Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Mais filtros

Base de dados
Intervalo de ano de publicação
Adv Mater ; 34(1): e2103963, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34672402


CO2 emissions can be transformed into high-added-value commodities through CO2 electrocatalysis; however, efficient low-cost electrocatalysts are needed for global scale-up. Inspired by other emerging technologies, the authors report the development of a gas diffusion electrode containing highly dispersed Ag sites in a low-cost Zn matrix. This catalyst shows unprecedented Ag mass activity for CO production: -614 mA cm-2 at 0.17 mg of Ag. Subsequent electrolyte engineering demonstrates that halide anions can further improve stability and activity of the Zn-Ag catalyst, outperforming pure Ag and Au. Membrane electrode assemblies are constructed and coupled to a microbial process that converts the CO to acetate and ethanol. Combined, these concepts present pathways to design catalysts and systems for CO2 conversion toward sought-after products.

Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34362842


Electrochemical reactors utilizing flow-through electrodes (FTEs) provide an attractive path toward the efficient utilization of electrical energy, but their commercial viability and ultimate adoption hinge on attaining high currents to drive productivity and cost competitiveness. Conventional FTEs composed of random, porous media provide limited opportunity for architectural control and engineering of microscale transport. Alternatively, the design freedom engendered by additively manufacturing FTEs yields additional opportunities to further drive performance via flow engineering. Through experiment and validated continuum computation we analyze the mass transfer in three-dimensional (3D)-printed porous FTEs with periodic lattice structures and show that, in contrast to conventional electrodes, the mesoscopic length scales in 3D-printed electrodes lead to an increase in the mass correlation exponent as inertial flow effects dominate. The inertially enhanced mass transport yields mass transfer coefficients that exceed previously reported 3D-printed FTEs by 10 to 100 times, bringing 3D-printed FTE performance on par with conventional materials.

Adv Mater ; 33(7): e2003855, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33448061


The electrosynthesis of value-added multicarbon products from CO2 is a promising strategy to shift chemical production away from fossil fuels. Particularly important is the rational design of gas diffusion electrode (GDE) assemblies to react selectively, at scale, and at high rates. However, the understanding of the gas diffusion layer (GDL) in these assemblies is limited for the CO2 reduction reaction (CO2 RR): particularly important, but incompletely understood, is how the GDL modulates product distributions of catalysts operating in high current density regimes > 300 mA cm-2 . Here, 3D-printable fluoropolymer GDLs with tunable microporosity and structure are reported and probe the effects of permeance, microstructural porosity, macrostructure, and surface morphology. Under a given choice of applied electrochemical potential and electrolyte, a 100× increase in the C2 H4 :CO ratio due to GDL surface morphology design over a homogeneously porous equivalent and a 1.8× increase in the C2 H4 partial current density due to a pyramidal macrostructure are observed. These findings offer routes to improve CO2 RR GDEs as a platform for 3D catalyst design.

Sci Adv ; 4(8): eaas9459, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30182056


Monolithic nanoporous metals, derived from dealloying, have a unique bicontinuous solid/void structure that provides both large surface area and high electrical conductivity, making them ideal candidates for various energy applications. However, many of these applications would greatly benefit from the integration of an engineered hierarchical macroporous network structure that increases and directs mass transport. We report on 3D (three-dimensional)-printed hierarchical nanoporous gold (3DP-hnp-Au) with engineered nonrandom macroarchitectures by combining 3D printing and dealloying. The material exhibits three distinct structural length scales ranging from the digitally controlled macroporous network structure (10 to 1000 µm) to the nanoscale pore/ligament morphology (30 to 500 nm) controlled by dealloying. Supercapacitance, pressure drop, and catalysis measurements reveal that the 3D hierarchical nature of our printed nanoporous metals markedly improves mass transport and reaction rates for both liquids and gases. Our approach can be applied to a variety of alloy systems and has the potential to revolutionize the design of (electro-)chemical plants by changing the scaling relations between volume and catalyst surface area.

ACS Nano ; 8(5): 4284-94, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24712299


Hybridization chain reaction (HCR) provides multiplexed, isothermal, enzyme-free, molecular signal amplification in diverse settings. Within intact vertebrate embryos, where signal-to-background is at a premium, HCR in situ amplification enables simultaneous mapping of multiple target mRNAs, addressing a longstanding challenge in the biological sciences. With this approach, RNA probes complementary to mRNA targets trigger chain reactions in which metastable fluorophore-labeled RNA hairpins self-assemble into tethered fluorescent amplification polymers. The properties of HCR lead to straightforward multiplexing, deep sample penetration, high signal-to-background, and sharp subcellular signal localization within fixed whole-mount zebrafish embryos, a standard model system for the study of vertebrate development. However, RNA reagents are expensive and vulnerable to enzymatic degradation. Moreover, the stringent hybridization conditions used to destabilize nonspecific hairpin binding also reduce the energetic driving force for HCR polymerization, creating a trade-off between minimization of background and maximization of signal. Here, we eliminate this trade-off by demonstrating that low background levels can be achieved using permissive in situ amplification conditions (0% formamide, room temperature) and engineer next-generation DNA HCR amplifiers that maximize the free energy benefit per polymerization step while preserving the kinetic trapping property that underlies conditional polymerization, dramatically increasing signal gain, reducing reagent cost, and improving reagent durability.

Hibridização In Situ/economia , Hibridização In Situ/métodos , Nanotecnologia/economia , Nanotecnologia/métodos , Algoritmos , Animais , DNA/química , Difusão , Corantes Fluorescentes/química , Humanos , Hibridização in Situ Fluorescente , Microscopia Confocal , Conformação de Ácido Nucleico , Ácidos Nucleicos/química , Sondas de Oligonucleotídeos/química , Polímeros/química , Engenharia de Proteínas , RNA/química , RNA Mensageiro/química , Espectrometria de Fluorescência , Peixe-Zebra
J Chem Phys ; 124(9): 94902, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16526871


We study the dynamics of long chain polymer molecules tethered to a plane wall and subjected to a stagnation point flow. Using a combination of theory and numerical techniques, including Brownian dynamics (BD), we demonstrate that a chain conformation hysteresis exists even for freely draining (FD) chains. Hydrodynamic interactions (HI) between the polymer and the wall are included in the BD simulations. We find qualitative agreement between the FD and HI simulations, with both exhibiting simultaneous coiled and stretched states for a wide range of fixed flow strengths. The range of state coexistence is understood by considering an equivalent projected equilibrium problem of a two state reaction. Using this formalism, we construct Kramers rate theory (from the inverse mean first passage time for a Markov process) for the hopping transition from coil to stretch and stretch to coil. The activation energy for this rate is found to scale proportionally to chain length or Kuhn step number. Thus, in the limit of infinite chain size the hopping rates at a fixed value of the suitably defined Deborah number approach zero and the states are "frozen." We present the results that demonstrate this "ergodicity breaking."