Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e1908178, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32347632

RESUMO

Composites, in which two or more material elements are combined to provide properties unattainable by single components, have a historical record dating to ancient times. Few include a living microbial community as a key design element. A logical basis for enabling bioelectronic composites stems from the phenomenon that certain microorganisms transfer electrons to external surfaces, such as an electrode. A bioelectronic composite that allows cells to be addressed beyond the confines of an electrode surface can impact bioelectrochemical technologies, including microbial fuel cells for power production and bioelectrosynthesis platforms where microbes produce desired chemicals. It is shown that the conjugated polyelectrolyte CPE-K functions as a conductive matrix to electronically connect a three-dimensional network of Shewanella oneidensis MR-1 to a gold electrode, thereby increasing biocurrent ≈150-fold over control biofilms. These biocomposites spontaneously assemble from solution into an intricate arrangement of cells within a conductive polymer matrix. While increased biocurrent is due to more cells in communication with the electrode, the current extracted per cell is also enhanced, indicating efficient long-range electron transport. Further, the biocomposites show almost an order-of-magnitude lower charge transfer resistance than CPE-K alone, supporting the idea that the electroactive bacteria and the conjugated polyelectrolyte work synergistically toward an effective bioelectronic composite.

2.
Angew Chem Int Ed Engl ; 59(17): 6819-6826, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32011781

RESUMO

Carbapenem-resistant Gram-negative bacteria (GNB) are heading the list of pathogens for which antibiotics are the most critically needed. Many antibiotics are either unable to penetrate the outer-membrane or are excluded by efflux mechanisms. Here, we report a cationic block ß-peptide (PAS8-b-PDM12) that reverses intrinsic antibiotic resistance in GNB by two distinct mechanisms of action. PAS8-b-PDM12 does not only compromise the integrity of the bacterial outer-membrane, it also deactivates efflux pump systems by dissipating the transmembrane electrochemical potential. As a result, PAS8-b-PDM12 sensitizes carbapenem- and colistin-resistant GNB to multiple antibiotics in vitro and in vivo. The ß-peptide allows the perfect alternation of cationic versus hydrophobic side chains, representing a significant improvement over previous antimicrobial α-peptides sensitizing agents. Together, our results indicate that it is technically possible for a single adjuvant to reverse innate antibiotic resistance in all pathogenic GNB of the ESKAPE group, including those resistant to last resort antibiotics.

3.
ACS Nano ; 14(1): 28-117, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31478375

RESUMO

The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.

4.
Adv Mater ; 32(1): e1906027, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31714629

RESUMO

Sensitive detection of near-infrared (NIR) light enables many important applications in both research and industry. Current organic photodetectors suffer from low NIR sensitivity typically due to early absorption cutoff, low responsivity, and/or large dark/noise current under bias. Herein, organic photodetectors based on a novel ultranarrow-bandgap nonfullerene acceptor, CO1-4Cl, are presented, showcasing a remarkable responsivity over 0.5 A W-1 in the NIR spectral region (920-960 nm), which is the highest among organic photodiodes. By effectively delaying the onset of the space charge limited current and suppressing the shunt leakage current, the optimized devices show a large specific detectivity around 1012 Jones for NIR spectral region up to 1010 nm, close to that of a commercial Si photodiode. The presented photodetectors can also be integrated in photoplethysmography for real-time heart-rate monitoring, suggesting its potential for practical applications.

5.
Nat Commun ; 10(1): 4792, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636263

RESUMO

The treatment of bacterial infections is hindered by the presence of biofilms and metabolically inactive persisters. Here, we report the synthesis of an enantiomeric block co-beta-peptide, poly(amido-D-glucose)-block-poly(beta-L-lysine), with high yield and purity by one-shot one-pot anionic-ring opening (co)polymerization. The co-beta-peptide is bactericidal against methicillin-resistant Staphylococcus aureus (MRSA), including replicating, biofilm and persister bacterial cells, and also disperses biofilm biomass. It is active towards community-acquired and hospital-associated MRSA strains which are resistant to multiple drugs including vancomycin and daptomycin. Its antibacterial activity is superior to that of vancomycin in MRSA mouse and human ex vivo skin infection models, with no acute in vivo toxicity in repeated dosing in mice at above therapeutic levels. The copolymer displays bacteria-activated surfactant-like properties, resulting from contact with the bacterial envelope. Our results indicate that this class of non-toxic molecule, effective against different bacterial sub-populations, has promising potential for the treatment of S. aureus infections.


Assuntos
Biofilmes/efeitos dos fármacos , Glucose/síntese química , Lisina/análogos & derivados , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , beta-Lactamas/síntese química , Células 3T3 , Animais , Farmacorresistência Bacteriana Múltipla , Glucose/farmacologia , Glucose/uso terapêutico , Humanos , Técnicas In Vitro , Lisina/síntese química , Lisina/farmacologia , Lisina/uso terapêutico , Camundongos , Testes de Sensibilidade Microbiana , Polimerização , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico
6.
Biosens Bioelectron ; 144: 111630, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505403

RESUMO

Bioelectrochemical systems (BESs) are emerging as a platform technology with great application potentials such as wastewater remediation and power generation. Materials for electrode/microorganism modification are being examined in order to improve the current production in BESs. Herein, we report that the current production increased almost one fold in single-chamber BES reactors, by adding a conjugated polyelectrolyte (CPE-K) in the growth medium to co-form the anodic biofilm with Geobacter sulfurreducens cells. The CPE-K treated BESs had a maximum current density as high as 12.3 ±â€¯0.5 A/m2, with that of the controls being 6.2 ±â€¯0.7 A/m2. Improved current production was sustained even after CPE-K was no longer added to the medium. It was demonstrated that increased current resulted from improvement of certain biofilm properties. Analysis using electrochemical impedance spectroscopy (EIS) showed that CPE-K addition decreased the charge transfer resistance at the cell/electrode interface and the diffusion resistance through the biofilm. Protein quantification showed increased biomass growth on the electrode surface, and confocal scanning microscopy images revealed enhanced biofilm permeability. These results demonstrated for the first time that conjugated polyelectrolytes could be used for G. sulfurreducens biofilm augmentation to achieve high electricity production through tuning the anodic biofilm in BESs.

7.
Nat Mater ; 18(12): 1327-1334, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31527809

RESUMO

Precise doping of organic semiconductors allows control over the conductivity of these materials, an essential parameter in electronic applications. Although Lewis acids have recently shown promise as dopants for solution-processed polymers, their doping mechanism is not yet fully understood. In this study, we found that B(C6F5)3 is a superior dopant to the other Lewis acids investigated (BF3, BBr3 and AlCl3). Experiments indicate that Lewis acid-base adduct formation with polymers inhibits the doping process. Electron-nuclear double-resonance and nuclear magnetic resonance experiments, together with density functional theory, show that p-type doping occurs by generation of a water-Lewis acid complex with substantial Brønsted acidity, followed by protonation of the polymer backbone and electron transfer from a neutral chain segment to a positively charged, protonated one. This study provides insight into a potential path for protonic acid doping and shows how trace levels of water can transform Lewis acids into powerful Brønsted acids.

8.
J Phys Chem Lett ; 10(16): 4632-4638, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31291110

RESUMO

Understanding and controlling the optoelectronic properties of organic semiconductors at the molecular level remains a challenge due to the complexity of chemical structures and intermolecular interactions. A common strategy to address this challenge is to utilize both experimental and computational approaches. In this contribution, we show that density functional theory (DFT) calculation is a useful tool to provide insights into the bonding, electron population distribution, and optical transitions of adducts between conjugated molecules and Lewis acids (CM-LA). Adduct formation leads to relevant modifications of key properties, including a red shift in optical transitions and an increase in charge carrier density and charge mobility, compared to the parent conjugated molecules. We show that electron density transfer from the CM to the LA, which was hypothesized to cause the experimental red shift in absorption spectra upon LA binding, can be quantified and interpreted by population analysis. Experimental red shifts in optical transitions for all molecular families can also be predicted by time-dependent DFT calculations with different density functionals. These detailed insights help to optimize a priori design guidelines for future applications.

9.
Angew Chem Int Ed Engl ; 58(31): 10612-10615, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31168957

RESUMO

A new dicationic diboronic acid structure, DBA2+, was designed to exhibit good affinity (Kd ≈1 mm) and selectivity toward glucose. Binding of DBA2+ to glucose changes the pKa of DBA2+ from 9.4 to 6.3, enabling opportunities for detection of glucose at physiological pH. Proton release from DBA2+ is firmly related to glucose concentrations within the physiologically relevant range (0-30 mm), as verified by conductimetric monitoring. Negligible interference from other sugars (for example, maltose, fructose, sucrose, lactose, and galactose) was observed. These results demonstrate the potential of DBA2+ for selective, quantitative glucose sensing. The nonenzymatic strategy based on electrohydrodynamic effects may enable the development of stable, accurate, and continuous glucose monitoring platforms.

10.
Adv Mater ; 31(30): e1900904, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31148255

RESUMO

Recent research efforts on solution-processed semitransparent organic solar cells (OSCs) are presented. Essential properties of organic donor:acceptor bulk heterojunction blends and electrode materials, required for the combination of simultaneous high power conversion efficiency (PCE) and average visible transmittance of photovoltaic devices, are presented from the materials science and device engineering points of view. Aspects of optical perception, charge generation-recombination, and extraction processes relevant for semitransparent OSCs are also discussed in detail. Furthermore, the theoretical limits of PCE for fully transparent OSCs, compared to the performance of the best reported semitransparent OSCs, and options for further optimization are discussed.

11.
ACS Appl Mater Interfaces ; 11(17): 15821-15828, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964984

RESUMO

A detailed study of a high-k fluoropolymer gate dielectric material, poly(vinylidene fluoride- co-hexafluoropropylene) [P(VDF-HFP)], is presented as a guide to achieve low operational voltage and electrically stable device performance. The large dipole moment of C-F dipoles in P(VDF-HFP) is responsible for its high dielectric constant as well as its potentially ferroelectric behavior that must be minimized to avoid hysteretic current-voltage characteristics. A range of material grades and processing conditions are explored and are shown to have a significant effect on the degree of hysteresis observed in device-transfer characteristics. The percentage of HFP monomer in the P(VDF-HFP) dielectric has an effect on gate-dependent mobility induced by disorder at the semiconductor-dielectric interface. Most importantly, we present the considerations that must be made to achieve optimal performance in multiple device architectures of organic field-effect transistors when using P(VDF-HFP) as a dielectric layer.

12.
Adv Mater ; 31(18): e1808021, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30908801

RESUMO

A novel conjugated oligoelectrolyte (COE) material, named S6, is designed to have a lipid-bilayer stabilizing topology afforded by an extended oligophenylenevinylene backbone. S6 intercalates biological membranes acting as a hydrophobic support for glycerophospholipid acyl chains. Indeed, Escherichia coli treated with S6 exhibits a twofold improvement in butanol tolerance, a relevant feature to achieve within the general context of modifying microorganisms used in biofuel production. Filamentous growth, a morphological stress response to butanol toxicity in E. coli, is observed in untreated cells after incubation with 0.9% butanol (v/v), but is mitigated by S6 treatment. Real-time fluorescence imaging using giant unilamellar vesicles reveals the extent to which S6 counters membrane instability. Moreover, S6 also reduces butanol-induced lipopolysaccharide release from the outer membrane to further maintain cell integrity. These findings highlight a deliberate effort in the molecular design of a chain-elongated COE to stabilize microbial membranes against environmental challenges.


Assuntos
Parede Celular/efeitos dos fármacos , Eletrólitos/farmacologia , Compostos de Vinila/química , Butanóis/toxicidade , Parede Celular/metabolismo , Eletrólitos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Lipopolissacarídeos/química , Testes de Sensibilidade Microbiana , Microscopia Confocal
13.
J Am Chem Soc ; 141(13): 5078-5082, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30793597

RESUMO

High-performance organic semiconducting materials are reliant upon subtle changes in structure across different length scales. These morphological features control relevant physical properties and ultimately device performance. By combining in situ NMR spectroscopy and theoretical calculations, the conjugated small molecule TT is shown to exhibit distinct temperature-dependent local structural features that are related to macroscopic properties. Specifically, lamellar and melt states are shown to exhibit different molecular topologies associated with planar and twisted conformations of TT, respectively. This topological transformation offers a novel avenue for molecular design and control of solid-state organization.

14.
Adv Mater ; 31(22): e1806701, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30698856

RESUMO

Conjugated oligoelectrolytes (COEs) are a relatively new class of synthetic organic molecules with, as of yet, untapped potential for use in organic optoelectronic devices and bioelectronic systems. COEs also offer a novel molecular approach to biosensing, bioimaging, and disease therapy. Substantial progress has been made in the past decade at the intersection of chemistry, materials science, and the biological sciences developing COEs and their polymer analogues, namely, conjugated polyelectrolytes (CPEs), into synthetic systems with biological and biomedical utility. CPEs have traditionally attracted more attention in arenas of sensing, imaging, and therapy. However, the precisely defined molecular structures and interactions of COEs offer potential key advantages over CPEs, including higher reliability and fluorescence quantum efficiency, larger diversity of subcellular targeting strategies, and improved selectivity to biomolecules. Here, the unique-and sometimes overlooked-properties of COEs are discussed and the noticeable progress in their use for biological sensing, imaging, and therapy is reviewed.


Assuntos
Técnicas Biossensoriais/métodos , Polieletrólitos/química , Polieletrólitos/uso terapêutico , Animais , Humanos , Imagem Molecular
15.
Adv Mater ; 30(46): e1804794, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30368938

RESUMO

Ion-free organic ratchets with asymmetric injecting contacts (AICs) are fabricated using solution-processable organic semiconductors. Scanning Kelvin probe microscopy analysis reveals that the rectifying function is achieved via the "charge pump" mechanism. Electrical characterizations show that the device can readily operate under industrial standard radio frequency and its high-frequency performance may be enhanced through further material/device engineering. The built-in asymmetric feature exempts the devices from the complicated material design, device processing, and performance decay associated with the use of ion/semiconductor blends in ionic-organic ratchets. Thus, the AIC ratchets can deliver a persisting ratchet effect and have excellent material compatibility toward organic semiconductors.

16.
J Phys Chem B ; 122(39): 9191-9201, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30204437

RESUMO

We investigated the aggregation behavior of the donor-acceptor molecules p-DTS(FBTTh2)2 (T1) and p-SIDT(FBTTh2)2 (H1) in MTHF solutions. Using optical spectroscopy, we found that T1 forms aggregates in solution while H1 aggregates only when processed as a thin film, but not in solution. Free energy molecular dynamics (MD) simulations based on force fields derived from quantum-mechanical density functional theory fully reproduce this difference. Our simulations reveal that this difference is not due to the lengthy carbon side chains. Rather, the molecular symmetry of T1 allows for an aggregated state in which the central donor units are spatially well-separated while a similar configuration is sterically impossible for H1. As a consequence, any aggregation of H1 necessarily involves aggregation of the central donors which requires, as a first step, stripping the central donor of its protective MTHF solvation shell. This unfavorable process leads to a significant kinetic hindrance for aggregation and explains the strongly differing aggregation behavior of T1/H1 in MTHF despite their otherwise similar structures.

17.
Nat Commun ; 9(1): 3304, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108220

RESUMO

The original version of this Article contained an error in the spelling of the author Woochul Song, which was incorrectly given as Woochul C. Song. This has been corrected in both the PDF and HTML versions of the Article.

18.
Adv Mater ; : e1802359, 2018 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-29984437

RESUMO

Flexible organic optoelectronic devices simultaneously targeting mechanical conformability and fast responsivity in the near-infrared (IR) region are a prerequisite to expand the capabilities of practical optical science and engineering for on-skin optoelectronic applications. Here, an ultraflexible near-IR responsive skin-conformal photoplethysmogram sensor based on a bulk heterojunction photovoltaic active layer containing regioregular polyindacenodithiophene-pyridyl[2,1,3]thiadiazole-cyclopentadithiophene (PIPCP) is reported. The ultrathin (3 µm thick) photodetector exhibits unprecedented operational stability under severe mechanical deformation at a bending radius of less than 3 µm, even after more than 103 bending cycles. Deliberate optimization of the physical dimensions of the active layer used in the device enables precise on/off switching and high device yield simultaneously. The response frequency over 1 kHz under mechanically deformed conditions facilitates conformal electronic sensors at the machine/human interface. Finally, a mechanically stretchable, flexible, and skin-conformal photoplethysmogram (PPG) device with higher sensitivity than those of rigid devices is demonstrated, through conformal adherence to the flexuous surface of a fingerprint.

19.
Nat Commun ; 9(1): 2294, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895901

RESUMO

Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g., broad pore size distributions) in both nonporous membranes used for Angstrom-scale separations and porous membranes used for nano to micron-scale separations. Biological membranes utilize well-defined Angstrom-scale pores to provide exceptional transport properties and can be used as inspiration to overcome this trade-off. Here, we present a comprehensive demonstration of such a bioinspired approach based on pillar[5]arene artificial water channels, resulting in artificial water channel-based block copolymer membranes. These membranes have a sharp selectivity profile with a molecular weight cutoff of ~ 500 Da, a size range challenging to achieve with current membranes, while achieving a large improvement in permeability (~65 L m-2 h-1 bar-1 compared with 4-7 L m-2 h-1 bar-1) over similarly rated commercial membranes.


Assuntos
Membranas Artificiais , Simulação de Dinâmica Molecular , Polímeros/química , Água/química , Aquaporinas/química , Simulação por Computador , Detergentes/química , Bicamadas Lipídicas/química , Lipossomos/química , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Peso Molecular , Permeabilidade , Porosidade , Sais/química
20.
Adv Mater ; : e1707114, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29900605

RESUMO

Organic photovoltaics (OPV) have the advantage of possible fabrication by energy-efficient and cost-effective deposition methods, such as solution processing. Solvent additives can provide fine control of the active layer morphology of OPVs by influencing film formation during solution processing. As such, solvent additives form a versatile method of experimental control for improving organic solar cell device performance. This review provides a brief history of solution-processed bulk heterojunction OPVs and the advent of solvent additives, putting them into context with other methods available for morphology control. It presents the current understanding of how solvent additives impact various mechanisms of phase separation, enabled by recent advances in in situ morphology characterization. Indeed, understanding solvent additives' effects on film formation has allowed them to be applied and combined effectively and synergistically to boost OPV performance. Their success as a morphology control strategy has also prompted the use of solvent additives in related organic semiconductor technologies. Finally, the role of solvent additives in the development of next-generation OPV active layers is discussed. Despite concerns over their environmental toxicity and role in device instability, solvent additives remain relevant morphological directing agents as research interests evolve toward nonfullerene acceptors, ternary blends, and environmentally sustainable solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA