Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31630189

RESUMO

Raised albumin-creatinine ratio (ACR) is an indicator of microvascular damage and renal disease. We aimed to identify genetic variants associated with raised ACR and study the implications of carrying multiple ACR-raising alleles with metabolic and vascular related disease. We performed a genome-wide association study of ACR using 437,027 individuals from the UK Biobank in the discovery phase, 54,527 more than previous studies, and followed up our findings in independent studies. We identified 62 independent associations with ACR across 56 loci (P<5x10-8), of which 20 were not previously reported. Pathway analyses and the identification of 20 of the 62 variants (at r2>0.8) coinciding with signals for at least sixteen related metabolic and vascular traits, suggested multiple pathways leading to raised ACR levels. After excluding variants at the CUBN locus, known to alter ACR via effects on renal absorption, an ACR genetic risk score was associated with a higher risk of hypertension, and less strongly, type 2 diabetes and stroke. For some rare genotype combinations at the CUBN locus, most individuals had ACR levels above the microalbuminuria clinical threshold. Contrary to our hypothesis, individuals carrying more CUBN ACR-raising alleles, and above the clinical threshold, had a higher frequency of vascular disease. The CUBN allele effects on ACR were twice as strong in people with diabetes - a result robust to an optimization-algorithm approach to simulating interactions, validating previously reported gene-diabetes interactions (P≤4x10-5). In conclusion, a variety of genetic mechanisms and traits contribute to variation in ACR.

2.
Nat Commun ; 10(1): 3927, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477735

RESUMO

The duration of pregnancy is influenced by fetal and maternal genetic and non-genetic factors. Here we report a fetal genome-wide association meta-analysis of gestational duration, and early preterm, preterm, and postterm birth in 84,689 infants. One locus on chromosome 2q13 is associated with gestational duration; the association is replicated in 9,291 additional infants (combined P = 3.96 × 10-14). Analysis of 15,588 mother-child pairs shows that the association is driven by fetal rather than maternal genotype. Functional experiments show that the lead SNP, rs7594852, alters the binding of the HIC1 transcriptional repressor. Genes at the locus include several interleukin 1 family members with roles in pro-inflammatory pathways that are central to the process of parturition. Further understanding of the underlying mechanisms will be of great public health importance, since giving birth either before or after the window of term gestation is associated with increased morbidity and mortality.

3.
PLoS Med ; 16(6): e1002828, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31211782

RESUMO

BACKGROUND: Systematic reviews of randomised controlled trials (RCTs) have suggested that maternal vitamin D (25[OH]D) and calcium supplementation increase birth weight. However, limitations of many trials were highlighted in the reviews. Our aim was to combine genetic and RCT data to estimate causal effects of these two maternal traits on offspring birth weight. METHODS AND FINDINGS: We performed two-sample mendelian randomisation (MR) using genetic instrumental variables associated with 25(OH)D and calcium that had been identified in genome-wide association studies (GWAS; sample 1; N = 122,123 for 25[OH]D and N = 61,275 for calcium). Associations between these maternal genetic variants and offspring birth weight were calculated in the UK Biobank (UKB) (sample 2; N = 190,406). We used data on mother-child pairs from two United Kingdom birth cohorts (combined N = 5,223) in sensitivity analyses to check whether results were influenced by fetal genotype, which is correlated with the maternal genotype (r ≈ 0.5). Further sensitivity analyses to test the reliability of the results included MR-Egger, weighted-median estimator, 'leave-one-out', and multivariable MR analyses. We triangulated MR results with those from RCTs, in which we used randomisation to supplementation with vitamin D (24 RCTs, combined N = 5,276) and calcium (6 RCTs, combined N = 543) as an instrumental variable to determine the effects of 25(OH)D and calcium on birth weight. In the main MR analysis, there was no strong evidence of an effect of maternal 25(OH)D on birth weight (difference in mean birth weight -0.03 g [95% CI -2.48 to 2.42 g, p = 0.981] per 10% higher maternal 25[OH]D). The effect estimate was consistent across our MR sensitivity analyses. Instrumental variable analyses applied to RCTs suggested a weak positive causal effect (5.94 g [95% CI 2.15-9.73, p = 0.002] per 10% higher maternal 25[OH]D), but this result may be exaggerated because of risk of bias in the included RCTs. The main MR analysis for maternal calcium also suggested no strong evidence of an effect on birth weight (-20 g [95% CI -44 to 5 g, p = 0.116] per 1 SD higher maternal calcium level). Some sensitivity analyses suggested that the genetic instrument for calcium was associated with birth weight via exposures that are independent of calcium levels (horizontal pleiotropy). Application of instrumental variable analyses to RCTs suggested that calcium has a substantial effect on birth weight (178 g [95% CI 121-236 g, p = 1.43 × 10-9] per 1 SD higher maternal calcium level) that was not consistent with any of the MR results. However, the RCT instrumental variable estimate may have been exaggerated because of risk of bias in the included RCTs. Other study limitations include the low response rate of UK Biobank, which may bias MR estimates, and the lack of suitable data to test whether the effects of genetic instruments on maternal calcium levels during pregnancy were the same as those outside of pregnancy. CONCLUSIONS: Our results suggest that maternal circulating 25(OH)D does not influence birth weight in otherwise healthy newborns. However, the effect of maternal circulating calcium on birth weight is unclear and requires further exploration with more research including RCT and/or MR analyses with more valid instruments.

4.
Nat Genet ; 51(5): 804-814, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043758

RESUMO

Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.


Assuntos
Peso ao Nascer/genética , Adulto , Pressão Sanguínea/genética , Estatura/genética , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Feminino , Desenvolvimento Fetal/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Cardiopatias/etiologia , Cardiopatias/genética , Humanos , Recém-Nascido , Masculino , Herança Materna/genética , Troca Materno-Fetal/genética , Doenças Metabólicas/etiologia , Doenças Metabólicas/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Gravidez , Fatores de Risco
5.
J Crohns Colitis ; 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31125052

RESUMO

BACKGROUND AND AIMS: The causes of microscopic colitis are currently poorly understood. Previous reports have found clinical associations with coeliac disease and genetic associations at the HLA locus on the ancestral 8.1 haplotype. We investigated pharmacological and genetic factors associated with microscopic colitis in the UK Biobank. METHODS: 483 European UK Biobank participants were identified by ICD10 coding, and a genome-wide association study was performed using BOLT-LMM, with a sensitivity analysis performed excluding potential confounders. The HLA*IMP:02 algorithm was used to estimate allele frequency at 11 classical human leukocyte antigen (HLA) genes, and downstream analysis was performed using FUMA. Genetic overlap with inflammatory bowel disease (Crohn's disease and ulcerative colitis) was investigated using genetic risk scores. RESULTS: We found significant phenotypic associations with smoking status, coeliac disease and the use of proton-pump inhibitors but not with other commonly reported pharmacological risk factors. Using the largest sample size to date, we confirmed a recently reported association with the MHC Ancestral 8.1 Haplotype. Downstream analysis suggests association with digestive tract morphogenesis. By calculating genetic risk scores, we also report suggestive evidence of shared genetic risk with Crohn's disease, but not with ulcerative colitis. CONCLUSIONS: This report confirms the role of genetic determinants in the HLA in the pathogenesis of microscopic colitis. The genetic overlap with Crohn's disease suggests a common underlying mechanism of disease.

6.
Nat Commun ; 10(1): 1585, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952852

RESUMO

Sleep is an essential human function but its regulation is poorly understood. Using accelerometer data from 85,670 UK Biobank participants, we perform a genome-wide association study of 8 derived sleep traits representing sleep quality, quantity and timing, and validate our findings in 5,819 individuals. We identify 47 genetic associations at P < 5 × 10-8, of which 20 reach a stricter threshold of P < 8 × 10-10. These include 26 novel associations with measures of sleep quality and 10 with nocturnal sleep duration. The majority of identified variants associate with a single sleep trait, except for variants previously associated with restless legs syndrome. For sleep duration we identify a missense variant (p.Tyr727Cys) in PDE11A as the likely causal variant. As a group, sleep quality loci are enriched for serotonin processing genes. Although accelerometer-derived measures of sleep are imperfect and may be affected by restless legs syndrome, these findings provide new biological insights into sleep compared to previous efforts based on self-report sleep measures.


Assuntos
Polissonografia/métodos , Transtornos do Sono-Vigília/genética , Sono/genética , Acelerometria/métodos , Ritmo Circadiano , Humanos , Polimorfismo de Nucleotídeo Único , Serotonina/genética , Serotonina/metabolismo , Transtornos do Sono-Vigília/diagnóstico , Relação Cintura-Quadril
7.
Nat Commun ; 10(1): 1100, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846698

RESUMO

Sleep is an essential state of decreased activity and alertness but molecular factors regulating sleep duration remain unknown. Through genome-wide association analysis in 446,118 adults of European ancestry from the UK Biobank, we identify 78 loci for self-reported habitual sleep duration (p < 5 × 10-8; 43 loci at p < 6 × 10-9). Replication is observed for PAX8, VRK2, and FBXL12/UBL5/PIN1 loci in the CHARGE study (n = 47,180; p < 6.3 × 10-4), and 55 signals show sign-concordant effects. The 78 loci further associate with accelerometer-derived sleep duration, daytime inactivity, sleep efficiency and number of sleep bouts in secondary analysis (n = 85,499). Loci are enriched for pathways including striatum and subpallium development, mechanosensory response, dopamine binding, synaptic neurotransmission and plasticity, among others. Genetic correlation indicates shared links with anthropometric, cognitive, metabolic, and psychiatric traits and two-sample Mendelian randomization highlights a bidirectional causal link with schizophrenia. This work provides insights into the genetic basis for inter-individual variation in sleep duration implicating multiple biological pathways.


Assuntos
Loci Gênicos , Sono/genética , Acelerometria , Adulto , Idoso , Grupo com Ancestrais do Continente Europeu , Feminino , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Autorrelato , Sono/fisiologia , Reino Unido
8.
Nat Genet ; 51(3): 387-393, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804566

RESUMO

Insomnia is a common disorder linked with adverse long-term medical and psychiatric outcomes. The underlying pathophysiological processes and causal relationships of insomnia with disease are poorly understood. Here we identified 57 loci for self-reported insomnia symptoms in the UK Biobank (n = 453,379) and confirmed their effects on self-reported insomnia symptoms in the HUNT Study (n = 14,923 cases and 47,610 controls), physician-diagnosed insomnia in the Partners Biobank (n = 2,217 cases and 14,240 controls), and accelerometer-derived measures of sleep efficiency and sleep duration in the UK Biobank (n = 83,726). Our results suggest enrichment of genes involved in ubiquitin-mediated proteolysis and of genes expressed in multiple brain regions, skeletal muscle, and adrenal glands. Evidence of shared genetic factors was found between frequent insomnia symptoms and restless legs syndrome, aging, and cardiometabolic, behavioral, psychiatric, and reproductive traits. Evidence was found for a possible causal link between insomnia symptoms and coronary artery disease, depressive symptoms, and subjective well-being.


Assuntos
Predisposição Genética para Doença/genética , Distúrbios do Início e da Manutenção do Sono/genética , Sono/genética , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteólise , Autorrelato , Ubiquitina/genética
9.
Diabetes Care ; 42(2): 200-207, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30655379

RESUMO

OBJECTIVE: Previously generated genetic risk scores (GRSs) for type 1 diabetes (T1D) have not captured all known information at non-HLA loci or, particularly, at HLA risk loci. We aimed to more completely incorporate HLA alleles, their interactions, and recently discovered non-HLA loci into an improved T1D GRS (termed the "T1D GRS2") to better discriminate diabetes subtypes and to predict T1D in newborn screening studies. RESEARCH DESIGN AND METHODS: In 6,481 case and 9,247 control subjects from the Type 1 Diabetes Genetics Consortium, we analyzed variants associated with T1D both in the HLA region and across the genome. We modeled interactions between variants marking strongly associated HLA haplotypes and generated odds ratios to create the improved GRS, the T1D GRS2. We validated our findings in UK Biobank. We assessed the impact of the T1D GRS2 in newborn screening and diabetes classification and sought to provide a framework for comparison with previous scores. RESULTS: The T1D GRS2 used 67 single nucleotide polymorphisms (SNPs) and accounted for interactions between 18 HLA DR-DQ haplotype combinations. The T1D GRS2 was highly discriminative for all T1D (area under the curve [AUC] 0.92; P < 0.0001 vs. older scores) and even more discriminative for early-onset T1D (AUC 0.96). In simulated newborn screening, the T1D GRS2 was nearly twice as efficient as HLA genotyping alone and 50% better than current genetic scores in general population T1D prediction. CONCLUSIONS: An improved T1D GRS, the T1D GRS2, is highly useful for classifying adult incident diabetes type and improving newborn screening. Given the cost-effectiveness of SNP genotyping, this approach has great clinical and research potential in T1D.


Assuntos
Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Testes Genéticos , Triagem Neonatal/métodos , Triagem Neonatal/normas , Alelos , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/epidemiologia , Feminino , Predisposição Genética para Doença , Testes Genéticos/métodos , Testes Genéticos/normas , Antígenos HLA/genética , Haplótipos , Humanos , Incidência , Recém-Nascido , Masculino , Polimorfismo de Nucleotídeo Único , Melhoria de Qualidade , Padrões de Referência , Projetos de Pesquisa/normas , Fatores de Risco , Reino Unido
10.
Gut ; 68(5): 854-865, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30661054

RESUMO

OBJECTIVE: Diverticular disease is a common complex disorder characterised by mucosal outpouchings of the colonic wall that manifests through complications such as diverticulitis, perforation and bleeding. We report the to date largest genome-wide association study (GWAS) to identify genetic risk factors for diverticular disease. DESIGN: Discovery GWAS analysis was performed on UK Biobank imputed genotypes using 31 964 cases and 419 135 controls of European descent. Associations were replicated in a European sample of 3893 cases and 2829 diverticula-free controls and evaluated for risk contribution to diverticulitis and uncomplicated diverticulosis. Transcripts at top 20 replicating loci were analysed by real-time quatitative PCR in preparations of the mucosal, submucosal and muscular layer of colon. The localisation of expressed protein at selected loci was investigated by immunohistochemistry. RESULTS: We discovered 48 risk loci, of which 12 are novel, with genome-wide significance and consistent OR in the replication sample. Nominal replication (p<0.05) was observed for 27 loci, and additional 8 in meta-analysis with a population-based cohort. The most significant novel risk variant rs9960286 is located near CTAGE1 with a p value of 2.3×10-10 and 0.002 (ORallelic=1.14 (95% CI 1.05 to 1.24)) in the replication analysis. Four loci showed stronger effects for diverticulitis, PHGR1 (OR 1.32, 95% CI 1.12 to 1.56), FAM155A-2 (OR 1.21, 95% CI 1.04 to 1.42), CALCB (OR 1.17, 95% CI 1.03 to 1.33) and S100A10 (OR 1.17, 95% CI 1.03 to 1.33). CONCLUSION: In silico analyses point to diverticulosis primarily as a disorder of intestinal neuromuscular function and of impaired connective fibre support, while an additional diverticulitis risk might be conferred by epithelial dysfunction.


Assuntos
Doenças do Colo/genética , Tecido Conjuntivo/fisiologia , Doenças Diverticulares/genética , Epitélio/fisiologia , Estudo de Associação Genômica Ampla , Junção Neuromuscular/fisiologia , Adulto , Idoso , Estudos de Casos e Controles , Doenças do Colo/patologia , Bases de Dados Genéticas , Doenças Diverticulares/patologia , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Reino Unido
11.
Nat Commun ; 10(1): 343, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696823

RESUMO

Being a morning person is a behavioural indicator of a person's underlying circadian rhythm. Using genome-wide data from 697,828 UK Biobank and 23andMe participants we increase the number of genetic loci associated with being a morning person from 24 to 351. Using data from 85,760 individuals with activity-monitor derived measures of sleep timing we find that the chronotype loci associate with sleep timing: the mean sleep timing of the 5% of individuals carrying the most morningness alleles is 25 min earlier than the 5% carrying the fewest. The loci are enriched for genes involved in circadian regulation, cAMP, glutamate and insulin signalling pathways, and those expressed in the retina, hindbrain, hypothalamus, and pituitary. Using Mendelian Randomisation, we show that being a morning person is causally associated with better mental health but does not affect BMI or risk of Type 2 diabetes. This study offers insights into circadian biology and its links to disease in humans.


Assuntos
Ritmo Circadiano , Grupo com Ancestrais do Continente Europeu/genética , Estudo de Associação Genômica Ampla , Adulto , Idoso , AMP Cíclico/metabolismo , Feminino , Loci Gênicos , Ácido Glutâmico/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Sono , Reino Unido
12.
Am J Hum Genet ; 104(2): 275-286, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30665703

RESUMO

More than 100,000 genetic variants are classified as disease causing in public databases. However, the true penetrance of many of these rare alleles is uncertain and might be over-estimated by clinical ascertainment. Here, we use data from 379,768 UK Biobank (UKB) participants of European ancestry to assess the pathogenicity and penetrance of putatively clinically important rare variants. Although rare variants are harder to genotype accurately than common variants, we were able to classify as high quality 1,244 of 4,585 (27%) putatively clinically relevant rare (MAF < 1%) variants genotyped on the UKB microarray. We defined as "clinically relevant" variants that were classified as either pathogenic or likely pathogenic in ClinVar or are in genes known to cause two specific monogenic diseases: maturity-onset diabetes of the young (MODY) and severe developmental disorders (DDs). We assessed the penetrance and pathogenicity of these high-quality variants by testing their association with 401 clinically relevant traits. 27 of the variants were associated with a UKB trait, and we were able to refine the penetrance estimate for some of the variants. For example, the HNF4A c.340C>T (p.Arg114Trp) (GenBank: NM_175914.4) variant associated with diabetes is <10% penetrant by the time an individual is 40 years old. We also observed associations with relevant traits for heterozygous carriers of some rare recessive conditions, e.g., heterozygous carriers of the ERCC4 c.2395C>T (p.Arg799Trp) variant that causes Xeroderma pigmentosum were more susceptible to sunburn. Finally, we refute the previous disease association of RNF135 in developmental disorders. In conclusion, this study shows that very large population-based studies will help refine our understanding of the pathogenicity of rare genetic variants.

13.
Am J Hum Genet ; 104(1): 157-163, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30583798

RESUMO

Erectile dysfunction (ED) is a common condition affecting more than 20% of men over 60 years, yet little is known about its genetic architecture. We performed a genome-wide association study of ED in 6,175 case subjects among 223,805 European men and identified one locus at 6q16.3 (lead variant rs57989773, OR 1.20 per C-allele; p = 5.71 × 10-14), located between MCHR2 and SIM1. In silico analysis suggests SIM1 to confer ED risk through hypothalamic dysregulation. Mendelian randomization provides evidence that genetic risk of type 2 diabetes mellitus is a cause of ED (OR 1.11 per 1-log unit higher risk of type 2 diabetes). These findings provide insights into the biological underpinnings and the causes of ED and may help prioritize the development of future therapies for this common disorder.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Disfunção Erétil/etiologia , Disfunção Erétil/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hipotálamo/patologia , Alelos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cromossomos Humanos Par 6/genética , Simulação por Computador , Europa (Continente) , Humanos , Masculino , Proteínas Repressoras/genética
15.
Int J Epidemiol ; 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30423117

RESUMO

Background: Depression is more common in obese than non-obese individuals, especially in women, but the causal relationship between obesity and depression is complex and uncertain. Previous studies have used genetic variants associated with BMI to provide evidence that higher body mass index (BMI) causes depression, but have not tested whether this relationship is driven by the metabolic consequences of BMI nor for differences between men and women. Methods: We performed a Mendelian randomization study using 48 791 individuals with depression and 291 995 controls in the UK Biobank, to test for causal effects of higher BMI on depression (defined using self-report and Hospital Episode data). We used two genetic instruments, both representing higher BMI, but one with and one without its adverse metabolic consequences, in an attempt to 'uncouple' the psychological component of obesity from the metabolic consequences. We further tested causal relationships in men and women separately, and using subsets of BMI variants from known physiological pathways. Results: Higher BMI was strongly associated with higher odds of depression, especially in women. Mendelian randomization provided evidence that higher BMI partly causes depression. Using a 73-variant BMI genetic risk score, a genetically determined one standard deviation (1 SD) higher BMI (4.9 kg/m2) was associated with higher odds of depression in all individuals [odds ratio (OR): 1.18, 95% confidence interval (CI): 1.09, 1.28, P = 0.00007) and women only (OR: 1.24, 95% CI: 1.11, 1.39, P = 0.0001). Meta-analysis with 45 591 depression cases and 97 647 controls from the Psychiatric Genomics Consortium (PGC) strengthened the statistical confidence of the findings in all individuals. Similar effect size estimates were obtained using different Mendelian randomization methods, although not all reached P < 0.05. Using a metabolically favourable adiposity genetic risk score, and meta-analysing data from the UK biobank and PGC, a genetically determined 1 SD higher BMI (4.9 kg/m2) was associated with higher odds of depression in all individuals (OR: 1.26, 95% CI: 1.06, 1.50], P = 0.010), but with weaker statistical confidence. Conclusions: Higher BMI, with and without its adverse metabolic consequences, is likely to have a causal role in determining the likelihood of an individual developing depression.

16.
Diabetes ; 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30352878

RESUMO

Recent genetic studies have identified alleles associated with opposite effects on adiposity and risk of type 2 diabetes. We aimed to identify more of these variants and test the hypothesis that such "favourable adiposity" alleles are associated with higher subcutaneous fat and lower ectopic fat. We combined magnetic resonance imaging (MRI) data with genome-wide association studies (GWAS) of body fat % and metabolic traits. We report 14 alleles, including 7 newly characterized alleles, associated with higher adiposity, but a favourable metabolic profile. Consistent with previous studies, individuals carrying more "favourable adiposity" alleles had higher body fat % and higher BMI, but lower risk of type 2 diabetes, heart disease and hypertension. These individuals also had higher subcutaneous fat, but lower liver fat and lower visceral-to-subcutaneous adipose tissue ratio. Individual alleles associated with higher body fat % but lower liver fat and lower risk of type 2 diabetes included those in PPARG, GRB14 and IRS1, whilst the allele in ANKRD55 was paradoxically associated with higher visceral fat but lower risk of type 2 diabetes. Most identified "favourable adiposity" alleles are associated with higher subcutaneous and lower liver fat, a mechanism consistent with the beneficial effects of storing excess triglyceride in metabolically low risk depots.

17.
Genet Med ; 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30181606

RESUMO

PURPOSE: Many women with X chromosome aneuploidy undergo lifetime clinical monitoring for possible complications. However, ascertainment of cases in the clinic may mean that the penetrance has been overestimated. METHODS: We characterized the prevalence and phenotypic consequences of X chromosome aneuploidy in a population of 244,848 women over 40 years of age from UK Biobank, using single-nucleotide polymorphism (SNP) array data. RESULTS: We detected 30 women with 45,X; 186 with mosaic 45,X/46,XX; and 110 with 47,XXX. The prevalence of nonmosaic 45,X (12/100,000) and 47,XXX (45/100,000) was lower than expected, but was higher for mosaic 45,X/46,XX (76/100,000). The characteristics of women with 45,X were consistent with the characteristics of a clinically recognized Turner syndrome phenotype, including short stature and primary amenorrhea. In contrast, women with mosaic 45,X/46,XX were less short, had a normal reproductive lifespan and birth rate, and no reported cardiovascular complications. The phenotype of women with 47,XXX included taller stature (5.3 cm; SD = 5.52 cm; P = 5.8 × 10-20) and earlier menopause age (5.12 years; SD = 5.1 years; P = 1.2 × 10-14). CONCLUSION: Our results suggest that the clinical management of women with 45,X/46,XX mosaicism should be minimal, particularly those identified incidentally.

18.
Cell Rep ; 23(2): 327-336, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29641994

RESUMO

Fibroblast growth factor 21 (FGF21) is a hormone that has insulin-sensitizing properties. Some trials of FGF21 analogs show weight loss and lipid-lowering effects. Recent studies have shown that a common allele in the FGF21 gene alters the balance of macronutrients consumed, but there was little evidence of an effect on metabolic traits. We studied a common FGF21 allele (A:rs838133) in 451,099 people from the UK Biobank study, aiming to use the human allele to inform potential adverse and beneficial effects of targeting FGF21. We replicated the association between the A allele and higher percentage carbohydrate intake. We then showed that this allele is more strongly associated with higher blood pressure and waist-hip ratio, despite an association with lower total body-fat percentage, than it is with BMI or type 2 diabetes. These human phenotypes of variation in the FGF21 gene will inform research into FGF21's mechanisms and therapeutic potential.

19.
Diabetes ; 67(5): 1024-1029, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29463506

RESUMO

Maternal glycemia is a key determinant of birth weight, but recent large-scale genome-wide association studies demonstrated an important contribution of fetal genetics. It is not known whether fetal genotype modifies the impact of maternal glycemia or whether it acts through insulin-mediated growth. We tested the effects of maternal fasting plasma glucose (FPG) and a fetal genetic score for birth weight on birth weight and fetal insulin in 2,051 European mother-child pairs from the Exeter Family Study of Childhood Health (EFSOCH) and the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study. The fetal genetic score influenced birth weight independently of maternal FPG and impacted growth at all levels of maternal glycemia. For mothers with FPG in the top tertile, the frequency of large for gestational age (birth weight ≥90th centile) was 31.1% for offspring with the highest tertile genetic score and only 14.0% for those with the lowest tertile genetic score. Unlike maternal glucose, the fetal genetic score was not associated with cord insulin or C-peptide. Similar results were seen for HAPO participants of non-European ancestry (n = 2,842 pairs). This work demonstrates that for any level of maternal FPG, fetal genetics has a major impact on fetal growth and acts predominantly through independent mechanisms.


Assuntos
Peso ao Nascer/genética , Glicemia/metabolismo , Diabetes Gestacional/metabolismo , Macrossomia Fetal/genética , Adulto , Grupo com Ancestrais do Continente Africano/genética , Peptídeo C/metabolismo , Região do Caribe , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Sangue Fetal/metabolismo , Desenvolvimento Fetal/genética , Macrossomia Fetal/metabolismo , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Recém-Nascido , Insulina/metabolismo , Masculino , Americanos Mexicanos/genética , Gravidez
20.
Hum Mol Genet ; 27(4): 742-756, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29309628

RESUMO

Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P < 5 × 10-8. In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA