transfer from animals to humans.1,2 The suspected origin of the COVID pandemic in a wildlife wet market has resurfaced debates on the role of wildlife trade as a potential source of emerging zoonotic diseases.3-5 Yet there are no studies quantitatively assessing zoonotic disease risk associated with wildlife trade. Combining data on mammal species hosting zoonotic viruses and mammals known to be in current and future wildlife trade,6 we found that one-quarter (26.5%) of the mammals in wildlife trade harbor 75% of known zoonotic viruses, a level much higher than domesticated and non-traded mammals. The traded mammals also harbor distinct compositions of zoonotic viruses and different host reservoirs from non-traded and domesticated mammals. Furthermore, we highlight that primates, ungulates, carnivores, and bats represent significant zoonotic disease risks as they host 132 (58%) of 226 known zoonotic viruses in present wildlife trade, whereas species of bats, rodents, and marsupials represent significant zoonotic disease risks in future wildlife trade. Thus, the risk of carrying zoonotic diseases is not equal for all mammal species in wildlife trade. Overall, our findings strengthen the evidence that wildlife trade and zoonotic disease risks are strongly associated, and that mitigation measures should prioritize species with the highest risk of carrying zoonotic viruses. Curbing the sales of wildlife products and developing principles that support the sustainable and healthy trade of wildlife could be cost-effective investments given the potential risk and consequences of zoonotic outbreaks.

Animais Selvagens/virologia , Comércio , Mamíferos/virologia , Pandemias/prevenção & controle , Zoonoses/transmissão , Animais , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Humanos , Desenvolvimento Sustentável , Zoonoses/epidemiologia , Zoonoses/prevenção & controle , Zoonoses/virologia
Ann Bot ; 123(1): 181-190, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30165602


Background and Aims: Kin selection theory predicts that a parent may minimize deleterious effects of competition among seeds developing within ovaries by increasing the genetic relatedness of seeds within an ovary. Alternatively, the number of developing seeds could be reduced to one or a few. It has also been suggested that single or few seeded fruits may be correlated with small flowers, and multi-ovulate ovaries or many seeded fruits may be associated with large flowers with specialized pollination mechanisms. We examined the correlation between flower size and seed number in 69 families of monocotyledons to assess if correlations are significant and independent of phylogeny. Methods: We first examined the effect of phylogenetic history on the evolution of these two traits, flower size and seed number, and then mapped correlations between them on the latest phylogenetic tree of monocotyledons. Results: The results provide phylogenetically robust evidence of strong correlated evolution between flower size and seed number and show that correlated evolution of traits is not constrained by phylogenetic history of taxa. Moreover, the two character combinations, small flowers and a single or few seeds per fruit, and large flowers and many seeded fruits, have persisted in monocotyledons longer than other trait combinations. Conclusions: The analyses support the suggestion that most angiosperms may fall into two categories, one with large flowers and many seeded fruits and the other with small flowers and single or few seeded fruits, and kin selection within ovaries may explain the observed patterns.

Evolução Biológica , Flores/anatomia & histologia , Magnoliopsida/anatomia & histologia , Magnoliopsida/fisiologia , Sementes/fisiologia , Flores/crescimento & desenvolvimento , Magnoliopsida/crescimento & desenvolvimento , Filogenia
Proc Biol Sci ; 283(1842)2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27852800


Competition among developing seeds and sibling rivalry within multiovulated ovaries can be deleterious for both the maternal parent and the siblings. Increased genetic relatedness of seeds within the ovary may foster kin selection and reduce the deleterious consequences of sibling competition. The pollen parent may also be selected for siring all progeny within a fruit. I propose a series of hypotheses to explain the evolution of a number of reproductive traits in angiosperms in the context of kin selection and sibling rivalry within the ovaries of angiosperms. I present evidence to show that a single-pollen parent, indeed, often sires seeds within multiovulated ovaries. Various types of pollen aggregations and transfer of such pollen masses to the stigmas of flowers by specialized pollinators make this increased genetic relatedness possible. An alternative mode to reduce sibling rivalry may be the reduction of ovule number to one, an evolutionary trend that has independently occurred many times in flowering plants. Finally, I build on previously established correlations to predict two sets of correlations among reproductive traits. In the first case, large showy flowers, transfer of pollen en masse by specialized pollinators, and multiovulated ovaries and multisided fruits seem to be correlated. In the second case, the previously established correlations among small and inconspicuous flowers, pollination by wind, water or generalist insects, flowers and fruits with few or single ovules and seeds, respectively, may also include monoecy or dioecy. Although correlations among many of these traits have been established in the past, I invoke kin selection and sibling competition to explain the evolution of correlated traits as two distinct evolutionary pathways in angiosperms.

Evolução Biológica , Fenômenos Fisiológicos Vegetais , Plantas/genética , Polinização , Sementes/genética , Flores/genética , Fenótipo , Pólen/genética , Reprodução
PLoS One ; 9(9): e106405, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25180515


Climate change has already impacted ecosystems and species and substantial impacts of climate change in the future are expected. Species distribution modeling is widely used to map the current potential distribution of species as well as to model the impact of future climate change on distribution of species. Mapping current distribution is useful for conservation planning and understanding the change in distribution impacted by climate change is important for mitigation of future biodiversity losses. However, the current distribution of Chinese caterpillar fungus, a flagship species of the Himalaya with very high economic value, is unknown. Nor do we know the potential changes in suitable habitat of Chinese caterpillar fungus caused by future climate change. We used MaxEnt modeling to predict current distribution and changes in the future distributions of Chinese caterpillar fungus in three future climate change trajectories based on representative concentration pathways (RCPs: RCP 2.6, RCP 4.5, and RCP 6.0) in three different time periods (2030, 2050, and 2070) using species occurrence points, bioclimatic variables, and altitude. About 6.02% (8,989 km2) area of the Nepal Himalaya is suitable for Chinese caterpillar fungus habitat. Our model showed that across all future climate change trajectories over three different time periods, the area of predicted suitable habitat of Chinese caterpillar fungus would expand, with 0.11-4.87% expansion over current suitable habitat. Depending upon the representative concentration pathways, we observed both increase and decrease in average elevation of the suitable habitat range of the species.

Mudança Climática , Ecossistema , Fungos/fisiologia , Altitude , Animais , China , Geografia , Larva/microbiologia , Nepal
PLoS One ; 7(5): e36741, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615804


BACKGROUND: Climate change in the Himalayas, a biodiversity hotspot, home of many sacred landscapes, and the source of eight largest rivers of Asia, is likely to impact the well-being of ~20% of humanity. However, despite the extraordinary environmental, cultural, and socio-economic importance of the Himalayas, and despite their rapidly increasing ecological degradation, not much is known about actual changes in the two most critical climatic variables: temperature and rainfall. Nor do we know how changes in these parameters might impact the ecosystems including vegetation phenology. METHODOLOGY/PRINCIPAL FINDINGS: By analyzing temperature and rainfall data, and NDVI (Normalized Difference Vegetation Index) values from remotely sensed imagery, we report significant changes in temperature, rainfall, and vegetation phenology across the Himalayas between 1982 and 2006. The average annual mean temperature during the 25 year period has increased by 1.5 °C with an average increase of 0.06 °C yr(-1). The average annual precipitation has increased by 163 mm or 6.52 mmyr(-1). Since changes in temperature and precipitation are immediately manifested as changes in phenology of local ecosystems, we examined phenological changes in all major ecoregions. The average start of the growing season (SOS) seems to have advanced by 4.7 days or 0.19 days yr(-1) and the length of growing season (LOS) appears to have advanced by 4.7 days or 0.19 days yr(-1), but there has been no change in the end of the growing season (EOS). There is considerable spatial and seasonal variation in changes in climate and phenological parameters. CONCLUSIONS/SIGNIFICANCE: This is the first time that large scale climatic and phenological changes at the landscape level have been documented for the Himalayas. The rate of warming in the Himalayas is greater than the global average, confirming that the Himalayas are among the regions most vulnerable to climate change.

Mudança Climática , Ecossistema , Índia
Science ; 335(6076): 1573, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22461593

Pesquisa , Ciência
Biol Lett ; 7(5): 767-70, 2011 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-21525050


The Himalayas are assumed to be undergoing rapid climate change, with serious environmental, social and economic consequences for more than two billion people. However, data on the extent of climate change or its impact on the region are meagre. Based on local knowledge, we report perceived changes in climate and consequences of such changes for biodiversity and agriculture. Our analyses are based on 250 household interviews administered in 18 villages, and focused group discussions conducted in 10 additional villages in Darjeeling Hills, West Bengal, India and Ilam district of Nepal. There is a widespread feeling that weather is getting warmer, the water sources are drying up, the onset of summer and monsoon has advanced during last 10 years and there is less snow on mountains than before. Local perceptions of the impact of climate change on biodiversity included early budburst and flowering, new agricultural pests and weeds and appearance of mosquitoes. People at high altitudes appear more sensitive to climate change than those at low altitudes. Most local perceptions conform to scientific data. Local knowledge can be rapidly and efficiently gathered using systematic tools. Such knowledge can allow scientists to test specific hypotheses, and policy makers to design mitigation and adaptation strategies for climate change, especially in an extraordinarily important part of our world that is experiencing considerable change.

Mudança Climática , Altitude , Índia , Nepal